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Definition
We consider a set L of lines of PG(3, q) such that:

∃ a number x:

∀ line l ∈ L
|{m ∈ L : m meets l, m 6= l}| = (q + 1)x+ q2 − 1

∀ line k 6∈ L
|{m ∈ L : m meets k}| = (q + 1)x



Cameron – Liebler line classes, examples
Any line class that satisfies the property above is called a
Cameron – Liebler line class, x – its parameter.
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Equitable t-partition

I V (Γ) = V1∪̇V2∪̇ . . . ∪̇Vt,
I every vertex of Vi has exactly pij neighbours of Vj.

(
p11 p12
p21 p22

)
=

(
2 1
1 2

)



Motivation

The Grassmann graph Jq(n, d):

I the vertex set: all d-dimensional subspaces of Fn
q ,

I U and W are adjacent iff dim(U ∩W ) = d− 1,

I its diameter equals min(d, n− d).

In particular, Jq(4, 2):

I the vertex set: all lines of PG(3, q),

I two lines are adjacent iff they intersect,

I strongly regular graph.

Cameron-Liebler line classes give rise to:

I Equitable partitions (completely regular codes) of the
Grassmann graphs Jq(4, 2)
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Motivation

I Equitable partitions (completely regular codes) of the
Grassmann graphs Jq(4, 2)

I Conjectures by Cameron and Liebler on tactical
decompositions of the point-line design of PG(n, q)



Designs

A 2-design with parameters (v, k, λ) is a pair D = (X,B):

I X is a v-set (with elements called points),

I B is a collection of k-subsets of X (called blocks),

I every 2 distinct points belong to precisely λ blocks.

For a 2-design D = (X,B):

|B| > |X|.

(Fisher’s inequality)
D is symmetric if |B| = |X|.
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Automorphisms of designs
An automorphism (or a collineation) of D: (γ, δ)

γ : X → X, δ : B → B such that
p ∈ B ⇔ γ(p) ∈ δ(B) for all p ∈ X,B ∈ B.

Consider a group G 6 Aut(D) and its orbits on X and B:

B

X


	 	 	

�
�
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. . . . . . . . .

. . . incidence matrix . . .

. . . . . . . . .


Then

#{orbits on B} > #{orbits on X}.
(Block’s Lemma)
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Designs, tactical decomposition
A tactical decomposition T of D:

X = X1∪̇ . . . ∪̇Xs, B = L1∪̇ . . . ∪̇Lt

such that the incidence matrix (Xi,Lj) has constant row
and column sums for all i, j.


L1 L... Lt

X1

X...

Xs

· · · : . . .
... ..

...

.. : incidence matrix . . .
...

· · · : ..
... · · · :


Then

t > s.

T is symmetric if t = s.
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Projective geometry as a design

Let D be the design on points and lines of PG(n, q) with
Aut(D) = PΓL(n, q) (the point-line design of PG(n, q)).

I n = 2: D is a symmetric design (projective plane).
|X| = |B|
|{orbits on X}| = |{orbits on B}| ∀ G 6 PΓL(3, q)
t = s for ∀ tactical decomposition T .

I n > 2: ?
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Cameron – Liebler conjecture, 1 (1982)

Which collineation groups (i.e., subgroups of PΓL(n, q))
have equally many point orbits and line orbits?

Conjecture on groups (Cameron, Liebler, 1982)
Such a group is:

I line-transitive
or

I fixes a hyperplane and acts line-transitive on it
or (dually)

I fixes a point and acts line-transitive on lines through it.

Proven by Bamberg and Penttila (2008).
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Cameron – Liebler conjecture, 2 (1982)

What are the symmetric tactical decompositions of
PG(n, q)?

Conjecture (Cameron, Liebler, 1982)
A symmetric tactical decomposition of PG(n, q) consists of

I a single point and line class
or

I two point classes H, PG(n, q) \H and two line classes
line(H), line(H) for some hyperplane H
or (dually)

I two point classes {P}, PG(n, q) \ {P} and two line
classes star(P ), star(P ) for some point P .

Counterexample by Rodgers (2012).
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Special line classes

Let n ≥ 3.

Symmetric t. d. of the point-line design of PG(n, q)
↓

Symmetric t. d. of the point-line design of PG(3, q)
↓ 6↑

Every line class L is ’special’
Cameron – Liebler line class (due to Penttila)

(Cameron, Liebler)
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Cameron – Liebler line classes, examples



Cameron – Liebler conjecture, 3 (1982)

A line class L complement to L is also a Cameron – Liebler
line class with x(L) = q2 + 1− x(L) ⇒ w.l.o.g. x 6 q2+1

2

Conjecture on ’special’ classes
The only Cameron – Liebler line classes are those shown
above (i.e., x /∈ {3, . . . , q2 − 2}?).

Counterexample by Drudge (1999).
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Motivation

I Equitable partitions (completely regular codes) in the
Grassmann graphs Jq(4, 2)

I Conjectures by Cameron and Liebler on tactical
decompositions of the point-line design of PG(n, q)

I 2-character sets in PG(5, q)



Motivation

A set S of points of PG(n, q) is called a 2-character set if
every hyperplane of PG(n, q) intersects S in either h1 or h2

points (intersection numbers).

The Klein correspondence:
lines of PG(3, q) −→ points of Q+(5, q) ⊂ PG(5, q)

lines of L −→ tight set of Q+(5, q) ⊂ PG(5, q)

tight set of Q+(5, q) −→ 2-character set in PG(5, q)
Metsch



Properties of a Cameron – Liebler line class L, 1

∃ a number x: for ∀ spread S

|L ∩ S| = x

I spread — a line set partitioning the points of PG(n, q)



Properties of a Cameron – Liebler line class L, 2
∃ a number x: for ∀ point P and ∀ plane π with P ∈ π:

|star(P ) ∩ L|+ |line(π) ∩ L| = x+ (q + 1)|pencil(P, π) ∩ L|



Properties of a Cameron – Liebler line class L, 3

∃ a number x:

∀ line l ∈ L
|{m ∈ L : m meets l, m 6= l}| = (q + 1)x+ q2 − 1

∀ line k 6∈ L
|{m ∈ L : m meets k}| = (q + 1)x



Properties of a Cameron – Liebler line class L, 4

∃ a number x: for ∀ skew lines l,m

|{k ∈ L : k meets l & m}| = x+ 2q



Properties of a Cameron – Liebler line class L, 5

for every regulus R and its opposite, Ropp,

|R ∩ L| = |Ropp ∩ L|



Properties of a Cameron – Liebler line class
In a summary, if L is a line class in a symmetric t. d. of D:
I there exists a number x s.t. |L ∩ S| = x for ∀ spread S.
I there exists a number x s.t.

|star(P ) ∩ L|+ |line(π) ∩ L| = x+ (q + 1)|pencil(P, π) ∩ L|
I there exists a number x s.t. ∀ line l ∈ L

|{m ∈ L : m meets l, m 6= l}| = (q + 1)x+ q2 − 1

I there exists a number x s.t. for ∀ skew lines l,m

|{k ∈ L : k meets l & m}| = x+ 2q

I for every regulus R and its opposite, Ropp,

|R ∩ L| = |Ropp ∩ L|.

x – the same in each of the properties – the parameter of L.
|L| = x(q2 + q + 1) (⇒ x 6 q2 + 1).

(Cameron, Liebler; Penttila)
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Previous results

I x 6= 3, 4 if q > 5.
(Penttila’91)

I x /∈ {3, . . . ,√q}.
(Bruen, Drudge’98)

I classification in PG(3, 3) (with one counterexample).

I x /∈ {3, . . . , e(q)} where q + 1 + e(q) is the size of the
smallest non-trivial blocking set in PG(2, q).

(Drudge’99)

I a counterexample in PG(3, q) with x = (q2 + 1)/2.
(Bruen, Drudge’99)

I x 6= 4, 5 and a counterexample with x = 7 in PG(3, 4).
(Govaerts, Penttila’05)

I x /∈ {3, . . . , q}.
(Metsch’10)
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Previous results

I In 2011 M. Rodgers constructed new Cameron –
Liebler line classes for many odd values of q (q < 200)
satisfying q ≡ 1 mod 4 and q ≡ 1 mod 3, having
parameter x = 1

2
(q2 − 1).

These new examples are made up of a union of orbits
of a cyclic collineation group having order q2 + q + 1.



Drudge’s approach

The most of the previous results rely on the observation by
K. Drudge.

Define a clique of PG(3, q):

A clique C of PG(3, q) and its lines may be considered as a
projective plane PG(2, q) and its points, resp.

A blocking set in PG(2, q) is a set of points that intersects
every line but contains no line.
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Drudge’s approach

Lemma (Drudge, 1999)
Let L be a Cameron – Liebler line class with parameter x
in PG(3, q), C be a clique, and assume that there exists no
CL line class of parameter x− 1.

If x < |C ∩ L| ≤ x+ q then the lines of C ∩ L form a
blocking set in C.
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Patterns (G. & Mogilnykh, 2012)
Let l be a line of PG(3, q), L a Cameron – Liebler line class.
Consider all the points Pi, i = 1, . . . , q + 1 that are on l,
and all the planes πj, j = 1, . . . , q + 1 that contain l.

Define a square matrix T of order q+ 1 whose (i, j)-element
is |pencil(Pi, πj) ∩ L \ {l}|

We will call such matrix pattern w.r.t. l.



Properties of patterns
Let T := (tij) be a pattern w.r.t. a line l, and define

χ :=

{
0 if l /∈ L,
1 if l ∈ L,

Then the following hold:

I tij ∈ N, 0 ≤ tij ≤ q for all i, j ∈ {1, . . . , q + 1} ;

I

q+1∑
i,j=1

tij = x(q + 1) + χ(q2 − 1) ;

I

q+1∑
j=1

tkj +

q+1∑
i=1

til = x+ (q + 1)(tkl + χ), ∀k, l ;

I

q+1∑
i,j=1

t2ij = (x− χ)2 + q(x− χ) + χq2(q + 1).
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Properties of patterns

q+1∑
i,j=1

t2ij = (x− χ)2 + q(x− χ) + χq2(q + 1)

follows from the two-side counting of (k,m) ∈ L × L such
that l ∼ k, k ∼ m and l 6∼ m.



A new existence condition

As a corollary, we see that if there exists a Cameron –
Liebler line class with parameter x, then for all χ ∈ {0, 1},
there should exist (q + 1)× (q + 1)-matrices T such that:

I tij ∈ N, 0 ≤ tij ≤ q for all i, j ∈ {1, . . . , q + 1} ;

I

q+1∑
i,j=1

tij = x(q + 1) + χ(q2 − 1) ;

I

q+1∑
j=1

tkj +

q+1∑
i=1

til = x+ (q + 1)(tkl + χ), ∀k, l ;

I

q+1∑
i,j=1

t2ij = (x− χ)2 + q(x− χ) + χq2(q + 1).



Excluded pairs (q, x)
(for which the set of patterns is empty)

q x total

4 3,4,8 3 of 8
5 3,4,7,11 4 of 13
7 3,4,5,6,7,11,12,14,15,19,20,22,23 13 of 25
8 3,4,5,6,8,12,14,15,17,21,23,24,26,30,32 15 of 32
9 3,4,5,7,8,9,11,13,14,15,18,19,23,24,27,28,29,

31,33,34,35,38,39 23 of 42
11 3,. . . ,9,11,12,14,15,19,20,22,23,27,28,30,31,

35,36,38,39,43,44,46,47,51,52,54,55,59,60 35 of 61

Guess (G., Mogilnykh, 2012)
The new existence condition eliminates about a half of
possible values of x.
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(1) Improved bound for x

Klaus Metsch (2013) used the properties of patterns in
order to improve his previous bound:

Theorem (Metsch, 2010)
There do not exist Cameron – Liebler line classes in
PG(3, q) with parameter x satisfying 2 < x ≤ q.

Theorem (Metsch, 2013)
There do not exist Cameron – Liebler line classes in
PG(3, q) with parameter x satisfying 2 < x < cq4/3 (here
c > 0 is a constant).
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(2) Modular equality
Later, we showed that the properties of patterns yield the
following modular equation.

Theorem (G., Metsch, 2014)
Suppose L is a Cameron – Liebler line class of parameter x.
Then, for every plane and every point of PG(3, q), one has(

x

2

)
+ `(`− x) ≡ 0 mod (q + 1) (1)

where ` is the number of lines of L in the plane respectively
through the point.

Corollary
Suppose PG(3, q) has a Cameron – Liebler line class with
parameter x. Then (1) has a solution for some ` in the set
{0, 1, . . . , q}.
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(3) Cameron – Liebler line classes in PG(3, 4)
x ∈ {0!, 1!, 2!, 6 3, 6 4, 6 5, 6?, 7!?, 8?} (as (q2 + 1)/2 = 8.5)

(Govaerts, Penttila’05)

The Govaerts – Penttila class for x = 7, q = 4.

hyperoval in PG(2, q) – a set of q + 2 points, no 3 of which
collinear
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(3) Cameron–Liebler line classes in PG(3, 4)
For q = 4 and x ∈ {4, 5, 6, 8} it turns out that there are no
matrices admissible w.r.t. our new condition.
Let x = 7. We have only the following admissible patterns:
w.r.t. l ∈ L

0 0 0 0 0
1 1 1 1 1
3 3 3 3 3
3 3 3 3 3
3 3 3 3 3

 ,


4 4 2 3 2
4 4 2 3 2
3 3 1 2 1
2 2 0 1 0
2 2 0 1 0

 ,


1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
3 3 3 3 3
4 4 4 4 4


w.r.t. l /∈ L

1 0 0 0 0
4 3 3 3 3
2 1 1 1 1
2 1 1 1 1
2 1 1 1 1

 ,


1 0 0 0 0
1 0 0 0 0
3 2 2 2 2
3 2 2 2 2
3 2 2 2 2

 .
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(3) Cameron–Liebler line classes in PG(n, 4)

Theorem (G., Mogilnykh, 2013)

I A Cameron-Liebler line class with parameter x exists
in PG(3, 4) if and only if
x ∈ {0!, 1!, 2!, 6 3, 6 4, 6 5, 6 6, 7!, 6 8}

I the only Cameron-Liebler line classes in PG(n, 4),
n > 3, are trivial.



(4) Cameron–Liebler line classes in PG(3, 5)

Theorem (G., Metsch, 2014)
A Cameron-Liebler line class with parameter x exists in
PG(3, 5) if and only if x ∈ {0!, 1!, 2!, 10!, 12(?!), 13}

In particular, we found a new Cameron-Liebler line class
with x = 10, and proved its uniqueness.

Its construction relies on one of two complete 20-caps found
by Abatangelo, Korchmaros, Larato (1996).
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(4) Cameron–Liebler line classes in PG(3, 5)

A cap – a set of points, no 3 of which are collinear.

It consists of:

I the intersection lines of planes missing the cap K,

I the lines that are edges of the tetrahedra,

I the lines that lie in a plane missing K and two planes
meeting K in three points.



(5) New infinite family

I PG(3, q), x = (q2 + 1)/2,
Bruen and Drudge, 1998.

I PG(3, 4), x = 7,
Govaerts and Penttila, 2004.

I PG(3, q), q < 200 odd, q ≡ 1 mod 4 or q ≡ 1 mod 3,
x = 1

2
(q2 − 1),

Rodgers, 2011.

I PG(3, 5), x = 10,
Gavrilyuk and Metsch, 2013.

I a new infinite family in PG(3, q), q ≡ 5 or 9 mod 4,
x = (q2 − 1)/2.

Momihara, Feng, Xiang, 2014.

De Beule, Demeyer, Metsch, Rodgers, 2014.
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(1) Cameron–Liebler line classes in PG(3, 5)

Theorem (G., Metsch, 2014)
A Cameron-Liebler line class with parameter x exists in
PG(3, 5) if and only if x ∈ {0!, 1!, 2!, 10!, 12(?!), 13}

Problem

(1) Show uniqueness of a class with x = 12 in PG(3, 5)

(2) Find all Cameron-Liebler line classes in PG(n, 5),
n > 3.

There are some line classes (among those found by
Rodgers), which also seem to be members of an infinite
family, however, a general construction for them is not
known yet.
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(2) The bilinear forms graph Bilq(2× 2)

I the graph defined on the set Mat2×2(Fq) with two
matrices A,B adjacent iff rank(A−B) = 1.

I the graph defined on the set of lines of PG(3, q) that
are skew to a given line, with two lines adjacent iff
they intersect.

I It can be viewed as a subgraph of the Grassmann
graph Jq(4, 2) induced by the second neighbourhood of
a given vertex.

Equitable partition of:

Jq(4, 2) −→ Bilq(2× 2)
←−?
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(2) Equitable partition of Bilq(2× 2)

Frédéric Vanhove (September, 2013) gave the following
example:

Z0 := {A ∈ Mat2×2(Fq) : trace(A) = 0}

is a completely regular code in Bilq(2× 2).

Thus, the partition into sets

{A ∈ Mat2×2(Fq) : trace(A) = 0},

{A ∈ Mat2×2(Fq) : trace(A) 6= 0}.

gives an equitable 2-partition of Bilq(2× 2).

It is easy to see that |Z0| = q3 and Z0 cannot be embedded
into a Cameron-Liebler line class.
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(3) Tallini-Scaffati sets

A set S of points of PG(d, q) is called (m,n)-set w.r.t. lines
if every line of PG(d, q) intersects S in m or n points.

I assume that S is not trivial (up to complement: empty
set, a point, a hyperplane),

I there are examples in projective planes (d = 2).
Full classification in PG(2, 9) by Royle and Penttila (1995).

I if d ≥ 3 then q is an odd square, but no such sets are
known,

I all m-secants to S form a Cameron-Liebler line class,

I these Cameron-Liebler line classes survive even with
our new existence condition!
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(3) Tallini-Scaffati sets
The smallest possible case: PG(3, 9) with (m,n) = (2, 5).

Intersection of S with any plane = (2, 5)-set in PG(2, 9)
Full classification in PG(2, 9) by Royle and Penttila (1995).


