Cameron - Liebler line classes

Alexander Gavrilyuk
Krasovsky Institute of Mathematics and Mechanics,
(Yekaterinburg, Russia)
based on joint work with Ivan Mogilnykh, Institute of Mathematics (Novosibirsk, Russia), and joint work with Klaus Metsch, Justus-Liebig-University (Giessen, Germany), and Ghent University (Belgium).

CoCoA15, July 24, 2015

Definition

We consider a set \mathcal{L} of lines of $P G(3, q)$ such that:

$$
\exists \text { a number } x \text { : }
$$

\forall line $l \in \mathcal{L}$

$$
\mid\{m \in \mathcal{L}: m \text { meets } l, m \neq l\} \mid=(q+1) x+q^{2}-1
$$

\forall line $k \notin \mathcal{L}$

Cameron - Liebler line classes, examples

Any line class that satisfies the property above is called a Cameron - Liebler line class, x - its parameter.

- Motivation
- Previous results
- New approach and existence condition
- Applications
- Open problems and future directions

Equitable t-partition

- $V(\Gamma)=V_{1} \dot{\cup} V_{2} \dot{U} \ldots \dot{U} V_{t}$,
- every vertex of V_{i} has exactly $p_{i j}$ neighbours of V_{j}.

$$
\left(\begin{array}{ll}
p_{11} & p_{12} \\
p_{21} & p_{22}
\end{array}\right)=\left(\begin{array}{ll}
2 & 1 \\
1 & 2
\end{array}\right)
$$

Motivation

The Grassmann graph $J_{q}(n, d)$:

- the vertex set: all d-dimensional subspaces of \mathbb{F}_{q}^{n},
- U and W are adjacent $\operatorname{iff} \operatorname{dim}(U \cap W)=d-1$,
- its diameter equals $\min (d, n-d)$.

In particular, $J_{q}(4,2)$:

- the vertex set: all lines of $P G(3, q)$,
- two lines are adjacent iff they intersect,
- strongly regular graph.

Cameron-Liebler line classes give rise to:

- Equitable partitions (completely regular codes) of the Grassmann graphs $J_{q}(4,2)$

Motivation

The Grassmann graph $J_{q}(n, d)$:

- the vertex set: all d-dimensional subspaces of \mathbb{F}_{q}^{n},
- U and W are adjacent iff $\operatorname{dim}(U \cap W)=d-1$,
- its diameter equals $\min (d, n-d)$.

In particular, $J_{q}(4,2)$:

- the vertex set: all lines of $P G(3, q)$,
- two lines are adjacent iff they intersect,
- strongly regular graph.

Cameron-Liebler line classes give rise to:

- Equitable partitions (completely regular codes) of the Grassmann graphs $J_{q}(4,2)$

Motivation

The Grassmann graph $J_{q}(n, d)$:

- the vertex set: all d-dimensional subspaces of \mathbb{F}_{q}^{n},
- U and W are adjacent iff $\operatorname{dim}(U \cap W)=d-1$,
- its diameter equals $\min (d, n-d)$.

In particular, $J_{q}(4,2)$:

- the vertex set: all lines of $P G(3, q)$,
- two lines are adjacent iff they intersect,
- strongly regular graph.

Cameron-Liebler line classes give rise to:

- Equitable partitions (completely regular codes) of the Grassmann graphs $J_{q}(4,2)$

Motivation

- Equitable partitions (completely regular codes) of the Grassmann graphs $J_{q}(4,2)$
- Conjectures by Cameron and Liebler on tactical decompositions of the point-line design of $P G(n, q)$

Designs

A 2-design with parameters (v, k, λ) is a pair $D=(X, \mathcal{B})$:

- X is a v-set (with elements called points),
- \mathcal{B} is a collection of k-subsets of X (called blocks),
- every 2 distinct points belong to precisely λ blocks.

For a 2 -design $D=(X, \mathcal{B})$:
D is symmetric if $|\mathcal{B}|=|X|$.

Designs

A 2-design with parameters (v, k, λ) is a pair $D=(X, \mathcal{B})$:

- X is a v-set (with elements called points),
- \mathcal{B} is a collection of k-subsets of X (called blocks),
- every 2 distinct points belong to precisely λ blocks.

For a 2-design $D=(X, \mathcal{B})$:

$$
|\mathcal{B}| \geqslant|X| .
$$

(Fisher's inequality)
D is symmetric if $|\mathcal{B}|=|X|$.

Automorphisms of designs

An automorphism (or a collineation) of $D:(\gamma, \delta)$

$$
\begin{gathered}
\gamma: X \rightarrow X, \delta: \mathcal{B} \rightarrow \mathcal{B} \text { such that } \\
p \in B \Leftrightarrow \gamma(p) \in \delta(B) \text { for all } p \in X, B \in \mathcal{B} .
\end{gathered}
$$

Consider a group $G \leqslant \operatorname{Aut}(D)$ and its orbits on X and \mathcal{B} :

Then

Automorphisms of designs

An automorphism (or a collineation) of $D:(\gamma, \delta)$

$$
\begin{gathered}
\gamma: X \rightarrow X, \delta: \mathcal{B} \rightarrow \mathcal{B} \text { such that } \\
p \in B \stackrel{\Leftrightarrow}{\Leftrightarrow} \gamma(p) \in \delta(B) \text { for all } p \in X, B \in \mathcal{B} .
\end{gathered}
$$

Consider a group $G \leqslant \operatorname{Aut}(D)$ and its orbits on X and \mathcal{B} :
\mathcal{B}

Then
$\#\{$ orbits on $\mathcal{B}\} \geqslant \#\{$ orbits on $X\}$

Automorphisms of designs

An automorphism (or a collineation) of $D:(\gamma, \delta)$

$$
\begin{gathered}
\gamma: X \rightarrow X, \delta: \mathcal{B} \rightarrow \mathcal{B} \text { such that } \\
p \in B \stackrel{\Leftrightarrow}{\Leftrightarrow} \gamma(p) \in \delta(B) \text { for all } p \in X, B \in \mathcal{B} .
\end{gathered}
$$

Consider a group $G \leqslant \operatorname{Aut}(D)$ and its orbits on X and \mathcal{B} :
\mathcal{B}

Then
$\#\{$ orbits on $\mathcal{B}\} \geqslant \#\{$ orbits on $X\}$.
(Block's Lemma)

Designs, tactical decomposition

A tactical decomposition \mathcal{T} of D :

$$
X=X_{1} \dot{\cup} \ldots \dot{\cup} X_{s}, \mathcal{B}=\mathcal{L}_{1} \dot{\cup} \ldots \dot{\cup} \mathcal{L}_{t}
$$

such that the incidence matrix $\left(X_{i}, \mathcal{L}_{j}\right)$ has constant row and column sums for all i, j.

Then

Designs, tactical decomposition

A tactical decomposition \mathcal{T} of D :

$$
X=X_{1} \dot{\cup} \ldots \dot{\cup} X_{s}, \mathcal{B}=\mathcal{L}_{1} \dot{\cup} \ldots \dot{\cup} \mathcal{L}_{t}
$$

such that the incidence matrix $\left(X_{i}, \mathcal{L}_{j}\right)$ has constant row and column sums for all i, j.

Then

$$
t \geqslant s .
$$

\mathcal{T} is symmetric if $t=s$.

Projective geometry as a design

Let D be the design on points and lines of $P G(n, q)$ with $\operatorname{Aut}(D)=P \Gamma L(n, q)$ (the point-line design of $P G(n, q)$).

- $n=2: D$ is a symmetric design (projective plane). $\mid\{$ orbits on $X\}|=|\{$ orbits on $\mathcal{B}\} \mid \forall G \leqslant P \Gamma L(3, q)$ $t=s$ for \forall tactical decomposition \mathcal{T}.

Projective geometry as a design

Let D be the design on points and lines of $P G(n, q)$ with $\operatorname{Aut}(D)=P \Gamma L(n, q)$ (the point-line design of $P G(n, q)$).

- $n=2: D$ is a symmetric design (projective plane).

$$
|X|=|\mathcal{B}|
$$

$$
\mid\{\text { orbits on } X\}|=|\{\text { orbits on } \mathcal{B}\} \mid \forall G \leqslant P \Gamma L(3, q)
$$ $t=s$ for \forall tactical decomposition \mathcal{T}.

Projective geometry as a design

Let D be the design on points and lines of $P G(n, q)$ with $\operatorname{Aut}(D)=P \Gamma L(n, q)$ (the point-line design of $P G(n, q)$).

- $n=2: D$ is a symmetric design (projective plane). $|X|=|\mathcal{B}|$ $\mid\{$ orbits on $X\}|=|\{$ orbits on $\mathcal{B}\} \mid \forall G \leqslant P \Gamma L(3, q)$ $t=s$ for \forall tactical decomposition \mathcal{T}.
- $n>2$: ?

Cameron - Liebler conjecture, 1 (1982)

Which collineation groups (i.e., subgroups of $P \Gamma L(n, q))$ have equally many point orbits and line orbits?

Conjecture on groups (Cameron, Liebler, 1982)
Such a group is:

- line-transitive
or
- fixes a hyperplane and acts line-transitive on it or (dually)
- fixes a point and acts line-transitive on lines through it.

Cameron - Liebler conjecture, 1 (1982)

Which collineation groups (i.e., subgroups of $P \Gamma L(n, q))$ have equally many point orbits and line orbits?

Conjecture on groups (Cameron, Liebler, 1982)
Such a group is:

- line-transitive
or
- fixes a hyperplane and acts line-transitive on it or (dually)
- fixes a point and acts line-transitive on lines through it.

Cameron - Liebler conjecture, 1 (1982)

Which collineation groups (i.e., subgroups of $P \Gamma L(n, q))$ have equally many point orbits and line orbits?

Conjecture on groups (Cameron, Liebler, 1982)
Such a group is:

- line-transitive
or
- fixes a hyperplane and acts line-transitive on it or (dually)
- fixes a point and acts line-transitive on lines through it.

Proven by Bamberg and Penttila (2008).

Cameron - Liebler conjecture, 2 (1982)

What are the symmetric tactical decompositions of $P G(n, q)$?

Conjecture (Cameron, Liebler, 1982)
A symmetric tactical decomposition of $P G(n, q)$ consists of

- a single point and line class
or
- two point classes $H, P G(n, q) \backslash H$ and two line classes line (H), line (H) for some hyperplane H or (dually)
- two point classes $\{P\}, P G(n, q) \backslash\{P\}$ and two line classes $\operatorname{star}(P), \overline{\operatorname{star}(P)}$ for some point P.

Cameron - Liebler conjecture, 2 (1982)

What are the symmetric tactical decompositions of $P G(n, q)$?

Conjecture (Cameron, Liebler, 1982)
A symmetric tactical decomposition of $P G(n, q)$ consists of

- a single point and line class
or
- two point classes $H, P G(n, q) \backslash H$ and two line classes line $(H), \overline{\operatorname{line}(H)}$ for some hyperplane H or (dually)
- two point classes $\{P\}, P G(n, q) \backslash\{P\}$ and two line classes $\operatorname{star}(P), \widehat{\operatorname{star}(P)}$ for some point P.

Cameron - Liebler conjecture, 2 (1982)

What are the symmetric tactical decompositions of $P G(n, q)$?

Conjecture (Cameron, Liebler, 1982)
A symmetric tactical decomposition of $P G(n, q)$ consists of

- a single point and line class
or
- two point classes $H, P G(n, q) \backslash H$ and two line classes line $(H), \overline{\operatorname{line}(H)}$ for some hyperplane H or (dually)
- two point classes $\{P\}, P G(n, q) \backslash\{P\}$ and two line classes $\operatorname{star}(P), \overline{\operatorname{star}(P)}$ for some point P.

Counterexample by Rodgers (2012).

Special line classes

Let $n \geq 3$.

> Symmetric t. d. of the point-line design of $P G(n, q)$

> Symmetric t. d. of the point-line design of $P G(3, q)$

> Every line class \mathcal{L} is 'special' Cameron - Liebler line class (due to Penttila)

Special line classes

Let $n \geq 3$.
Symmetric t. d. of the point-line design of $P G(n, q)$ \downarrow
Symmetric t. d. of the point-line design of $P G(3, q)$ Every line class \mathcal{L} is 'special'
Cameron - Liebler line class (due to Penttila)
(Cameron, Liebler)

Special line classes

Let $n \geq 3$.
Symmetric t. d. of the point-line design of $P G(n, q)$

Symmetric t. d. of the point-line design of $\operatorname{PG}(3, q)$ $\downarrow \quad \gamma$
Every line class \mathcal{L} is 'special' Cameron - Liebler line class (due to Penttila)
(Cameron, Liebler)

Cameron - Liebler line classes, examples

Cameron - Liebler conjecture, 3 (1982)

A line class $\overline{\mathcal{L}}$ complement to \mathcal{L} is also a Cameron - Liebler line class with $x(\overline{\mathcal{L}})=q^{2}+1-x(\mathcal{L}) \Rightarrow$ w.l.o.g. $x \leqslant \frac{q^{2}+1}{2}$

Cameron - Liebler conjecture, 3 (1982)

A line class $\overline{\mathcal{L}}$ complement to \mathcal{L} is also a Cameron - Liebler line class with $x(\overline{\mathcal{L}})=q^{2}+1-x(\mathcal{L}) \Rightarrow$ w.l.o.g. $x \leqslant \frac{q^{2}+1}{2}$

Conjecture on 'special' classes
The only Cameron - Liebler line classes are those shown above (i.e., $x \notin\left\{3, \ldots, q^{2}-2\right\}$?).

Counterexample by Drudge (1999).

Motivation

- Equitable partitions (completely regular codes) in the Grassmann graphs $J_{q}(4,2)$
- Conjectures by Cameron and Liebler on tactical decompositions of the point-line design of $\operatorname{PG}(n, q)$
- 2-character sets in $P G(5, q)$

Motivation

A set S of points of $P G(n, q)$ is called a 2 -character set if every hyperplane of $P G(n, q)$ intersects S in either h_{1} or h_{2} points (intersection numbers).

The Klein correspondence:
lines of $P G(3, q) \longrightarrow$ points of $Q^{+}(5, q) \subset P G(5, q)$ lines of $\mathcal{L} \longrightarrow$ tight set of $Q^{+}(5, q) \subset P G(5, q)$
tight set of $Q^{+}(5, q) \longrightarrow 2$-character set in $P G(5, q)$

Properties of a Cameron - Liebler line class $\mathcal{L}, 1$
\exists a number x : for $\forall \operatorname{spread} S$

$$
|\mathcal{L} \cap S|=x
$$

- spread - a line set partitioning the points of $P G(n, q)$

Properties of a Cameron - Liebler line class $\mathcal{L}, 2$ \exists a number x : for \forall point P and \forall plane π with $P \in \pi$: $|\operatorname{star}(P) \cap \mathcal{L}|+|\operatorname{line}(\pi) \cap \mathcal{L}|=x+(q+1)|\operatorname{pencil}(P, \pi) \cap \mathcal{L}|$

Properties of a Cameron - Liebler line class $\mathcal{L}, 3$ \exists a number x :
\forall line $l \in \mathcal{L}$

$$
\mid\{m \in \mathcal{L}: m \text { meets } l, m \neq l\} \mid=(q+1) x+q^{2}-1
$$

\forall line $k \notin \mathcal{L}$

Properties of a Cameron - Liebler line class $\mathcal{L}, 4$

\exists a number x : for \forall skew lines l, m

$$
\mid\{k \in \mathcal{L}: k \text { meets } l \& m\} \mid=x+2 q
$$

Properties of a Cameron - Liebler line class $\mathcal{L}, 5$

for every regulus \mathcal{R} and its opposite, $\mathcal{R}^{o p p}$,

$$
|\mathcal{R} \cap \mathcal{L}|=\left|\mathcal{R}^{o p p} \cap \mathcal{L}\right|
$$

Properties of a Cameron - Liebler line class

In a summary, if \mathcal{L} is a line class in a symmetric t. d. of D :

- there exists a number x s.t. $|\mathcal{L} \cap S|=x$ for $\forall \operatorname{spread} S$.
- there exists a number x s.t.

$$
|\operatorname{star}(P) \cap \mathcal{L}|+|\operatorname{line}(\pi) \cap \mathcal{L}|=x+(q+1)|\operatorname{pencil}(P, \pi) \cap \mathcal{L}|
$$

- there exists a number x s.t. \forall line $l \in \mathcal{L}$

$$
\mid\{m \in \mathcal{L}: m \text { meets } l, m \neq l\} \mid=(q+1) x+q^{2}-1
$$

- there exists a number x s.t. for \forall skew lines l, m

$$
\mid\{k \in \mathcal{L}: k \text { meets } l \& m\} \mid=x+2 q
$$

- for every regulus \mathcal{R} and its opposite, $\mathcal{R}^{o p p}$,

$$
|\mathcal{R} \cap \mathcal{L}|=\left|\mathcal{R}^{o p p} \cap \mathcal{L}\right|
$$

Properties of a Cameron - Liebler line class

In a summary, if \mathcal{L} is a line class in a symmetric t. d. of D :

- there exists a number x s.t. $|\mathcal{L} \cap S|=x$ for \forall spread S.
- there exists a number x s.t.

$$
|\operatorname{star}(P) \cap \mathcal{L}|+|\operatorname{line}(\pi) \cap \mathcal{L}|=x+(q+1)|\operatorname{pencil}(P, \pi) \cap \mathcal{L}|
$$

- there exists a number x s.t. \forall line $l \in \mathcal{L}$

$$
\mid\{m \in \mathcal{L}: m \text { meets } l, m \neq l\} \mid=(q+1) x+q^{2}-1
$$

- there exists a number x s.t. for \forall skew lines l, m

$$
\mid\{k \in \mathcal{L}: k \text { meets } l \& m\} \mid=x+2 q
$$

- for every regulus \mathcal{R} and its opposite, $\mathcal{R}^{o p p}$,

$$
|\mathcal{R} \cap \mathcal{L}|=\left|\mathcal{R}^{\text {opp }} \cap \mathcal{L}\right|
$$

x - the same in each of the properties - the parameter of \mathcal{L}. $|\mathcal{L}|=x\left(q^{2}+q+1\right)\left(\Rightarrow x \leqslant q^{2}+1\right)$.
(Cameron, Liebler; Penttila)

Plan

- Motivation
- Previous results
- New approach and existence condition
- Applications
- Open problems and future directions

Previous results

- $x \neq 3,4$ if $q \geqslant 5$.
(Penttila'91)
- $x \notin\{3, \ldots, \sqrt{q}\}$.
(Bruen, Drudge'98)
- classification in $P G(3,3)$ (with one counterexample).
- $x \notin\{3, \ldots, e(q)\}$ where $q+1+e(q)$ is the size of the smallest non-trivial blocking set in $P G(2, q)$.
(Drudge'99)
- a counterexample in $P G(3, q)$ with $x=\left(q^{2}+1\right) / 2$.
(Bruen, Drudge'99)
- $x \neq 4,5$ and a counterexample with $x=7$ in $P G(3,4)$.
(Govaerts, Penttila'05)
- $x \notin\{3, \ldots, q\}$.

Previous results

- $x \neq 3,4$ if $q \geqslant 5$.
(Penttila'91)
- $x \notin\{3, \ldots, \sqrt{q}\}$.
(Bruen, Drudge'98)

> classification in $P G(3,3)$ (with one counterexample).
 smallest non-trivial blocking set in $P G(2, q)$.

(Drudge'99)

- a counterexample in $P G(3, q)$ with $x=\left(q^{2}+1\right) / 2$.
(Bruen, Drudge'99)
$\triangleright x \neq 4,5$ and a counterexample with $x=7$ in $P G(3,4)$.
(Govaerts, Penttila'05)
- $x \notin\{3, \ldots, q\}$.

Previous results

- $x \neq 3,4$ if $q \geqslant 5$.
(Penttila'91)
- $x \notin\{3, \ldots, \sqrt{q}\}$.
(Bruen, Drudge'98)
- classification in $P G(3,3)$ (with one counterexample).
- $x \notin\{3, \ldots, e(q)\}$ where $q+1+e(q)$ is the size of the smallest non-trivial blocking set in $P G(2, q)$.
(Drudge'99)
- a counterexample in $\operatorname{PG}(3, q)$ with $x=\left(q^{2}+1\right) / 2$. (Bruen, Drudge'99)

Previous results

- $x \neq 3,4$ if $q \geqslant 5$.
(Penttila'91)
- $x \notin\{3, \ldots, \sqrt{q}\}$.
(Bruen, Drudge'98)
- classification in $\operatorname{PG}(3,3)$ (with one counterexample).
- $x \notin\{3, \ldots, e(q)\}$ where $q+1+e(q)$ is the size of the smallest non-trivial blocking set in $P G(2, q)$.
(Drudge'99)
- a counterexample in $P G(3, q)$ with $x=\left(q^{2}+1\right) / 2$.
(Bruen, Drudge'99)

Previous results

- $x \neq 3,4$ if $q \geqslant 5$.
(Penttila'91)
- $x \notin\{3, \ldots, \sqrt{q}\}$.
(Bruen, Drudge'98)
- classification in $P G(3,3)$ (with one counterexample).
- $x \notin\{3, \ldots, e(q)\}$ where $q+1+e(q)$ is the size of the smallest non-trivial blocking set in $P G(2, q)$.
(Drudge'99)
- a counterexample in $P G(3, q)$ with $x=\left(q^{2}+1\right) / 2$.
(Bruen, Drudge'99)
- $x \neq 4,5$ and a counterexample with $x=7$ in $P G(3,4)$.
(Govaerts, Penttila'05)

Previous results

- $x \neq 3,4$ if $q \geqslant 5$.
(Penttila'91)
- $x \notin\{3, \ldots, \sqrt{q}\}$.
(Bruen, Drudge'98)
- classification in $P G(3,3)$ (with one counterexample).
- $x \notin\{3, \ldots, e(q)\}$ where $q+1+e(q)$ is the size of the smallest non-trivial blocking set in $P G(2, q)$.
(Drudge'99)
- a counterexample in $P G(3, q)$ with $x=\left(q^{2}+1\right) / 2$.
(Bruen, Drudge'99)
- $x \neq 4,5$ and a counterexample with $x=7$ in $P G(3,4)$.
(Govaerts, Penttila'05)
- $x \notin\{3, \ldots, q\}$.
(Metsch'10)

Previous results

- In 2011 M. Rodgers constructed new Cameron Liebler line classes for many odd values of $q(q<200)$ satisfying $q \equiv 1 \bmod 4$ and $q \equiv 1 \bmod 3$, having parameter $x=\frac{1}{2}\left(q^{2}-1\right)$.
These new examples are made up of a union of orbits of a cyclic collineation group having order $q^{2}+q+1$.

Drudge's approach

The most of the previous results rely on the observation by K. Drudge.

Define a clique of $P G(3, q)$:

A clique \mathcal{C} of $P G(3, q)$ and its lines may be considered as a projective plane $P G(2, q)$ and its points, resp.

A blocking set in $P G(2, q)$ is a set of points that intersects every line but contains no line.

Drudge's approach

The most of the previous results rely on the observation by K. Drudge.

Define a clique of $P G(3, q)$:

$\operatorname{Star}(P)$

Line(π)

A clique \mathcal{C} of $\operatorname{PG}(3, q)$ and its lines may be considered as a projective plane $P G(2, q)$ and its points, resp.

A blocking set in $P G(2, q)$ is a set of points that intersects every line but contains no line.

Drudge's approach

The most of the previous results rely on the observation by K. Drudge.

Define a clique of $\operatorname{PG}(3, q)$:

A clique \mathcal{C} of $P G(3, q)$ and its lines may be considered as a projective plane $P G(2, q)$ and its points, resp.
A blocking set in $P G(2, q)$ is a set of points that intersects every line but contains no line.

Drudge's approach

Lemma (Drudge, 1999)
Let \mathcal{L} be a Cameron - Liebler line class with parameter x in $P G(3, q), \mathcal{C}$ be a clique, and assume that there exists no CL line class of parameter $x-1$.

If $x<\mathcal{C} \cap \mathcal{L} \leq x+q$ then the lines of $\mathcal{C} \cap \mathcal{L}$ form a blocking set in \mathcal{C}.

Drudge's approach

Lemma (Drudge, 1999)
Let \mathcal{L} be a Cameron - Liebler line class with parameter x in $P G(3, q), \mathcal{C}$ be a clique, and assume that there exists no CL line class of parameter $x-1$.
If $x<|\mathcal{C} \cap \mathcal{L}| \leq x+q$ then the lines of $\mathcal{C} \cap \mathcal{L}$ form a blocking set in \mathcal{C}.

Plan

- Motivation
- Previous results
- New approach and existence condition
- Applications
- Open problems and future directions

Patterns (G. \& Mogilnykh, 2012)

Let l be a line of $P G(3, q), \mathcal{L}$ a Cameron - Liebler line class. Consider all the points $P_{i}, i=1, \ldots, q+1$ that are on l, and all the planes $\pi_{j}, j=1, \ldots, q+1$ that contain l.

Define a square matrix T of order $q+1$ whose (i, j)-element is $\left|\operatorname{pencil}\left(P_{i}, \pi_{j}\right) \cap \mathcal{L} \backslash\{l\}\right|$
We will call such matrix pattern w.r.t. l.

Properties of patterns

Let $T:=\left(t_{i j}\right)$ be a pattern w.r.t. a line l, and define

$$
\chi:=\left\{\begin{array}{l}
0 \text { if } l \notin \mathcal{L}, \\
1 \text { if } l \in \mathcal{L}
\end{array}\right.
$$

Then the following hold:

- $t_{i j} \in \mathbb{N}, 0 \leq t_{i j} \leq q$ for all $i, j \in\{1, \ldots, q+1\} ;$

Properties of patterns

Let $T:=\left(t_{i j}\right)$ be a pattern w.r.t. a line l, and define

$$
\chi:=\left\{\begin{array}{l}
0 \text { if } l \notin \mathcal{L}, \\
1 \text { if } l \in \mathcal{L}
\end{array}\right.
$$

Then the following hold:

- $t_{i j} \in \mathbb{N}, 0 \leq t_{i j} \leq q$ for all $i, j \in\{1, \ldots, q+1\} ;$
- $\sum_{i, j=1}^{q+1} t_{i j}=x(q+1)+\chi\left(q^{2}-1\right)$;

Properties of patterns

Let $T:=\left(t_{i j}\right)$ be a pattern w.r.t. a line l, and define

$$
\chi:=\left\{\begin{array}{l}
0 \text { if } l \notin \mathcal{L} \\
1 \text { if } l \in \mathcal{L}
\end{array}\right.
$$

Then the following hold:

- $t_{i j} \in \mathbb{N}, 0 \leq t_{i j} \leq q$ for all $i, j \in\{1, \ldots, q+1\} ;$
- $\sum_{i, j=1}^{q+1} t_{i j}=x(q+1)+\chi\left(q^{2}-1\right)$;
- $\sum_{j=1}^{q+1} t_{k j}+\sum_{i=1}^{q+1} t_{i l}=x+(q+1)\left(t_{k l}+\chi\right), \forall k, l ;$

Properties of patterns

Let $T:=\left(t_{i j}\right)$ be a pattern w.r.t. a line l, and define

$$
\chi:=\left\{\begin{array}{l}
0 \text { if } l \notin \mathcal{L} \\
1 \text { if } l \in \mathcal{L}
\end{array}\right.
$$

Then the following hold:

- $t_{i j} \in \mathbb{N}, 0 \leq t_{i j} \leq q$ for all $i, j \in\{1, \ldots, q+1\} ;$
- $\sum_{i, j=1}^{q+1} t_{i j}=x(q+1)+\chi\left(q^{2}-1\right)$;
- $\sum_{j=1}^{q+1} t_{k j}+\sum_{i=1}^{q+1} t_{i l}=x+(q+1)\left(t_{k l}+\chi\right), \forall k, l ;$
- $\sum_{i, j=1}^{q+1} t_{i j}^{2}=(x-\chi)^{2}+q(x-\chi)+\chi q^{2}(q+1)$.

Properties of patterns

$$
\sum_{i, j=1}^{q+1} t_{i j}^{2}=(x-\chi)^{2}+q(x-\chi)+\chi q^{2}(q+1)
$$

follows from the two-side counting of $(k, m) \in \mathcal{L} \times \mathcal{L}$ such that $l \sim k, k \sim m$ and $l \nsim m$.

A new existence condition

As a corollary, we see that if there exists a Cameron Liebler line class with parameter x, then for all $\chi \in\{0,1\}$, there should exist $(q+1) \times(q+1)$-matrices T such that:

- $t_{i j} \in \mathbb{N}, 0 \leq t_{i j} \leq q$ for all $i, j \in\{1, \ldots, q+1\} ;$
- $\sum_{i, j=1}^{q+1} t_{i j}=x(q+1)+\chi\left(q^{2}-1\right)$;
- $\sum_{j=1}^{q+1} t_{k j}+\sum_{i=1}^{q+1} t_{i l}=x+(q+1)\left(t_{k l}+\chi\right), \forall k, l$;
- $\sum_{i, j=1}^{q+1} t_{i j}^{2}=(x-\chi)^{2}+q(x-\chi)+\chi q^{2}(q+1)$.

Excluded pairs (q, x)

(for which the set of patterns is empty)

q	x	total
4	$3,4,8$	3 of 8
5	$3,4,7,11$	4 of 13
7	$3,4,5,6,7,11,12,14,15,19,20,22,23$	13 of 25
8	$3,4,5,6,8,12,14,15,17,21,23,24,26,30,32$	15 of 32
9	$3,4,5,7,8,9,11,13,14,15,18,19,23,24,27,28,29$,	
	$31,33,34,35,38,39$	23 of 42
11	$3, \ldots, 9,11,12,14,15,19,20,22,23,27,28,30,31$,	
	$35,36,38,39,43,44,46,47,51,52,54,55,59,60$	35 of 61

Guess (G., Mogilnykh, 2012)

The new existence condition eliminates about a half of possible values of x.

Plan

- Motivation
- Previous results
- New approach and existence condition
- Applications
- Open problems and future directions

(1) Improved bound for x

Klaus Metsch (2013) used the properties of patterns in order to improve his previous bound:
Theorem (Metsch, 2010)
There do not exist Cameron - Liebler line classes in $P G(3, q)$ with parameter x satisfying $2<x \leq q$.

Theorem (Metsch, 2013)
There do not exist Cameron - Liebler line classes in $P G(3, q)$ with parameter x satisfying $2<x<c q^{4 / 3}$ (here $c>0$ is a constant).

(1) Improved bound for x

Klaus Metsch (2013) used the properties of patterns in order to improve his previous bound:
Theorem (Metsch, 2010)
There do not exist Cameron - Liebler line classes in $P G(3, q)$ with parameter x satisfying $2<x \leq q$.

Theorem (Metsch, 2013)
There do not exist Cameron - Liebler line classes in $P G(3, q)$ with parameter x satisfying $2<x<c q^{4 / 3}$ (here $c>0$ is a constant).

(2) Modular equality

Later, we showed that the properties of patterns yield the following modular equation.
Theorem (G., Metsch, 2014)
Suppose \mathcal{L} is a Cameron - Liebler line class of parameter x. Then, for every plane and every point of $P G(3, q)$, one has

$$
\begin{equation*}
\binom{x}{2}+\ell(\ell-x) \equiv 0 \bmod (q+1) \tag{1}
\end{equation*}
$$

where ℓ is the number of lines of \mathcal{L} in the plane respectively through the point.

Corollary
Suppose $P G(3, q)$ has a Cameron - Liebler line class with parameter x. Then (1) has a solution for some ℓ in the set

(2) Modular equality

Later, we showed that the properties of patterns yield the following modular equation.
Theorem (G., Metsch, 2014)
Suppose \mathcal{L} is a Cameron - Liebler line class of parameter x. Then, for every plane and every point of $P G(3, q)$, one has

$$
\begin{equation*}
\binom{x}{2}+\ell(\ell-x) \equiv 0 \bmod (q+1) \tag{1}
\end{equation*}
$$

where ℓ is the number of lines of \mathcal{L} in the plane respectively through the point.
Corollary
Suppose $P G(3, q)$ has a Cameron - Liebler line class with parameter x. Then (1) has a solution for some ℓ in the set $\{0,1, \ldots, q\}$.
(3) Cameron - Liebler line classes in $P G(3,4)$ $x \in\{0!, 1!, 2!, \beta, A, \not, 5,6 ?, 7!?, 8$? $\}\left(\right.$ as $\left.\left(q^{2}+1\right) / 2=8.5\right)$
(Govaerts, Penttila'05)
The Govaerts - Penttila class for $x=7, q=4$.

(3) Cameron - Liebler line classes in $P G(3,4)$ $x \in\{0!, 1!, 2!, \not \nexists, A, \not \boxed{ }, 6 ?, 7!?, 8 ?\}\left(\right.$ as $\left.\left(q^{2}+1\right) / 2=8.5\right)$
(Govaerts, Penttila'05)
The Govaerts - Penttila class for $x=7, q=4$.

hyperoval in $P G(2, q)$ - a set of $q+2$ points, no 3 of which collinear
(3) Cameron - Liebler line classes in $P G(3,4)$ $x \in\{0!, 1!, 2!, \beta, A, \not, \beta, 6 ?, 7!?, 8$? $\}\left(\right.$ as $\left.\left(q^{2}+1\right) / 2=8.5\right)$
(Govaerts, Penttila'05)
The Govaerts - Penttila class for $x=7, q=4$.

(3) Cameron - Liebler line classes in $P G(3,4)$ $x \in\{0!, 1!, 2!, \beta, A, \not, b, 6 ?, 7!?, 8$? $\}\left(\right.$ as $\left.\left(q^{2}+1\right) / 2=8.5\right)$
(Govaerts, Penttila'05)
The Govaerts - Penttila class for $x=7, q=4$.

(3) Cameron - Liebler line classes in $P G(3,4)$ $x \in\{0!, 1!, 2!, \beta, A, \not, \not, 6 ?, 7!?, 8$? $\}\left(\right.$ as $\left.\left(q^{2}+1\right) / 2=8.5\right)$
(Govaerts, Penttila'05)
The Govaerts - Penttila class for $x=7, q=4$.

(3) Cameron-Liebler line classes in $P G(3,4)$

For $q=4$ and $x \in\{4,5,6,8\}$ it turns out that there are no matrices admissible w.r.t. our new condition. w.r.t. $l \in \mathcal{L}$ $\left(\begin{array}{lllll}0 & 0 & 0 & 0 & 0 \\ 1 & 1 & 1 & 1 & 1 \\ 3 & 3 & 3 & 3 & 3 \\ 3 & 3 & 3 & 3 & 3 \\ 3 & 3 & 3 & 3 & 3\end{array}\right),\left(\begin{array}{lllll}4 & 4 & 2 & 3 & 2 \\ 4 & 4 & 2 & 3 & 2 \\ 3 & 3 & 1 & 2 & 1 \\ 2 & 2 & 0 & 1 & 0 \\ 2 & 2 & 0 & 1 & 0\end{array}\right) \cdot\left(\begin{array}{lllll}1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1 \\ 3 & 3 & 3 & 3 & 3 \\ 4 & 4 & 4 & 4 & 4\end{array}\right)$
w.r.t. $l \notin \mathcal{L}$
$\left(\begin{array}{lllll}1 & 0 & 0 & 0 & 0 \\ 4 & 3 & 3 & 3 & 3 \\ 2 & 1 & 1 & 1 & 1 \\ 2 & 1 & 1 & 1 & 1 \\ 2 & 1 & 1 & 1 & 1\end{array}\right)\left(\begin{array}{lllll}1 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 \\ 3 & 2 & 2 & 2 & 2 \\ 3 & 2 & 2 & 2 & 2 \\ 3 & 2 & 2 & 2 & 2\end{array}\right)$

(3) Cameron-Liebler line classes in $P G(3,4)$

For $q=4$ and $x \in\{4,5,6,8\}$ it turns out that there are no matrices admissible w.r.t. our new condition.
Let $x=7$. We have only the following admissible patterns: w.r.t. $l \in \mathcal{L}$
$\left(\begin{array}{lllll}0 & 0 & 0 & 0 & 0 \\ 1 & 1 & 1 & 1 & 1 \\ 3 & 3 & 3 & 3 & 3 \\ 3 & 3 & 3 & 3 & 3 \\ 3 & 3 & 3 & 3 & 3\end{array}\right),\left(\begin{array}{lllll}4 & 4 & 2 & 3 & 2 \\ 4 & 4 & 2 & 3 & 2 \\ 3 & 3 & 1 & 2 & 1 \\ 2 & 2 & 0 & 1 & 0 \\ 2 & 2 & 0 & 1 & 0\end{array}\right),\left(\begin{array}{lllll}1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1 \\ 3 & 3 & 3 & 3 & 3 \\ 4 & 4 & 4 & 4 & 4\end{array}\right)$
w.r.t. $l \notin \mathcal{L}$

$$
\left(\begin{array}{lllll}
1 & 0 & 0 & 0 & 0 \\
4 & 3 & 3 & 3 & 3 \\
2 & 1 & 1 & 1 & 1 \\
2 & 1 & 1 & 1 & 1 \\
2 & 1 & 1 & 1 & 1
\end{array}\right),\left(\begin{array}{lllll}
1 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 \\
3 & 2 & 2 & 2 & 2 \\
3 & 2 & 2 & 2 & 2 \\
3 & 2 & 2 & 2 & 2
\end{array}\right) .
$$

(3) Cameron-Liebler line classes in $P G(n, 4)$

Theorem (G., Mogilnykh, 2013)

- A Cameron-Liebler line class with parameter x exists in $P G(3,4)$ if and only if $x \in\{0!, 1!, 2!, \ngtr, A, \not \hbar, \nmid 6,7!, \not, 8\}$
- the only Cameron-Liebler line classes in $\operatorname{PG}(n, 4)$, $n>3$, are trivial.
(4) Cameron-Liebler line classes in $P G(3,5)$

Theorem (G., Metsch, 2014)
A Cameron-Liebler line class with parameter x exists in $P G(3,5)$ if and only if $x \in\{0!, 1!, 2!, 10!, 12(?!), 13\}$

In particular, we found a new Cameron-Liebler line class with $x=10$, and proved its uniqueness.

Its construction relies on one of two complete 20-caps found by Abatangelo, Korchmaros, Larato (1996).

(4) Cameron-Liebler line classes in $P G(3,5)$

Theorem (G., Metsch, 2014)
A Cameron-Liebler line class with parameter x exists in $P G(3,5)$ if and only if $x \in\{0!, 1!, 2!, 10!, 12(?!), 13\}$

In particular, we found a new Cameron-Liebler line class with $x=10$, and proved its uniqueness.

Its construction relies on one of two complete 20-caps found by Abatangelo, Korchmaros, Larato (1996).

(4) Cameron-Liebler line classes in $P G(3,5)$

Theorem (G., Metsch, 2014)
A Cameron-Liebler line class with parameter x exists in $P G(3,5)$ if and only if $x \in\{0!, 1!, 2!, 10!, 12(?!), 13\}$

In particular, we found a new Cameron-Liebler line class with $x=10$, and proved its uniqueness.

Its construction relies on one of two complete 20-caps found by Abatangelo, Korchmaros, Larato (1996).

(4) Cameron-Liebler line classes in $P G(3,5)$

A cap - a set of points, no 3 of which are collinear.

It consists of:

- the intersection lines of planes missing the cap K,
- the lines that are edges of the tetrahedra,
- the lines that lie in a plane missing K and two planes meeting K in three points.

(5) New infinite family

- $P G(3, q), x=\left(q^{2}+1\right) / 2$,

Bruen and Drudge, 1998.

- $P G(3,4), x=7$,

Govaerts and Penttila, 2004.

- $P G(3, q), q<200$ odd, $q \equiv 1 \bmod 4$ or $q \equiv 1 \bmod 3$, $x=\frac{1}{2}\left(q^{2}-1\right)$,

Rodgers, 2011.

- $P G(3,5), x=10$,

Gavrilyuk and Metsch, 2013.

- a new infinite family in $P G(3, q), q \equiv 5$ or $9 \bmod 4$,

(5) New infinite family

- $P G(3, q), x=\left(q^{2}+1\right) / 2$,

Bruen and Drudge, 1998.

- $P G(3,4), x=7$,

Govaerts and Penttila, 2004.

- $P G(3, q), q<200$ odd, $q \equiv 1 \bmod 4$ or $q \equiv 1 \bmod 3$, $x=\frac{1}{2}\left(q^{2}-1\right)$,

Rodgers, 2011.

- $P G(3,5), x=10$,

Gavrilyuk and Metsch, 2013.

- a new infinite family in $P G(3, q), q \equiv 5$ or $9 \bmod 4$, $x=\left(q^{2}-1\right) / 2$.

Momihara, Feng, Xiang, 2014.
De Beule, Demeyer, Metsch, Rodgers, 2014.

Plan

- Motivation
- Previous results
- New approach and existence condition
- Applications
- Open problems and future directions
(1) Cameron-Liebler line classes in $P G(3,5)$

Theorem (G., Metsch, 2014)
A Cameron-Liebler line class with parameter x exists in $P G(3,5)$ if and only if $x \in\{0!, 1!, 2!, 10!, 12(?!), 13\}$

Problem
(1) Show uniqueness of a class with $x=12$ in $P G(3,5)$
(2) Find all Cameron-Liebler line classes in $P G(n, 5)$,
$n>3$.

There are some line classes (among those found by Rodgers), which also seem to be members of an infinite family, however, a general construction for them is not known yet.
(1) Cameron-Liebler line classes in $P G(3,5)$

Theorem (G., Metsch, 2014)
A Cameron-Liebler line class with parameter x exists in $P G(3,5)$ if and only if $x \in\{0!, 1!, 2!, 10!, 12(?!), 13\}$

Problem
(1) Show uniqueness of a class with $x=12$ in $\operatorname{PG}(3,5)$
(2) Find all Cameron-Liebler line classes in $\operatorname{PG}(n, 5)$, $n>3$.

There are some line classes (among those found by Rodgers), which also seem to be members of an infinite family, however, a general construction for them is not known yet.

(1) Cameron-Liebler line classes in $P G(3,5)$

Theorem (G., Metsch, 2014)
A Cameron-Liebler line class with parameter x exists in $P G(3,5)$ if and only if $x \in\{0!, 1!, 2!, 10!, 12(?!), 13\}$

Problem

(1) Show uniqueness of a class with $x=12$ in $\operatorname{PG}(3,5)$
(2) Find all Cameron-Liebler line classes in $\operatorname{PG}(n, 5)$, $n>3$.

There are some line classes (among those found by Rodgers), which also seem to be members of an infinite family, however, a general construction for them is not known yet.
(2) The bilinear forms graph $B i l_{q}(2 \times 2)$

- the graph defined on the set $\operatorname{Mat}_{2 \times 2}\left(\mathbb{F}_{q}\right)$ with two matrices A, B adjacent iff $\operatorname{rank}(A-B)=1$.
> - the graph defined on the set of lines of $P G(3, q)$ that are skew to a given line, with two lines adjacent iff they intersect.
> - It can be viewed as a subgraph of the Grassmann graph $J_{q}(4,2)$ induced by the second neighbourhood of a given vertex.

Equitable partition of:

$$
J_{q}(1,2)
$$

(2) The bilinear forms graph $\operatorname{Bil}_{q}(2 \times 2)$

- the graph defined on the set $\operatorname{Mat}_{2 \times 2}\left(\mathbb{F}_{q}\right)$ with two matrices A, B adjacent iff $\operatorname{rank}(A-B)=1$.
- the graph defined on the set of lines of $P G(3, q)$ that are skew to a given line, with two lines adjacent iff they intersect.
- It can be viewed as a subgraph of the Grassmann graph $J_{q}(4,2)$ induced by the second neighbourhood of a given vertex.

(2) The bilinear forms graph $\operatorname{Bil}_{q}(2 \times 2)$

- the graph defined on the set $\operatorname{Mat}_{2 \times 2}\left(\mathbb{F}_{q}\right)$ with two matrices A, B adjacent iff $\operatorname{rank}(A-B)=1$.
- the graph defined on the set of lines of $P G(3, q)$ that are skew to a given line, with two lines adjacent iff they intersect.
- It can be viewed as a subgraph of the Grassmann graph $J_{q}(4,2)$ induced by the second neighbourhood of a given vertex.

Equitable partition of:

(2) The bilinear forms graph $\operatorname{Bil}_{q}(2 \times 2)$

- the graph defined on the set $\operatorname{Mat}_{2 \times 2}\left(\mathbb{F}_{q}\right)$ with two matrices A, B adjacent iff $\operatorname{rank}(A-B)=1$.
- the graph defined on the set of lines of $P G(3, q)$ that are skew to a given line, with two lines adjacent iff they intersect.
- It can be viewed as a subgraph of the Grassmann graph $J_{q}(4,2)$ induced by the second neighbourhood of a given vertex.

Equitable partition of:

$$
\begin{aligned}
J_{q}(4,2) & \longleftrightarrow \text { Bil }_{q}(2 \times 2) \\
& \longleftarrow ?
\end{aligned}
$$

(2) Equitable partition of $B i l_{q}(2 \times 2)$

Frédéric Vanhove (September, 2013) gave the following example:

$$
Z_{0}:=\left\{A \in \operatorname{Mat}_{2 \times 2}\left(\mathbb{F}_{q}\right): \operatorname{trace}(A)=0\right\}
$$

is a completely regular code in $\operatorname{Bil}_{q}(2 \times 2)$.
Thus, the partition into sets

$$
\begin{aligned}
& \left\{A \in \operatorname{Mat}_{2 \times 2}\left(\mathbb{F}_{q}\right): \operatorname{trace}(A)=0\right\}, \\
& \left\{A \in \operatorname{Mat}_{2 \times 2}\left(\mathbb{F}_{q}\right): \operatorname{trace}(A) \neq 0\right\} .
\end{aligned}
$$

gives an equitable 2-partition of $\operatorname{Bil}_{q}(2 \times 2)$.
It is easy to see that $\left|Z_{0}\right|=q^{3}$ and Z_{0} cannot be embedded
into a Cameron-Liebler line class.

(2) Equitable partition of $\operatorname{Bil}_{q}(2 \times 2)$

Frédéric Vanhove (September, 2013) gave the following example:

$$
Z_{0}:=\left\{A \in \operatorname{Mat}_{2 \times 2}\left(\mathbb{F}_{q}\right): \operatorname{trace}(A)=0\right\}
$$

is a completely regular code in $\operatorname{Bil}_{q}(2 \times 2)$.
Thus, the partition into sets

$$
\begin{aligned}
& \left\{A \in \operatorname{Mat}_{2 \times 2}\left(\mathbb{F}_{q}\right): \operatorname{trace}(A)=0\right\} \\
& \left\{A \in \operatorname{Mat}_{2 \times 2}\left(\mathbb{F}_{q}\right): \operatorname{trace}(A) \neq 0\right\}
\end{aligned}
$$

gives an equitable 2-partition of $\operatorname{Bil}_{q}(2 \times 2)$.
It is easy to see that $\left|Z_{0}\right|=q^{3}$ and Z_{0} cannot be embedded into a Cameron-Liebler line class.

(2) Equitable partition of $\operatorname{Bil}_{q}(2 \times 2)$

Frédéric Vanhove (September, 2013) gave the following example:

$$
Z_{0}:=\left\{A \in \operatorname{Mat}_{2 \times 2}\left(\mathbb{F}_{q}\right): \operatorname{trace}(A)=0\right\}
$$

is a completely regular code in $\operatorname{Bil}_{q}(2 \times 2)$.
Thus, the partition into sets

$$
\begin{aligned}
& \left\{A \in \operatorname{Mat}_{2 \times 2}\left(\mathbb{F}_{q}\right): \operatorname{trace}(A)=0\right\}, \\
& \left\{A \in \operatorname{Mat}_{2 \times 2}\left(\mathbb{F}_{q}\right): \operatorname{trace}(A) \neq 0\right\} .
\end{aligned}
$$

gives an equitable 2-partition of $\operatorname{Bil}_{q}(2 \times 2)$.
It is easy to see that $\left|Z_{0}\right|=q^{3}$ and Z_{0} cannot be embedded into a Cameron-Liebler line class.

(3) Tallini-Scaffati sets

A set S of points of $P G(d, q)$ is called (m, n)-set w.r.t. lines if every line of $P G(d, q)$ intersects S in m or n points.

- assume that S is not trivial (up to complement: empty set, a point, a hyperplane),
- there are examples in projective planes $(d=2)$.

Full classification in $P G(2,9)$ by Royle and Penttila (1995).

- if $d \geq 3$ then q is an odd square, but no such sets are known,
- all m-secants to S form a Cameron-Liebler line class,
- these Cameron-Liebler line classes survive even with our new existence condition!

(3) Tallini-Scaffati sets

A set S of points of $P G(d, q)$ is called (m, n)-set w.r.t. lines if every line of $P G(d, q)$ intersects S in m or n points.

- assume that S is not trivial (up to complement: empty set, a point, a hyperplane),
- there are examples in projective planes $(d=2)$.

Full classification in $P G(2,9)$ by Royle and Penttila (1995).

- if $d \geq 3$ then q is an odd square, but no such sets are known,
- all m-secants to S form a Cameron-Liebler line class,
- these Cameron-Liebler line classes survive even with
our new existence condition!

(3) Tallini-Scaffati sets

A set S of points of $P G(d, q)$ is called (m, n)-set w.r.t. lines if every line of $P G(d, q)$ intersects S in m or n points.

- assume that S is not trivial (up to complement: empty set, a point, a hyperplane),
- there are examples in projective planes $(d=2)$.

Full classification in $P G(2,9)$ by Royle and Penttila (1995).

- if $d \geq 3$ then q is an odd square, but no such sets are known,
- all m-secants to S form a Cameron-Liebler line class, - these Cameron-Liebler line classes survive even with our new existence condition!

(3) Tallini-Scaffati sets

A set S of points of $P G(d, q)$ is called (m, n)-set w.r.t. lines if every line of $P G(d, q)$ intersects S in m or n points.

- assume that S is not trivial (up to complement: empty set, a point, a hyperplane),
- there are examples in projective planes $(d=2)$.

Full classification in $P G(2,9)$ by Royle and Penttila (1995).

- if $d \geq 3$ then q is an odd square, but no such sets are known,
- all m-secants to S form a Cameron-Liebler line class, our new existence condition!

(3) Tallini-Scaffati sets

A set S of points of $P G(d, q)$ is called (m, n)-set w.r.t. lines if every line of $P G(d, q)$ intersects S in m or n points.

- assume that S is not trivial (up to complement: empty set, a point, a hyperplane),
- there are examples in projective planes $(d=2)$.

Full classification in $P G(2,9)$ by Royle and Penttila (1995).

- if $d \geq 3$ then q is an odd square, but no such sets are known,
- all m-secants to S form a Cameron-Liebler line class,
- these Cameron-Liebler line classes survive even with our new existence condition!

(3) Tallini-Scaffati sets

The smallest possible case: $P G(3,9)$ with $(m, n)=(2,5)$.
Intersection of S with any plane $=(2,5)$-set in $P G(2,9)$
Full classification in $P G(2,9)$ by Royle and Penttila (1995).

