Gary Greaves

23rd July 2015

with X.-M. Cheng and J. H. Koolen.

Which graphs have second largest eigenvalue at most -1?

Which graphs have second largest eigenvalue at most -1?

• Let Γ be an *n*-vertex graph.

• Eigenvalues $\lambda_1 \ge \lambda_2 \ge \cdots \ge \lambda_n$.

Let Γ be a connected graph on $n \ge 2$ vertices with second largest eigenvalue at most -1.

- ► The 2-vertex disconnected graph has spectrum {[0]²}.
- Interlacing: λ_i ≥ μ_i for i ∈ {1,...,m}
 ⇒ every pair of vertices in Γ must be adjacent.
- Hence Γ must be complete.

Let Γ be a connected graph on $n \ge 2$ vertices with second largest eigenvalue at most -1.

- The 2-vertex disconnected graph has spectrum $\{[0]^2\}$.
- Interlacing: λ_i ≥ μ_i for i ∈ {1,...,m}
 ⇒ every pair of vertices in Γ must be adjacent.
- Hence Γ must be complete.

Theorem (Smith 1970)

Let Γ be a connected graph with second largest eigenvalue at most 0. Then Γ is complete multipartite.

Let S(b) denote the set of connected graphs with second largest eigenvalue at most b.

- ▶ Cao and Yuan 1993: *S*(1/3).
- Petrović 1993: $S(\sqrt{2}-1)$.
- Cvetković and Simić 1995: $S((\sqrt{5}-1)/2)$.

Let S(b) denote the set of connected graphs with second largest eigenvalue at most b.

- ▶ Cao and Yuan 1993: *S*(1/3).
- Petrović 1993: $S(\sqrt{2}-1)$.
- Cvetković and Simić 1995: $S((\sqrt{5}-1)/2)$.

Let S(b) denote the set of connected graphs with second largest eigenvalue at most b.

- ▶ Cao and Yuan 1993: *S*(1/3).
- Petrović 1993: $S(\sqrt{2}-1)$.
- Cvetković and Simić 1995: $S((\sqrt{5}-1)/2)$.

► Cao and Yuan 1993: *S*(1/3).

• Petrović 1993:
$$S(\sqrt{2}-1)$$
.

• Cvetković and Simić 1995: $S((\sqrt{5}-1)/2)$.

- Hong 1989, Shu 1998: Trees.
- Petrović 1991: Bipartite graphs.

• Petrović 1993:
$$S(\sqrt{2}-1)$$
.

• Cvetković and Simić 1995: $S((\sqrt{5}-1)/2)$.

Partial characterisations for S(1).

- ▶ Hong 1989, Shu 1998: Trees.
- Petrović 1991: Bipartite graphs.

► Xu 2004: Unicyclic graphs.

• Cvetković and Simić 1995: $S((\sqrt{5}-1)/2)$.

- ▶ Hong 1989, Shu 1998: Trees.
- Petrović 1991: Bipartite graphs.
- ► Xu 2004: Unicyclic graphs.
- ▶ Guo 2005: Bicyclic graphs.

- ▶ Hong 1989, Shu 1998: Trees.
- Petrović 1991: Bipartite graphs.
- ► Xu 2004: Unicyclic graphs.
- ► Guo 2005: Bicyclic graphs.
- ► Li and Yang 2011: Quadcyclic graphs.

- ▶ Hong 1989, Shu 1998: Trees.
- Petrović 1991: Bipartite graphs.
- ► Xu 2004: Unicyclic graphs.
- Guo 2005: Bicyclic graphs.
- Li and Yang 2011: QuadTricyclic graphs.

Plan

Classify graphs Γ with second largest eigenvalue at most 1 such that Γ has precisely three distinct eigenvalues.

- Graphs with three eigenvalues 101.
- Main theorem.
- A structural tool for the proof.
- Idea for the finite search.
- Closing remarks.

Graphs with three eigenvalues

Let Γ be a connected graph (V, E) with eigenvalues $\theta_0 > \theta_1 > \theta_2$. Then

$$(A - \theta_1 I)(A - \theta_2 I) = \alpha \alpha^\top.$$

Graphs with three eigenvalues

Let Γ be a connected graph (V, E) with eigenvalues $\theta_0 > \theta_1 > \theta_2$. Then

$$A^{2} = (\theta_{1} + \theta_{2})A - \theta_{1}\theta_{2}I + \alpha\alpha^{\top}, \qquad A\alpha = \theta_{0}\alpha.$$

$$d_x = -\theta_1 \theta_2 + \alpha_x^2,$$

$$\nu_{x,y} = (\theta_1 + \theta_2)A_{x,y} + \alpha_x \alpha_y.$$

Diameter of Γ is 2.

•
$$\theta_1 \ge 0$$
 and $\theta_2 \leqslant -\sqrt{2}$.

Regular graphs

- Regular graphs with three eigenvalues. Strongly regular graphs
- ▶ Regular graphs with second largest eigenvalue 1. Complement of graphs with smallest eigenvalue -2.
- Regular graphs with three eigenvalues and second largest eigenvalue 1.
 Complement of strongly regular graphs with smallest eigenvalue -2.
- ► Seidel 1968: classified strongly regular graphs with smallest eigenvalue -2.

Nonregular graphs

Theorem

Let Γ be a connected nonregular graph with three distinct eigenvalues $\theta_0 > \theta_1 > \theta_2$ and $\theta_1 = 1$. Then $\theta_2 = -2$, and Γ is the Petersen cone or the Van Dam-Fano graph.

Van Dam-Fano graph

Main theorem

Theorem

Let Γ be a connected graph with three distinct eigenvalues and second largest eigenvalue at most 1. Then Γ is one of the following graphs.

- (a) A complete bipartite graph;
- (b) The Petersen cone;
- (c) The Van Dam-Fano graph;
- (d) A complete multipartite regular graph;
- (e) The complement of a Seidel SRG.

Structure of the proof

Goal: find connected 3-eigenvalue graphs Γ with $\theta_1 \leqslant 1$.

- Reduce to the case where Γ has second largest eigenvalue precisely 1. ⇒ all eigenvalues are integers.
- Reduce to the case where Γ has at least three distinct valencies.
 - ▶ Regular case follows from Seidel (1968).
 - Biregular case [Cheng, Gavrilyuk, GG, Koolen (2015+)].
- Reduce to the case where Γ is not a cone.
- Reduce to the case where the smallest eigenvalue of Γ is at least -29.

A structural lemma

Lemma

Let Γ be a connected graph with second largest eigenvalue 1. For $x \sim y$, let π be a vertex partition with cells $C_1 = \{x, y\}, C_2 = \{z \in V(\Gamma) \setminus C_1 \mid z \sim x \text{ or } z \sim y\}$, and $C_3 = \{z \in V(\Gamma) \mid z \not\sim x \text{ and } z \not\sim y\}$. Then the induced subgraph on C_3 has maximum degree 1.

A bound for n

Lemma

Let Γ be a connected *n*-vertex graph with three eigenvalues and second largest eigenvalue 1. Let *m* denote the multiplicity of the smallest eigenvalue of Γ . Suppose $x \sim y$. Then $n \leq d_x + d_y - \nu_{x,y} + 2m$.

A bound for n

Lemma

Let Γ be a connected *n*-vertex graph with three eigenvalues and second largest eigenvalue 1. Let *m* denote the multiplicity of the smallest eigenvalue of Γ . Suppose $x \sim y$. Then $n \leq d_x + d_y - v_{x,y} + 2m$. Proof.

Gary Greaves — Graphs with second largest eigenvalue at most 1

Let Γ be a connected *n*-vertex graph with eigenvalues s > 1 > -t and suppose -t has multiplicity *m*. (Γ not a cone.)

- $n \leq f(t)$ for some rational function f.
- For each t ∈ {3,...,29}, we can enumerate parameters (n,s,m). Denote their set by S(t).

Let Γ be a connected *n*-vertex graph with eigenvalues s > 1 > -t and suppose -t has multiplicity *m*. (Γ not a cone.)

- $n \leq f(t)$ for some rational function f.
- For each t ∈ {3,...,29}, we can enumerate parameters (n,s,m). Denote their set by S(t).

t	$ \mathcal{S}(t) $	<u> </u>	— —	t	$ \mathcal{S}(t) $	<u> </u>	— —	t	$ \mathcal{S}(t) $	<u> </u>	— —
3	128			12	497			21	189		
4	196			13	455			22	163		
5	277			14	409			23	143		
6	375			15	377			24	118		
7	492			16	340			25	95		
8	610			17	311			26	76		
9	748			18	273			27	61		
10	898			19	248			28	43		
11	546			20	220			29	27		

Gary Greaves — Graphs with second largest eigenvalue at most 1

- $n \leq f(t)$ for some rational function f.
- For each t ∈ {3,...,29}, we can enumerate parameters (n,s,m). Denote their set by S(t).

For each S ∈ S(t), we can enumerate valencies (k₁,...,k_r). Denote by K(t).

t	$ \mathcal{S}(t) $	$ \mathcal{K}(t) $	<u> </u>	t	$ \mathcal{S}(t) $	$ \mathcal{K}(t) $		t	$ \mathcal{S}(t) $	$ \mathcal{K}(t) $	
3	128	58		12	497	287		21	189	137	
4	196	116		13	455	237		22	163	137	
5	277	113		14	409	245		23	143	120	
6	375	173		15	377	214		24	118	104	
7	492	159		16	340	220		25	95	92	
8	610	225		17	311	184		26	76	71	
9	748	233		18	273	190		27	61	59	
10	898	297		19	248	162		28	43	43	
11	546	272		20	220	172		29	27	27	

Gary Greaves — Graphs with second largest eigenvalue at most 1

- For each $t \in \{3, \ldots, 29\}$, we can enumerate parameters (n, s, m). Denote their set by $\mathcal{S}(t)$.
- For each $S \in \mathcal{S}(t)$, we can enumerate valencies (k_1,\ldots,k_r) . Denote by $\mathcal{K}(t)$.
- For each $S \in \mathcal{S}(t)$ and $K \in \mathcal{K}(t)$, we can enumerate valency multiplicities (n_1, \ldots, n_r) . Denote by $\mathcal{M}(t)$.

t	$ \mathcal{S}(t) $	$ \mathcal{K}(t) $	$ \mathcal{M}(t) $	t	$ \mathcal{S}(t) $	$ \mathcal{K}(t) $	$ \mathcal{M}(t) $	t	$ \mathcal{S}(t) $	$ \mathcal{K}(t) $	$ \mathcal{M}(t) $
3	128	58	0	12	497	287	0	21	189	137	0
4	196	116	1	13	455	237	0	22	163	137	0
5	277	113	2	14	409	245	0	23	143	120	0
6	375	173	0	15	377	214	0	24	118	104	0
7	492	159	1	16	340	220	0	25	95	92	0
8	610	225	0	17	311	184	0	26	76	71	0
9	748	233	0	18	273	190	0	27	61	59	0
10	898	297	0	19	248	162	0	28	43	43	0
11	546	272	0	20	220	172	0	29	27	27	0

Gary Greaves - Graphs with second largest eigenvalue at most 1

Survivors

 Use ad-hoc methods to show nonexistence of graphs corresponding to each of the parameters in the table.

Closing remarks

- D. de Caen: must graphs with three eigenvalues have at most three valencies?
- Regular: Strongly regular graphs.
- Bi-regular: Infinitely many examples.
- > Tri-regular: Finitely many known examples.
- > At least four valencies: No known examples.