Cameron – Liebler line classes

Alexander Gavrilyuk

Krasovsky Institute of Mathematics and Mechanics, (Yekaterinburg, Russia)

based on joint work with **Ivan Mogilnykh**, Institute of Mathematics (Novosibirsk, Russia), and joint work with **Klaus Metsch**, Justus-Liebig-University (Giessen, Germany), and Ghent University (Belgium).

CoCoA15, July 24, 2015

Definition

We consider a set \mathcal{L} of lines of PG(3,q) such that:

 \exists a number x:

 $\forall \text{ line } l \in \mathcal{L}$

 $|\{m\in\mathcal{L}:\ m\ \text{meets}\ l,\ m\neq l\}|=(q+1)x+q^2-1$ $\forall\ \text{line}\ k\not\in\mathcal{L}$

 $|\{m \in \mathcal{L} : m \text{ meets } k\}| = (q+1)x$

Cameron – Liebler line classes, examples

Any line class that satisfies the property above is called a Cameron - Liebler line class, $x - its \ parameter$.

Plan

Motivation

- Previous results
- ▶ New approach and existence condition
- Applications
- ▶ Open problems and future directions

・ロト ・ 日 ・ モー・ モー・ うへぐ

Equitable *t*-partition

- $\blacktriangleright V(\Gamma) = V_1 \dot{\cup} V_2 \dot{\cup} \dots \dot{\cup} V_t,$
- every vertex of V_i has exactly p_{ij} neighbours of V_j .

▲ロト ▲周ト ▲ヨト ▲ヨト ヨー のく⊙

The Grassmann graph $J_q(n, d)$:

- the vertex set: all *d*-dimensional subspaces of \mathbb{F}_q^n ,
- U and W are adjacent iff $\dim(U \cap W) = d 1$,
- its diameter equals $\min(d, n d)$.

In particular, $J_q(4,2)$:

- the vertex set: all lines of PG(3,q),
- ▶ two lines are adjacent iff they intersect,
- ▶ strongly regular graph.

Cameron-Liebler line classes give rise to:

• Equitable partitions (completely regular codes) of the Grassmann graphs $J_q(4,2)$

The Grassmann graph $J_q(n, d)$:

- the vertex set: all *d*-dimensional subspaces of \mathbb{F}_q^n ,
- U and W are adjacent iff $\dim(U \cap W) = d 1$,
- its diameter equals $\min(d, n d)$.

In particular, $J_q(4, 2)$:

- the vertex set: all lines of PG(3,q),
- ▶ two lines are adjacent iff they intersect,
- strongly regular graph.

Cameron-Liebler line classes give rise to:

• Equitable partitions (completely regular codes) of the Grassmann graphs $J_q(4, 2)$

The Grassmann graph $J_q(n, d)$:

- the vertex set: all *d*-dimensional subspaces of \mathbb{F}_q^n ,
- U and W are adjacent iff $\dim(U \cap W) = d 1$,
- its diameter equals $\min(d, n d)$.

In particular, $J_q(4, 2)$:

- the vertex set: all lines of PG(3,q),
- ▶ two lines are adjacent iff they intersect,
- strongly regular graph.

Cameron-Liebler line classes give rise to:

▶ Equitable partitions (completely regular codes) of the Grassmann graphs $J_q(4, 2)$

- Equitable partitions (completely regular codes) of the Grassmann graphs $J_q(4, 2)$
- Conjectures by Cameron and Liebler on tactical decompositions of the point-line design of PG(n,q)

▲□▶ ▲圖▶ ▲国▶ ▲国▶ - 国 - のへで

Designs

A 2-design with parameters (v, k, λ) is a pair $D = (X, \mathcal{B})$:

- X is a v-set (with elements called points),
- \mathcal{B} is a collection of k-subsets of X (called blocks),
- every 2 distinct points belong to precisely λ blocks.

For a 2-design $D = (X, \mathcal{B})$:

 $|\mathcal{B}| \geqslant |X|.$

(Fisher's inequality)

D is symmetric if $|\mathcal{B}| = |X|$.

Designs

A 2-design with parameters (v, k, λ) is a pair $D = (X, \mathcal{B})$:

- X is a v-set (with elements called points),
- \mathcal{B} is a collection of k-subsets of X (called blocks),
- every 2 distinct points belong to precisely λ blocks.

For a 2-design $D = (X, \mathcal{B})$:

 $|\mathcal{B}| \geqslant |X|.$

(Fisher's inequality)

(日) (日) (日) (日) (日) (日) (日) (日)

D is symmetric if $|\mathcal{B}| = |X|$.

Automorphisms of designs An automorphism (or a collineation) of $D: (\gamma, \delta)$

 $\gamma: X \to X, \, \delta: \mathcal{B} \to \mathcal{B} \text{ such that}$ $p \in B \Leftrightarrow \gamma(p) \in \delta(B) \text{ for all } p \in X, B \in \mathcal{B}.$

Consider a group $G \leq \operatorname{Aut}(D)$ and its orbits on X and \mathcal{B} :

Then

 $\#\{\text{orbits on }\mathcal{B}\} \ge \#\{\text{orbits on }X\}.$

(Block's Lemma)

Automorphisms of designs An automorphism (or a collineation) of $D: (\gamma, \delta)$

 $\gamma: X \to X, \, \delta: \mathcal{B} \to \mathcal{B} \text{ such that}$ $p \in B \Leftrightarrow \gamma(p) \in \delta(B) \text{ for all } p \in X, B \in \mathcal{B}.$

Consider a group $G \leq \operatorname{Aut}(D)$ and its orbits on X and \mathcal{B} :

\mathcal{B}

Then

 $\#\{\text{orbits on } \mathcal{B}\} \ge \#\{\text{orbits on } X\}.$

(Block's Lemma)

Automorphisms of designs An automorphism (or a collineation) of $D: (\gamma, \delta)$

 $\gamma: X \to X, \, \delta: \mathcal{B} \to \mathcal{B} \text{ such that}$ $p \in B \Leftrightarrow \gamma(p) \in \delta(B) \text{ for all } p \in X, B \in \mathcal{B}.$

Consider a group $G \leq \operatorname{Aut}(D)$ and its orbits on X and \mathcal{B} :

\mathcal{B}

Then

 $\#\{\text{orbits on } \mathcal{B}\} \ge \#\{\text{orbits on } X\}.$

(Block's Lemma)

Designs, tactical decomposition A tactical decomposition \mathcal{T} of D:

> $X = X_1 \dot{\cup} \dots \dot{\cup} X_s, \ \mathcal{B} = \mathcal{L}_1 \dot{\cup} \dots \dot{\cup} \mathcal{L}_t$ such that the incidence matrix (X_i, \mathcal{L}_j) has constant row and column sums for all i, j.

Then

 $t \ge s$.

Designs, tactical decomposition A tactical decomposition \mathcal{T} of D:

> $X = X_1 \dot{\cup} \dots \dot{\cup} X_s, \ \mathcal{B} = \mathcal{L}_1 \dot{\cup} \dots \dot{\cup} \mathcal{L}_t$ such that the incidence matrix (X_i, \mathcal{L}_j) has constant row and column sums for all i, j.

Then

 $t \ge s$.

(日) (日) (日) (日) (日) (日) (日) (日)

 \mathcal{T} is symmetric if t = s.

Projective geometry as a design

Let D be the design on points and lines of PG(n,q) with $Aut(D) = P\Gamma L(n,q)$ (the point-line design of PG(n,q)).

► n = 2: *D* is a symmetric design (projective plane). $|X| = |\mathcal{B}|$ $|\{\text{orbits on } X\}| = |\{\text{orbits on } \mathcal{B}\}| \forall G \leq P\Gamma L(3, q)$ $t = s \text{ for } \forall \text{ tactical decomposition } \mathcal{T}.$

うして ふゆう ふほう ふほう ふしつ

▶ n > 2: ?

Projective geometry as a design

Let D be the design on points and lines of PG(n,q) with $Aut(D) = P\Gamma L(n,q)$ (the point-line design of PG(n,q)).

► n = 2: *D* is a symmetric design (projective plane). $|X| = |\mathcal{B}|$ $|\{\text{orbits on } X\}| = |\{\text{orbits on } \mathcal{B}\}| \forall G \leq P\Gamma L(3, q)$ t = s for \forall tactical decomposition \mathcal{T} .

▶ n > 2: ?

Projective geometry as a design

Let D be the design on points and lines of PG(n,q) with Aut $(D) = P\Gamma L(n,q)$ (the point-line design of PG(n,q)).

► n = 2: *D* is a symmetric design (projective plane). $|X| = |\mathcal{B}|$ $|\{\text{orbits on } X\}| = |\{\text{orbits on } \mathcal{B}\}| \forall G \leq P\Gamma L(3, q)$ $t = s \text{ for } \forall \text{ tactical decomposition } \mathcal{T}.$

▶ n > 2: ?

Cameron – Liebler conjecture, 1 (1982)

Which collineation groups (i.e., subgroups of $P\Gamma L(n,q)$) have equally many point orbits and line orbits?

Conjecture on groups (Cameron, Liebler, 1982) Such a group is:

▶ line-transitive

or

- ▶ fixes a hyperplane and acts line-transitive on it or (dually)
- ▶ fixes a point and acts line-transitive on lines through it.

Proven by Bamberg and Penttila (2008).

うして ふゆう ふほう ふほう ふしつ

Cameron – Liebler conjecture, 1 (1982)

Which collineation groups (i.e., subgroups of $P\Gamma L(n,q)$) have equally many point orbits and line orbits?

Conjecture on groups (Cameron, Liebler, 1982) Such a group is:

▶ line-transitive

or

- ▶ fixes a hyperplane and acts line-transitive on it or (dually)
- ▶ fixes a point and acts line-transitive on lines through it.

Proven by Bamberg and Penttila (2008).

Cameron – Liebler conjecture, 1 (1982)

Which collineation groups (i.e., subgroups of $P\Gamma L(n,q)$) have equally many point orbits and line orbits?

Conjecture on groups (Cameron, Liebler, 1982) Such a group is:

▶ line-transitive

or

- ▶ fixes a hyperplane and acts line-transitive on it or (dually)
- ▶ fixes a point and acts line-transitive on lines through it.

Proven by Bamberg and Penttila (2008).

Cameron – Liebler conjecture, 2 (1982)

What are the symmetric tactical decompositions of PG(n,q)?

Conjecture (Cameron, Liebler, 1982)

A symmetric tactical decomposition of PG(n,q) consists of

- a single point and line class or
- ▶ two point classes H, $PG(n,q) \setminus H$ and two line classes line(H), $\overline{line(H)}$ for some hyperplane H or (dually)
- ▶ two point classes $\{P\}$, $PG(n,q) \setminus \{P\}$ and two line classes star(P), star(P) for some point P.

Counterexample by Rodgers (2012)

Cameron – Liebler conjecture, 2 (1982)

What are the symmetric tactical decompositions of PG(n,q)?

Conjecture (Cameron, Liebler, 1982)

A symmetric tactical decomposition of PG(n,q) consists of

- a single point and line class or
- ▶ two point classes H, $PG(n,q) \setminus H$ and two line classes line(H), $\overline{line(H)}$ for some hyperplane H or (dually)
- ▶ two point classes $\{P\}$, $PG(n,q) \setminus \{P\}$ and two line classes star(P), star(P) for some point P.

Counterexample by Rodgers (2012)

Cameron – Liebler conjecture, 2 (1982)

What are the symmetric tactical decompositions of PG(n,q)?

Conjecture (Cameron, Liebler, 1982)

A symmetric tactical decomposition of PG(n,q) consists of

- a single point and line class or
- ▶ two point classes H, $PG(n,q) \setminus H$ and two line classes line(H), $\overline{line(H)}$ for some hyperplane H or (dually)
- ▶ two point classes $\{P\}$, $PG(n,q) \setminus \{P\}$ and two line classes star(P), star(P) for some point P.

Counterexample by Rodgers (2012).

Special line classes

Let $n \geq 3$.

Symmetric t. d. of the point-line design of PG(n,q) \downarrow Symmetric t. d. of the point-line design of PG(3,q) $\downarrow \qquad \checkmark$ Every line class \mathcal{L} is 'special' *Cameron – Liebler line class* (due to Penttila)

(Cameron, Liebler)

Special line classes

Let $n \geq 3$.

Symmetric t. d. of the point-line design of PG(n,q) \downarrow Symmetric t. d. of the point-line design of PG(3,q) $\downarrow \qquad \checkmark$ Every line class \mathcal{L} is 'special' *Cameron - Liebler line class* (due to Penttila)

(Cameron, Liebler)

うして ふゆう ふほう ふほう ふしつ

Special line classes

Let $n \geq 3$.

Symmetric t. d. of the point-line design of PG(n,q) \downarrow Symmetric t. d. of the point-line design of PG(3,q) $\downarrow \qquad \checkmark$ Every line class \mathcal{L} is 'special' *Cameron - Liebler line class* (due to Penttila)

(Cameron, Liebler)

うして ふゆう ふほう ふほう ふしつ

Cameron – Liebler line classes, examples

Cameron – Liebler conjecture, 3 (1982)

A line class $\overline{\mathcal{L}}$ complement to \mathcal{L} is also a Cameron – Liebler line class with $x(\overline{\mathcal{L}}) = q^2 + 1 - x(\mathcal{L}) \Rightarrow$ w.l.o.g. $x \leq \frac{q^2+1}{2}$

Conjecture on 'special' classes The only Cameron – Liebler line classes are those shown above (i.e., $x \notin \{3, \ldots, q^2 - 2\}$?).

Counterexample by Drudge (1999).

うして ふゆう ふほう ふほう ふしつ

A line class $\overline{\mathcal{L}}$ complement to \mathcal{L} is also a Cameron – Liebler line class with $x(\overline{\mathcal{L}}) = q^2 + 1 - x(\mathcal{L}) \Rightarrow$ w.l.o.g. $x \leq \frac{q^2+1}{2}$

Conjecture on 'special' classes The only Cameron – Liebler line classes are those shown above (i.e., $x \notin \{3, \ldots, q^2 - 2\}$?).

Counterexample by Drudge (1999).

- Equitable partitions (completely regular codes) in the Grassmann graphs $J_q(4,2)$
- ► Conjectures by Cameron and Liebler on tactical decompositions of the point-line design of PG(n, q)

・ロト ・ 日 ・ モ ト ・ モ ・ うへぐ

• 2-character sets in PG(5,q)

A set S of points of PG(n,q) is called a 2-character set if every hyperplane of PG(n,q) intersects S in either h_1 or h_2 points (intersection numbers).

The Klein correspondence: lines of $PG(3,q) \longrightarrow$ points of $Q^+(5,q) \subset PG(5,q)$ lines of $\mathcal{L} \longrightarrow tight set$ of $Q^+(5,q) \subset PG(5,q)$

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 – のへで

tight set of $Q^+(5,q) \longrightarrow 2$ -character set in PG(5,q)Metsch Properties of a Cameron – Liebler line class \mathcal{L} , 1

 \exists a number x: for \forall spread S

 $|\mathcal{L} \cap S| = x$

▶ spread — a line set partitioning the points of PG(n,q)

・ロト ・ 日 ・ モ ・ ト ・ モ ・ うへぐ

Properties of a Cameron – Liebler line class \mathcal{L} , 2 \exists a number x: for \forall point P and \forall plane π with $P \in \pi$: $|\operatorname{star}(P) \cap \mathcal{L}| + |\operatorname{line}(\pi) \cap \mathcal{L}| = x + (q+1)|\operatorname{pencil}(P,\pi) \cap \mathcal{L}|$

Properties of a Cameron – Liebler line class \mathcal{L} , 3 \exists a number x:

 $\begin{array}{l} \forall \mbox{ line } l \in \mathcal{L} \\ & |\{m \in \mathcal{L}: \ m \mbox{ meets } l, \ m \neq l\}| = (q+1)x + q^2 - 1 \\ \forall \mbox{ line } k \not\in \mathcal{L} \end{array}$

 $|\{m \in \mathcal{L} : m \text{ meets } k\}| = (q+1)x$

Properties of a Cameron – Liebler line class \mathcal{L} , 4

 \exists a number \boldsymbol{x} : for \forall skew lines l, m

 $|\{k \in \mathcal{L} : k \text{ meets } l \& m\}| = x + 2q$

・ロト ・四ト ・ヨト ・ヨト

Properties of a Cameron – Liebler line class \mathcal{L} , 5

for every regulus \mathcal{R} and its opposite, \mathcal{R}^{opp} ,

 $|\mathcal{R} \cap \mathcal{L}| = |\mathcal{R}^{opp} \cap \mathcal{L}|$

ション ふゆ マ キャット マックシン

Properties of a Cameron – Liebler line class

In a summary, if \mathcal{L} is a line class in a symmetric t. d. of D:

- there exists a number x s.t. $|\mathcal{L} \cap S| = x$ for \forall spread S.
- there exists a number x s.t.

 $|\operatorname{star}(P) \cap \mathcal{L}| + |\operatorname{line}(\pi) \cap \mathcal{L}| = x + (q+1)|\operatorname{pencil}(P,\pi) \cap \mathcal{L}|$

• there exists a number \boldsymbol{x} s.t. \forall line $l \in \mathcal{L}$

 $|\{m \in \mathcal{L} : m \text{ meets } l, m \neq l\}| = (q+1)x + q^2 - 1$

• there exists a number x s.t. for \forall skew lines l, m

 $|\{k \in \mathcal{L} : k \text{ meets } l \& m\}| = x + 2q$

• for every regulus \mathcal{R} and its opposite, \mathcal{R}^{opp} ,

 $|\mathcal{R} \cap \mathcal{L}| = |\mathcal{R}^{opp} \cap \mathcal{L}|.$

x - the same in each of the properties – the parameter of \mathcal{L} . $|\mathcal{L}| = x(q^2 + q + 1) \iff x \leqslant q^2 + 1).$ (Cameron, Liebler; Penttila)

Properties of a Cameron – Liebler line class

In a summary, if \mathcal{L} is a line class in a symmetric t. d. of D:

- there exists a number x s.t. $|\mathcal{L} \cap S| = x$ for \forall spread S.
- there exists a number x s.t.

 $|\operatorname{star}(P) \cap \mathcal{L}| + |\operatorname{line}(\pi) \cap \mathcal{L}| = x + (q+1)|\operatorname{pencil}(P,\pi) \cap \mathcal{L}|$

• there exists a number \boldsymbol{x} s.t. \forall line $l \in \mathcal{L}$

 $|\{m \in \mathcal{L}: m \text{ meets } l, m \neq l\}| = (q+1)x + q^2 - 1$

• there exists a number x s.t. for \forall skew lines l, m

 $|\{k \in \mathcal{L} : k \text{ meets } l \& m\}| = x + 2q$

• for every regulus \mathcal{R} and its opposite, \mathcal{R}^{opp} ,

 $|\mathcal{R} \cap \mathcal{L}| = |\mathcal{R}^{opp} \cap \mathcal{L}|.$

x - the same in each of the properties – the parameter of \mathcal{L} . $|\mathcal{L}| = x(q^2 + q + 1) \iff x \leqslant q^2 + 1).$ (Cameron, Liebler; Penttila)

Plan

- Motivation
- Previous results
- ▶ New approach and existence condition
- Applications
- Open problems and future directions

・ロト ・ 日 ・ モー・ モー・ うへぐ

• $x \neq 3, 4$ if $q \ge 5$.

(Penttila'91)

 $\blacktriangleright x \notin \{3, \dots, \sqrt{q}\}.$

(Bruen, Drudge'98)

- classification in PG(3,3) (with one counterexample).
- x ∉ {3,..., e(q)} where q + 1 + e(q) is the size of the smallest non-trivial blocking set in PG(2, q).
 (Drudge'99)
- ▶ a counterexample in PG(3,q) with $x = (q^2 + 1)/2$. (Bruen, Drudge'99)
- ▶ $x \neq 4, 5$ and a counterexample with x = 7 in PG(3, 4). (Govaerts, Penttila'05)
- $\blacktriangleright x \notin \{3, \dots, q\}.$

(Metsch'10)

• $x \neq 3, 4$ if $q \ge 5$.

(Penttila'91)

• $x \notin \{3, \ldots, \sqrt{q}\}.$

(Bruen, Drudge'98)

- classification in PG(3,3) (with one counterexample).
- x ∉ {3,...,e(q)} where q + 1 + e(q) is the size of the smallest non-trivial blocking set in PG(2,q).
 (Drudge'99)
- ▶ a counterexample in PG(3,q) with $x = (q^2 + 1)/2$. (Bruen, Drudge'99)
- ▶ $x \neq 4, 5$ and a counterexample with x = 7 in PG(3, 4). (Govaerts, Penttila'05)
- $\blacktriangleright x \notin \{3, \dots, q\}.$

(Metsch'10)

• $x \neq 3, 4$ if $q \ge 5$.

(Penttila'91)

• $x \notin \{3, \ldots, \sqrt{q}\}.$

(Bruen, Drudge'98)

- classification in PG(3,3) (with one counterexample).
- x ∉ {3,..., e(q)} where q + 1 + e(q) is the size of the smallest non-trivial blocking set in PG(2, q).
 (Drudge'99)
- ▶ a counterexample in PG(3,q) with $x = (q^2 + 1)/2$. (Bruen, Drudge'99)
- ▶ $x \neq 4, 5$ and a counterexample with x = 7 in PG(3, 4). (Govaerts, Penttila'05)
- $\blacktriangleright x \notin \{3, \dots, q\}.$

(Metsch'10)

• $x \neq 3, 4$ if $q \ge 5$.

(Penttila'91)

• $x \notin \{3, \ldots, \sqrt{q}\}.$

(Bruen, Drudge'98)

- classification in PG(3,3) (with one counterexample).
- x ∉ {3,..., e(q)} where q + 1 + e(q) is the size of the smallest non-trivial blocking set in PG(2, q).
 (Drudge'99)
- ▶ a counterexample in PG(3,q) with $x = (q^2 + 1)/2$. (Bruen, Drudge'99)
- ▶ $x \neq 4, 5$ and a counterexample with x = 7 in PG(3, 4). (Govaerts, Penttila'05)
- $\blacktriangleright x \notin \{3, \dots, q\}.$

(Metsch'10)

• $x \neq 3, 4$ if $q \ge 5$.

(Penttila'91)

• $x \notin \{3, \ldots, \sqrt{q}\}.$

(Bruen, Drudge'98)

(日) (日) (日) (日) (日) (日) (日) (日)

- classification in PG(3,3) (with one counterexample).
- x ∉ {3,..., e(q)} where q + 1 + e(q) is the size of the smallest non-trivial blocking set in PG(2, q).
 (Drudge'99)
- ► a counterexample in PG(3,q) with $x = (q^2 + 1)/2$. (Bruen, Drudge'99)
- ▶ $x \neq 4, 5$ and a counterexample with x = 7 in PG(3, 4). (Govaerts, Penttila'05)
- $\blacktriangleright x \notin \{3, \dots, q\}.$

• $x \neq 3, 4$ if $q \ge 5$.

(Penttila'91)

• $x \notin \{3, \ldots, \sqrt{q}\}.$

(Bruen, Drudge'98)

- classification in PG(3,3) (with one counterexample).
- x ∉ {3,...,e(q)} where q + 1 + e(q) is the size of the smallest non-trivial blocking set in PG(2,q).
 (Drudge'99)
- ▶ a counterexample in PG(3,q) with $x = (q^2 + 1)/2$. (Bruen, Drudge'99)
- ▶ $x \neq 4, 5$ and a counterexample with x = 7 in PG(3, 4). (Govaerts, Penttila'05)

$$\blacktriangleright x \notin \{3, \dots, q\}.$$

(Metsch'10)

ション ふゆ マ キャット マックシン

▶ In 2011 M. Rodgers constructed new Cameron – Liebler line classes for many odd values of q (q < 200) satisfying $q \equiv 1 \mod 4$ and $q \equiv 1 \mod 3$, having parameter $x = \frac{1}{2}(q^2 - 1)$.

These new examples are made up of a union of orbits of a cyclic collineation group having order $q^2 + q + 1$.

(日) (日) (日) (日) (日) (日) (日) (日)

Drudge's approach

The most of the previous results rely on the observation by K. Drudge.

Define a clique of PG(3,q):

A clique C of PG(3,q) and its lines may be considered as a projective plane PG(2,q) and its points, resp.

A blocking set in PG(2, q) is a set of points that intersects every line but contains no line.

Drudge's approach

The most of the previous results rely on the observation by K. Drudge.

Define a clique of PG(3,q):

A clique C of PG(3,q) and its lines may be considered as a projective plane PG(2,q) and its points, resp.

A blocking set in PG(2, q) is a set of points that intersects every line but contains no line.

Drudge's approach

The most of the previous results rely on the observation by K. Drudge.

Define a clique of PG(3,q):

A clique C of PG(3, q) and its lines may be considered as a projective plane PG(2, q) and its points, resp.

A blocking set in PG(2, q) is a set of points that intersects every line but contains no line.

Lemma (Drudge, 1999)

Let \mathcal{L} be a Cameron – Liebler line class with parameter x in PG(3,q), \mathcal{C} be a clique, and assume that there exists no CL line class of parameter x - 1.

うして ふゆう ふほう ふほう ふしつ

If $x < |\mathcal{C} \cap \mathcal{L}| \le x + q$ then the lines of $\mathcal{C} \cap \mathcal{L}$ form a blocking set in \mathcal{C} .

Lemma (Drudge, 1999)

Let \mathcal{L} be a Cameron – Liebler line class with parameter x in PG(3,q), \mathcal{C} be a clique, and assume that there exists no CL line class of parameter x - 1.

うして ふゆう ふほう ふほう ふしつ

If $x < |\mathcal{C} \cap \mathcal{L}| \le x + q$ then the lines of $\mathcal{C} \cap \mathcal{L}$ form a blocking set in \mathcal{C} .

Plan

- Motivation
- Previous results
- ▶ New approach and existence condition
- Applications
- ▶ Open problems and future directions

・ロト ・ 日 ・ モー・ モー・ うへぐ

Patterns (G. & Mogilnykh, 2012)

Let l be a line of PG(3,q), \mathcal{L} a Cameron – Liebler line class. Consider all the points P_i , $i = 1, \ldots, q + 1$ that are on l, and all the planes π_i , $j = 1, \ldots, q + 1$ that contain l.

Define a square matrix T of order q + 1 whose (i, j)-element is $|\text{pencil}(P_i, \pi_j) \cap \mathcal{L} \setminus \{l\}|$ We will call such matrix pattern w.r.t. l.

Let $T := (t_{ij})$ be a pattern w.r.t. a line l, and define

$$\chi := \begin{cases} 0 \text{ if } l \notin \mathcal{L}, \\ 1 \text{ if } l \in \mathcal{L}, \end{cases}$$

Let $T := (t_{ij})$ be a pattern w.r.t. a line l, and define

$$\chi := \begin{cases} 0 \text{ if } l \notin \mathcal{L}, \\ 1 \text{ if } l \in \mathcal{L}, \end{cases}$$

•
$$t_{ij} \in \mathbb{N}, \ 0 \le t_{ij} \le q \text{ for all } i, j \in \{1, \dots, q+1\};$$

• $\sum_{i,j=1}^{q+1} t_{ij} = x(q+1) + \chi(q^2 - 1);$
• $\sum_{j=1}^{q+1} t_{kj} + \sum_{i=1}^{q+1} t_{il} = x + (q+1)(t_{kl} + \chi), \ \forall k, l;$
• $\sum_{i,j=1}^{q+1} t_{ij}^2 = (x - \chi)^2 + q(x - \chi) + \chi q^2(q+1).$

Let $T := (t_{ij})$ be a pattern w.r.t. a line l, and define

$$\chi := \begin{cases} 0 \text{ if } l \notin \mathcal{L}, \\ 1 \text{ if } l \in \mathcal{L}, \end{cases}$$

•
$$t_{ij} \in \mathbb{N}, \ 0 \le t_{ij} \le q \text{ for all } i, j \in \{1, \dots, q+1\};$$

• $\sum_{i,j=1}^{q+1} t_{ij} = x(q+1) + \chi(q^2 - 1);$
• $\sum_{j=1}^{q+1} t_{kj} + \sum_{i=1}^{q+1} t_{il} = x + (q+1)(t_{kl} + \chi), \forall k, l;$
• $\sum_{i,j=1}^{q+1} t_{ij}^2 = (x - \chi)^2 + q(x - \chi) + \chi q^2(q+1).$

Let $T := (t_{ij})$ be a pattern w.r.t. a line l, and define

$$\chi := \begin{cases} 0 \text{ if } l \notin \mathcal{L}, \\ 1 \text{ if } l \in \mathcal{L}, \end{cases}$$

•
$$t_{ij} \in \mathbb{N}, \ 0 \le t_{ij} \le q \text{ for all } i, j \in \{1, \dots, q+1\};$$

• $\sum_{i,j=1}^{q+1} t_{ij} = x(q+1) + \chi(q^2 - 1);$
• $\sum_{j=1}^{q+1} t_{kj} + \sum_{i=1}^{q+1} t_{il} = x + (q+1)(t_{kl} + \chi), \forall k, l;$
• $\sum_{i,j=1}^{q+1} t_{ij}^2 = (x - \chi)^2 + q(x - \chi) + \chi q^2(q+1).$

$$\sum_{i,j=1}^{q+1} t_{ij}^2 = (x-\chi)^2 + q(x-\chi) + \chi q^2 (q+1)$$

follows from the two-side counting of $(k, m) \in \mathcal{L} \times \mathcal{L}$ such that $l \sim k, k \sim m$ and $l \not\sim m$.

・ロト ・ 一下・ ・ 日 ・ ・ 日 ・

э

A new existence condition

As a corollary, we see that if there exists a Cameron – Liebler line class with parameter x, then for all $\chi \in \{0, 1\}$, there should exist $(q + 1) \times (q + 1)$ -matrices T such that:

•
$$t_{ij} \in \mathbb{N}, \ 0 \le t_{ij} \le q \text{ for all } i, j \in \{1, \dots, q+1\}$$
;
• $\sum_{i,j=1}^{q+1} t_{ij} = x(q+1) + \chi(q^2 - 1)$;
• $\sum_{j=1}^{q+1} t_{kj} + \sum_{i=1}^{q+1} t_{il} = x + (q+1)(t_{kl} + \chi), \forall k, l;$
• $\sum_{i,j=1}^{q+1} t_{ij}^2 = (x - \chi)^2 + q(x - \chi) + \chi q^2(q+1).$

Excluded pairs (q, x)

(for which the set of patterns is empty)

q	$\mid x$	total
4	3,4,8	3 of 8
5	3,4,7,11	4 of 13
$\overline{7}$	3, 4, 5, 6, 7, 11, 12, 14, 15, 19, 20, 22, 23	13 of 25
8	3, 4, 5, 6, 8, 12, 14, 15, 17, 21, 23, 24, 26, 30, 32	15 of 32
9	3,4,5,7,8,9,11,13,14,15,18,19,23,24,27,28,29,	
	31,33,34,35,38,39	23 of 42
11	$3, \ldots, 9, 11, 12, 14, 15, 19, 20, 22, 23, 27, 28, 30, 31,$	
	35, 36, 38, 39, 43, 44, 46, 47, 51, 52, 54, 55, 59, 60	35 of 61

Guess (G., Mogilnykh, 2012)

The new existence condition eliminates about a half of possible values of x.

(日) (日) (日) (日) (日) (日) (日) (日)

Plan

- ► Motivation
- Previous results
- ▶ New approach and existence condition
- Applications
- Open problems and future directions

・ロト ・ 日 ・ モー・ モー・ うへぐ

(1) Improved bound for x

Klaus Metsch (2013) used the properties of patterns in order to improve his previous bound:

Theorem (Metsch, 2010)

There do not exist Cameron – Liebler line classes in PG(3,q) with parameter x satisfying $2 < x \leq q$.

Theorem (Metsch, 2013)

There do not exist Cameron – Liebler line classes in PG(3,q) with parameter x satisfying $2 < x < cq^{4/3}$ (here c > 0 is a constant).

(1) Improved bound for x

Klaus Metsch (2013) used the properties of patterns in order to improve his previous bound:

Theorem (Metsch, 2010)

There do not exist Cameron – Liebler line classes in PG(3,q) with parameter x satisfying $2 < x \leq q$.

Theorem (Metsch, 2013)

There do not exist Cameron – Liebler line classes in PG(3,q) with parameter x satisfying $2 < x < cq^{4/3}$ (here c > 0 is a constant).

(2) Modular equality

Later, we showed that the properties of patterns yield the following modular equation.

Theorem (G., Metsch, 2014)

Suppose \mathcal{L} is a Cameron – Liebler line class of parameter x. Then, for every plane and every point of PG(3, q), one has

$$\binom{x}{2} + \ell(\ell - x) \equiv 0 \mod (q+1) \tag{1}$$

where ℓ is the number of lines of \mathcal{L} in the plane respectively through the point.

Corollary

Suppose PG(3,q) has a Cameron – Liebler line class with parameter x. Then (1) has a solution for some ℓ in the set $\{0, 1, \ldots, q\}$.

(2) Modular equality

Later, we showed that the properties of patterns yield the following modular equation.

Theorem (G., Metsch, 2014)

Suppose \mathcal{L} is a Cameron – Liebler line class of parameter x. Then, for every plane and every point of PG(3, q), one has

$$\binom{x}{2} + \ell(\ell - x) \equiv 0 \mod (q+1) \tag{1}$$

where ℓ is the number of lines of \mathcal{L} in the plane respectively through the point.

Corollary

Suppose PG(3,q) has a Cameron – Liebler line class with parameter x. Then (1) has a solution for some ℓ in the set $\{0, 1, \ldots, q\}$.

The Govaerts – Penttila class for x = 7, q = 4.

hyperoval in PG(2,q) – a set of q + 2 points, no 3 of which collinear

The Govaerts – Penttila class for x = 7, q = 4.

hyperoval in PG(2,q) – a set of q + 2 points, no 3 of which collinear

The Govaerts – Penttila class for x = 7, q = 4.

Sac

The Govaerts – Penttila class for x = 7, q = 4.

The Govaerts – Penttila class for x = 7, q = 4.

(3) Cameron-Liebler line classes in PG(3, 4)For q = 4 and $x \in \{4, 5, 6, 8\}$ it turns out that there are no matrices admissible w.r.t. our new condition.

Let x = 7. We have only the following admissible patterns: w.r.t. $l \in \mathcal{L}$

w.r.t. $l \notin \mathcal{L}$

 $\begin{pmatrix} 1 & 0 & 0 & 0 & 0 \\ 4 & 3 & 3 & 3 & 3 \\ 2 & 1 & 1 & 1 & 1 \\ 2 & 1 & 1 & 1 & 1 \\ 2 & 1 & 1 & 1 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 \\ 3 & 2 & 2 & 2 & 2 \\ 3 & 2 & 2 & 2 & 2 \\ 3 & 2 & 2 & 2 & 2 \end{pmatrix}.$

(3) Cameron–Liebler line classes in PG(3,4)

For q = 4 and $x \in \{4, 5, 6, 8\}$ it turns out that there are no matrices admissible w.r.t. our new condition.

Let x = 7. We have only the following admissible patterns: w.r.t. $l \in \mathcal{L}$

1	0	0	0	0	0		(4	4	2	3	2		(1	1	1	1	1
I	1	1	1	1	1		4	4	2	3	2		1	1	1	1	1
I	3	3	3	3	3	,	3	3	1	2	1	,	1	1	1	1	1
I	3	3	3	3	3		2	2	0	1	0		3	3	3	3	3
	3	3	3	3	3 /		2	2	0	1	0		4	4	4	4	4
	`	_		_									`				

w.r.t. $l \notin \mathcal{L}$

1	1	0	0	0	0		(1)	0	0	0	0		
	4	3	3	3	3		1	0	0	0	0		
	2	1	1	1	1	,	3	2	2	2	2		
	2	1	1	1	1		3	2	2	2	2		
	2	1	1	1	1 /		3	2	2	2	2 /		
							-					-	500

(3) Cameron–Liebler line classes in PG(n, 4)

Theorem (G., Mogilnykh, 2013)

- ▶ A Cameron-Liebler line class with parameter x exists in PG(3, 4) if and only if $x \in \{0!, 1!, 2!, \beta, A, \beta, \beta, 7!, 8\}$
- ► the only Cameron-Liebler line classes in PG(n, 4), n > 3, are trivial.

うして ふゆう ふほう ふほう ふしつ

Theorem (G., Metsch, 2014)

A Cameron-Liebler line class with parameter x exists in PG(3,5) if and only if $x \in \{0!, 1!, 2!, 10!, 12(?!), 13\}$

In particular, we found a new Cameron-Liebler line class with x = 10, and proved its uniqueness.

Its construction relies on one of two complete 20-caps found by Abatangelo, Korchmaros, Larato (1996).

うつう 山田 エル・エー・ 山田 うらう

Theorem (G., Metsch, 2014)

A Cameron-Liebler line class with parameter x exists in PG(3,5) if and only if $x \in \{0!, 1!, 2!, 10!, 12(?!), 13\}$

In particular, we found a new Cameron-Liebler line class with x = 10, and proved its uniqueness.

Its construction relies on one of two complete 20-caps found by Abatangelo, Korchmaros, Larato (1996).

うして ふゆう ふほう ふほう ふしつ

Theorem (G., Metsch, 2014)

A Cameron-Liebler line class with parameter x exists in PG(3,5) if and only if $x \in \{0!, 1!, 2!, 10!, 12(?!), 13\}$

In particular, we found a new Cameron-Liebler line class with x = 10, and proved its uniqueness.

Its construction relies on one of two complete 20-caps found by Abatangelo, Korchmaros, Larato (1996).

(4) Cameron–Liebler line classes in PG(3,5)

A cap – a set of points, no 3 of which are collinear.

It consists of:

- the intersection lines of planes missing the cap K,
- ▶ the lines that are edges of the tetrahedra,
- ► the lines that lie in a plane missing K and two planes meeting K in three points.

(5) New infinite family

▶
$$PG(3,q), x = (q^2 + 1)/2,$$

Bruen and Drudge, 1998.

►
$$PG(3,4), x = 7,$$

Govaerts and Penttila, 2004.

▶ $PG(3,q), q < 200 \text{ odd}, q \equiv 1 \mod 4 \text{ or } q \equiv 1 \mod 3,$ $x = \frac{1}{2}(q^2 - 1),$

Rodgers, 2011.

►
$$PG(3,5), x = 10,$$

Gavrilyuk and Metsch, 2013.

• a new infinite family in PG(3,q), $q \equiv 5$ or 9 mod 4, $x = (q^2 - 1)/2$.

Momihara, Feng, Xiang, 2014.

ション ふゆ マ キャット キャット しょう

De Beule, Demeyer, Metsch, Rodgers, 2014

(5) New infinite family

▶
$$PG(3,q), x = (q^2 + 1)/2,$$

Bruen and Drudge, 1998.

►
$$PG(3,4), x = 7,$$

Govaerts and Penttila, 2004.

▶ $PG(3,q), q < 200 \text{ odd}, q \equiv 1 \mod 4 \text{ or } q \equiv 1 \mod 3,$ $x = \frac{1}{2}(q^2 - 1),$

Rodgers, 2011.

►
$$PG(3,5), x = 10,$$

Gavrilyuk and Metsch, 2013.

▶ a new infinite family in PG(3,q), $q \equiv 5$ or 9 mod 4, $x = (q^2 - 1)/2$.

Momihara, Feng, Xiang, 2014.

ション ふゆ マ キャット マックシン

De Beule, Demeyer, Metsch, Rodgers, 2014.

Plan

- Motivation
- Previous results
- ▶ New approach and existence condition
- Applications
- Open problems and future directions

・ロト ・ 日 ・ モー・ モー・ うへぐ

(1) Cameron–Liebler line classes in PG(3,5)

Theorem (G., Metsch, 2014)

A Cameron-Liebler line class with parameter x exists in PG(3,5) if and only if $x \in \{0!, 1!, 2!, 10!, 12(?!), 13\}$

Problem

 Show uniqueness of a class with x = 12 in PG(3,5)
 Find all Cameron-Liebler line classes in PG(n,5), n > 3.

There are some line classes (among those found by Rodgers), which also seem to be members of an infinite family, however, a general construction for them is not known yet. (1) Cameron–Liebler line classes in PG(3,5)

Theorem (G., Metsch, 2014)

A Cameron-Liebler line class with parameter x exists in PG(3,5) if and only if $x \in \{0!, 1!, 2!, 10!, 12(?!), 13\}$

Problem

 Show uniqueness of a class with x = 12 in PG(3,5)
 Find all Cameron-Liebler line classes in PG(n,5), n > 3.

There are some line classes (among those found by Rodgers), which also seem to be members of an infinite family, however, a general construction for them is not known yet. (1) Cameron–Liebler line classes in PG(3,5)

Theorem (G., Metsch, 2014)

A Cameron-Liebler line class with parameter x exists in PG(3,5) if and only if $x \in \{0!, 1!, 2!, 10!, 12(?!), 13\}$

Problem

- (1) Show uniqueness of a class with x = 12 in PG(3, 5)
- (2) Find all Cameron-Liebler line classes in PG(n, 5), n > 3.

There are some line classes (among those found by Rodgers), which also seem to be members of an infinite family, however, a general construction for them is not known yet.

- ► the graph defined on the set $Mat_{2\times 2}(\mathbb{F}_q)$ with two matrices A, B adjacent iff rank(A B) = 1.
- the graph defined on the set of lines of PG(3,q) that are skew to a given line, with two lines adjacent iff they intersect.
- It can be viewed as a subgraph of the Grassmann graph $J_q(4,2)$ induced by the second neighbourhood of a given vertex.

Equitable partition of:

$$J_q(4,2) \longrightarrow Bil_q(2\times 2)$$
$$\longleftarrow ?$$

うして ふゆう ふほう ふほう ふしつ

- ▶ the graph defined on the set $Mat_{2\times 2}(\mathbb{F}_q)$ with two matrices A, B adjacent iff rank(A B) = 1.
- ► the graph defined on the set of lines of PG(3,q) that are skew to a given line, with two lines adjacent iff they intersect.
- It can be viewed as a subgraph of the Grassmann graph $J_q(4,2)$ induced by the second neighbourhood of a given vertex.

Equitable partition of:

$$J_q(4,2) \longrightarrow Bil_q(2\times 2)$$
$$\longleftarrow ?$$

- ▶ the graph defined on the set $Mat_{2\times 2}(\mathbb{F}_q)$ with two matrices A, B adjacent iff rank(A B) = 1.
- the graph defined on the set of lines of PG(3,q) that are skew to a given line, with two lines adjacent iff they intersect.
- It can be viewed as a subgraph of the Grassmann graph $J_q(4,2)$ induced by the second neighbourhood of a given vertex.

Equitable partition of:

$$J_q(4,2) \longrightarrow Bil_q(2 \times 2)$$
 \longleftarrow ?

- ▶ the graph defined on the set $Mat_{2\times 2}(\mathbb{F}_q)$ with two matrices A, B adjacent iff rank(A B) = 1.
- the graph defined on the set of lines of PG(3,q) that are skew to a given line, with two lines adjacent iff they intersect.
- It can be viewed as a subgraph of the Grassmann graph $J_q(4,2)$ induced by the second neighbourhood of a given vertex.

Equitable partition of:

$$J_q(4,2) \longrightarrow Bil_q(2\times 2)$$

$$\longleftarrow ?$$

(2) Equitable partition of $Bil_q(2 \times 2)$

Frédéric Vanhove (September, 2013) gave the following example:

$$Z_0 := \{A \in \operatorname{Mat}_{2 \times 2}(\mathbb{F}_q) : \operatorname{trace}(A) = 0\}$$

is a completely regular code in $Bil_q(2 \times 2)$.

Thus, the partition into sets

 $\{A \in \operatorname{Mat}_{2 \times 2}(\mathbb{F}_q) : \operatorname{trace}(A) = 0\},\$

 $\{A \in \operatorname{Mat}_{2 \times 2}(\mathbb{F}_q) : \operatorname{trace}(A) \neq 0\}.$

gives an equitable 2-partition of $Bil_q(2 \times 2)$.

It is easy to see that $|Z_0| = q^3$ and Z_0 cannot be embedded into a Cameron-Liebler line class.

(2) Equitable partition of $Bil_q(2 \times 2)$

Frédéric Vanhove (September, 2013) gave the following example:

$$Z_0 := \{A \in \operatorname{Mat}_{2 \times 2}(\mathbb{F}_q) : \operatorname{trace}(A) = 0\}$$

is a completely regular code in $Bil_q(2 \times 2)$. Thus, the partition into sets

 $\{A \in \operatorname{Mat}_{2 \times 2}(\mathbb{F}_q) : \operatorname{trace}(A) = 0\},$ $\{A \in \operatorname{Mat}_{2 \times 2}(\mathbb{F}_q) : \operatorname{trace}(A) \neq 0\}.$ gives an equitable 2-partition of $Bil_q(2 \times 2)$.

It is easy to see that $|Z_0| = q^3$ and Z_0 cannot be embedded into a Cameron-Liebler line class.

(2) Equitable partition of $Bil_q(2 \times 2)$

Frédéric Vanhove (September, 2013) gave the following example:

$$Z_0 := \{A \in \operatorname{Mat}_{2 \times 2}(\mathbb{F}_q) : \operatorname{trace}(A) = 0\}$$

is a completely regular code in $Bil_q(2 \times 2)$. Thus, the partition into sets

$$\{A \in \operatorname{Mat}_{2 \times 2}(\mathbb{F}_q) : \operatorname{trace}(A) = 0\},\$$

$$\{A \in \operatorname{Mat}_{2 \times 2}(\mathbb{F}_q) : \operatorname{trace}(A) \neq 0\}.$$

gives an equitable 2-partition of $Bil_q(2 \times 2)$.

It is easy to see that $|Z_0| = q^3$ and Z_0 cannot be embedded into a Cameron-Liebler line class.

- ► assume that S is not trivial (up to complement: empty set, a point, a hyperplane),
- ▶ there are examples in projective planes (d = 2). Full classification in PG(2, 9) by Royle and Penttila (199
- ▶ if $d \ge 3$ then q is an odd square, but no such sets are known,
- ▶ all m-secants to S form a Cameron-Liebler line class,
- ▶ these Cameron-Liebler line classes survive even with our new existence condition!

- ► assume that S is not trivial (up to complement: empty set, a point, a hyperplane),
- ► there are examples in projective planes (d = 2). Full classification in PG(2, 9) by Royle and Penttila (1995).
- ▶ if $d \ge 3$ then q is an odd square, but no such sets are known,
- ▶ all m-secants to S form a Cameron-Liebler line class,
- ▶ these Cameron-Liebler line classes survive even with our new existence condition!

- ► assume that S is not trivial (up to complement: empty set, a point, a hyperplane),
- ► there are examples in projective planes (d = 2). Full classification in PG(2, 9) by Royle and Penttila (1995).
- ▶ if $d \ge 3$ then q is an odd square, but no such sets are known,
- ▶ all m-secants to S form a Cameron-Liebler line class,
- ▶ these Cameron-Liebler line classes survive even with our new existence condition!

A set S of points of PG(d, q) is called (m, n)-set w.r.t. lines if every line of PG(d, q) intersects S in m or n points.

- ► assume that S is not trivial (up to complement: empty set, a point, a hyperplane),
- ► there are examples in projective planes (d = 2). Full classification in PG(2, 9) by Royle and Penttila (1995).
- ▶ if $d \ge 3$ then q is an odd square, but no such sets are known,
- \blacktriangleright all *m*-secants to S form a Cameron-Liebler line class,
- ▶ these Cameron-Liebler line classes survive even with our new existence condition!

- ► assume that S is not trivial (up to complement: empty set, a point, a hyperplane),
- ► there are examples in projective planes (d = 2). Full classification in PG(2, 9) by Royle and Penttila (1995).
- ▶ if $d \ge 3$ then q is an odd square, but no such sets are known,
- ▶ all m-secants to S form a Cameron-Liebler line class,
- ► these Cameron-Liebler line classes survive even with our new existence condition!

The smallest possible case: PG(3,9) with (m,n) = (2,5).

Intersection of S with any plane = (2, 5)-set in PG(2, 9)

Full classification in PG(2,9) by Royle and Penttila (1995).

▲ロト ▲暦ト ▲目ト ▲目ト 三目 - のへで