Graphs with second largest eigenvalue at most 1

Gary Greaves

東北大学
Tohoku University

23rd July 2015
with X．－M．Cheng and J．H．Koolen．

Graphs with second largest eigenvalue at most -1

Which graphs have second largest eigenvalue at most -1 ?

Graphs with second largest eigenvalue at most -1

Which graphs have second largest eigenvalue at most -1 ?

- Let Γ be an n-vertex graph.
- Eigenvalues $\lambda_{1} \geqslant \lambda_{2} \geqslant \cdots \geqslant \lambda_{n}$.

Graphs with second largest eigenvalue at most -1

 Let Γ be a connected graph on $n \geqslant 2$ vertices with second largest eigenvalue at most -1 .- The 2 -vertex disconnected graph has spectrum $\left\{[0]^{2}\right\}$.
- Interlacing: $\lambda_{i} \geqslant \mu_{i}$ for $i \in\{1, \ldots, m\}$
\Longrightarrow every pair of vertices in Γ must be adjacent.
- Hence Γ must be complete.

Graphs with second largest eigenvalue at most -1

 Let Γ be a connected graph on $n \geqslant 2$ vertices with second largest eigenvalue at most -1 .- The 2 -vertex disconnected graph has spectrum $\left\{[0]^{2}\right\}$.
- Interlacing: $\lambda_{i} \geqslant \mu_{i}$ for $i \in\{1, \ldots, m\}$
\Longrightarrow every pair of vertices in Γ must be adjacent.
- Hence Γ must be complete.

Theorem (Smith 1970)
Let Γ be a connected graph with second largest eigenvalue at most 0 . Then Γ is complete multipartite.

Graphs with small second largest eigenvalue

 Let $S(b)$ denote the set of connected graphs with second largest eigenvalue at most b.- Cao and Yuan 1993: $S(1 / 3)$.
- Petrović 1993: $S(\sqrt{2}-1)$.
- Cvetković and Simić 1995: $S((\sqrt{5}-1) / 2)$.

Graphs with small second largest eigenvalue

 Let $S(b)$ denote the set of connected graphs with second largest eigenvalue at most b.- Cao and Yuan 1993: $S(1 / 3)$.
- Petrović 1993: $S(\sqrt{2}-1)$.
- Cvetković and Simić 1995: $S((\sqrt{5}-1) / 2)$.

Partial characterisations for $S(1)$.

Graphs with small second largest eigenvalue

Let $S(b)$ denote the set of connected graphs with second largest eigenvalue at most b.

- Cao and Yuan 1993: $S(1 / 3)$.
- Petrović 1993: $S(\sqrt{2}-1)$.
- Cvetković and Simić 1995: $S((\sqrt{5}-1) / 2)$.

Partial characterisations for $S(1)$.

- Hong 1989, Shu 1998: Trees.

Graphs with small second largest eigenvalue

- Cao and Yuan 1993: $S(1 / 3)$.
- Petrović 1993: $S(\sqrt{2}-1)$.
- Cvetković and Simić 1995: $S((\sqrt{5}-1) / 2)$.

Partial characterisations for $S(1)$.

- Hong 1989, Shu 1998: Trees.
- Petrović 1991: Bipartite graphs.

Graphs with small second largest eigenvalue

- Petrović 1993: $S(\sqrt{2}-1)$.
- Cvetković and Simić 1995: $S((\sqrt{5}-1) / 2)$.

Partial characterisations for $S(1)$.

- Hong 1989, Shu 1998: Trees.
- Petrović 1991: Bipartite graphs.
- Xu 2004: Unicyclic graphs.

Graphs with small second largest eigenvalue

- Cvetković and Simić 1995: $S((\sqrt{5}-1) / 2)$.

Partial characterisations for $S(1)$.

- Hong 1989, Shu 1998: Trees.
- Petrović 1991: Bipartite graphs.
- Xu 2004: Unicyclic graphs.
- Guo 2005: Bicyclic graphs.

Graphs with small second largest eigenvalue

Partial characterisations for $S(1)$.

- Hong 1989, Shu 1998: Trees.
- Petrović 1991: Bipartite graphs.
- Xu 2004: Unicyclic graphs.
- Guo 2005: Bicyclic graphs.
- Li and Yang 2011: Quadcyclic graphs.

Graphs with small second largest eigenvalue

Partial characterisations for $S(1)$.

- Hong 1989, Shu 1998: Trees.
- Petrović 1991: Bipartite graphs.
- Xu 2004: Unicyclic graphs.
- Guo 2005: Bicyclic graphs.
- Li and Yang 2011: QuadTricyclic graphs.

Plan

Classify graphs Γ with second largest eigenvalue at most 1 such that Γ has precisely three distinct eigenvalues.

- Graphs with three eigenvalues 101.
- Main theorem.
- A structural tool for the proof.
- Idea for the finite search.
- Closing remarks.

Graphs with three eigenvalues

Let Γ be a connected graph (V, E) with eigenvalues $\theta_{0}>\theta_{1}>\theta_{2}$. Then

$$
\left(A-\theta_{1} I\right)\left(A-\theta_{2} I\right)=\alpha \alpha^{\top}
$$

Graphs with three eigenvalues

Let Γ be a connected graph (V, E) with eigenvalues $\theta_{0}>\theta_{1}>\theta_{2}$. Then

$$
\begin{gathered}
A^{2}=\left(\theta_{1}+\theta_{2}\right) A-\theta_{1} \theta_{2} I+\alpha \alpha^{\top}, \quad A \alpha=\theta_{0} \alpha . \\
d_{x}=-\theta_{1} \theta_{2}+\alpha_{x}^{2} \\
v_{x, y}=\left(\theta_{1}+\theta_{2}\right) A_{x, y}+\alpha_{x} \alpha_{y} .
\end{gathered}
$$

- Diameter of Γ is 2 .
- $\theta_{1} \geqslant 0$ and $\theta_{2} \leqslant-\sqrt{2}$.

Regular graphs

- Regular graphs with three eigenvalues.

Strongly regular graphs

- Regular graphs with second largest eigenvalue 1. Complement of graphs with smallest eigenvalue -2 .
- Regular graphs with three eigenvalues and second largest eigenvalue 1.
Complement of strongly regular graphs with smallest eigenvalue -2 .
- Seidel 1968: classified strongly regular graphs with smallest eigenvalue -2 .

Nonregular graphs

Theorem
Let Γ be a connected nonregular graph with three distinct eigenvalues $\theta_{0}>\theta_{1}>\theta_{2}$ and $\theta_{1}=1$. Then $\theta_{2}=-2$, and Γ is the Petersen cone or the Van Dam-Fano graph.

Petersen cone

Van Dam-Fano graph

Main theorem

Theorem
Let Γ be a connected graph with three distinct eigenvalues and second largest eigenvalue at most 1 . Then Γ is one of the following graphs.
(a) A complete bipartite graph;
(b) The Petersen cone;
(c) The Van Dam-Fano graph;
(d) A complete multipartite regular graph;
(e) The complement of a Seidel SRG.

Structure of the proof

Goal: find connected 3 -eigenvalue graphs Γ with $\theta_{1} \leqslant 1$.

- Reduce to the case where Γ has second largest eigenvalue precisely 1. \Longrightarrow all eigenvalues are integers.
- Reduce to the case where Γ has at least three distinct valencies.
- Regular case follows from Seidel (1968).
- Biregular case [Cheng, Gavrilyuk, GG, Koolen (2015+)].
- Reduce to the case where Γ is not a cone.
- Reduce to the case where the smallest eigenvalue of Γ is at least -29.

A structural lemma

Lemma

Let Γ be a connected graph with second largest eigenvalue 1 .
For $x \sim y$, let π be a vertex partition with cells
$C_{1}=\{x, y\}, C_{2}=\left\{z \in V(\Gamma) \backslash C_{1} \mid z \sim x\right.$ or $\left.z \sim y\right\}$, and
$C_{3}=\{z \in V(\Gamma) \mid z \nsim x$ and $z \nsim y\}$. Then the induced subgraph on C_{3} has maximum degree 1 .

A bound for n

Lemma
Let Γ be a connected n-vertex graph with three eigenvalues and second largest eigenvalue 1 . Let m denote the multiplicity of the smallest eigenvalue of Γ. Suppose $x \sim y$. Then $n \leqslant d_{x}+d_{y}-v_{x, y}+2 m$.

A bound for n

Lemma
Let Γ be a connected n-vertex graph with three eigenvalues and second largest eigenvalue 1 . Let m denote the multiplicity of the smallest eigenvalue of Γ. Suppose $x \sim y$. Then $n \leqslant d_{x}+d_{y}-v_{x, y}+2 m$.
Proof.

Finite search

Let Γ be a connected n-vertex graph with eigenvalues $s>1>-t$ and suppose $-t$ has multiplicity m. (Γ not a cone.)

- $n \leqslant f(t)$ for some rational function f.
- For each $t \in\{3, \ldots, 29\}$, we can enumerate parameters (n, s, m). Denote their set by $\mathcal{S}(t)$.

Finite search

Let Γ be a connected n-vertex graph with eigenvalues
$s>1>-t$ and suppose $-t$ has multiplicity m. (Γ not a cone.)

- $n \leqslant f(t)$ for some rational function f.
- For each $t \in\{3, \ldots, 29\}$, we can enumerate parameters (n, s, m). Denote their set by $\mathcal{S}(t)$.

t	$\|\mathcal{S}(t)\|$	- -	- -	t	$\|\mathcal{S}(t)\|$	- -	- -	\| t	$\|\|\mathcal{S}(t)\|$	- -	- -
3	128			12	497			21	189		
4	196			13	455			22	163		
5	277			14	409			23	143		
6	375			15	377			24	118		
7	492			16	340			25	95		
8	610			17	311			26	76		
9	748			18	273			27	61		
10	898			19	248			28	43		
11	546			20	220			\| 29	27		

Finite search

- $n \leqslant f(t)$ for some rational function f.
- For each $t \in\{3, \ldots, 29\}$, we can enumerate parameters (n, s, m). Denote their set by $\mathcal{S}(t)$.
- For each $S \in \mathcal{S}(t)$, we can enumerate valencies $\left(k_{1}, \ldots, k_{r}\right)$. Denote by $\mathcal{K}(t)$.

t	$\|\mathcal{S}(t)\|$	$\|\mathcal{K}(t)\|$	- -	t	$\|\mathcal{S}(t)\|$	$\|\mathcal{K}(t)\|$	- -	t	$\|\mathcal{S}(t)\|$	$\|\mathcal{K}(t)\|$	-
3	128	58		12	497	287		21	189	137	
4	196	116		13	455	237		22	163	137	
5	277	113		14	409	245		23	143	120	
6	375	173		15	377	214		24	118	104	
7	492	159		16	340	220		25	95	92	
8	610	225		17	311	184		26	76	71	
9	748	233		18	273	190		27	61	59	
10	898	297		19	248	162		28	43	43	
11	546	272		20	220	172		29	27	27	

Finite search

- For each $t \in\{3, \ldots, 29\}$, we can enumerate parameters (n, s, m). Denote their set by $\mathcal{S}(t)$.
- For each $S \in \mathcal{S}(t)$, we can enumerate valencies $\left(k_{1}, \ldots, k_{r}\right)$. Denote by $\mathcal{K}(t)$.
- For each $S \in \mathcal{S}(t)$ and $K \in \mathcal{K}(t)$, we can enumerate valency multiplicities $\left(n_{1}, \ldots, n_{r}\right)$. Denote by $\mathcal{M}(t)$.

t	$\|\mathcal{S}(t)\|$	$\|\mathcal{K}(t)\|$	$\|\mathcal{M}(t)\|$	t	$\|\mathcal{S}(t)\|$	$\|\mathcal{K}(t)\|$	$\|\mathcal{M}(t)\|$	t	$\|\mathcal{S}(t)\|$	$\|\mathcal{K}(t)\|$	$\|\mathcal{M}(t)\|$
3	128	58	0	12	497	287	0	21	189	137	0
4	196	116	1	13	455	237	0	22	163	137	0
5	277	113	2	14	409	245	0	23	143	120	0
6	375	173	0	15	377	214	0	24	118	104	0
7	492	159	1	16	340	220	0	25	95	92	0
8	610	225	0	17	311	184	0	26	76	71	0
9	748	233	0	18	273	190	0	27	61	59	0
10	898	297	0	19	248	162	0	28	43	43	0
11	546	272	0	20	220	172	0	129	27	27	0

Survivors

t	(n, s, m)	$\left(k_{1}, \ldots, k_{r}\right)$	$\left(n_{1}, \ldots, n_{r}\right)$
4	$(31,15,9)$	$(5,8,13,20)$	$(5,10,5,11)$
5	$(36,19,9)$	$(7,13,23)$	$(6,12,18)$
5	$(45,28,12)$	$(6,9,21,30)$	$(6,3,3,33)$
7	$(45,20,8)$	$(11,16,23,32)$	$(6,27,6,6)$

- Use ad-hoc methods to show nonexistence of graphs corresponding to each of the parameters in the table.

Closing remarks

- D. de Caen: must graphs with three eigenvalues have at most three valencies?
- Regular: Strongly regular graphs.
- Bi-regular: Infinitely many examples.
- Tri-regular: Finitely many known examples.
- At least four valencies: No known examples.

