Automorphism Groups of Algebraic Curves

Gábor Korchmáros

Università degli Studi della Basilicata Italy
Joint work with M. Giulietti
Combinatorics and Computer Algebra, CoCoA 2015, July 19-25 2015 Forth Collins

Some background from Algebraic Geometry

Some background from Algebraic Geometry

Algebraic curve: = projective (absolutely irreducible, non-singular) algebraic variety of dimension 1 in a projective space $P G(r, \mathbb{K})$;

Some background from Algebraic Geometry

Algebraic curve: = projective (absolutely irreducible, non-singular) algebraic variety of dimension 1 in a projective space $P G(r, \mathbb{K})$; $\mathbb{K}:=$ field of characteristic $p \geq 0$,
Assumption (w.l.g.): \mathbb{K} is algebraically closed field;

Some background from Algebraic Geometry

Algebraic curve: = projective (absolutely irreducible, non-singular) algebraic variety of dimension 1 in a projective space $P G(r, \mathbb{K})$; $\mathbb{K}:=$ field of characteristic $p \geq 0$,
Assumption (w.l.g.): \mathbb{K} is algebraically closed field;
Every algebraic curve \mathcal{X} has a plane model \mathcal{C} :

Some background from Algebraic Geometry

Algebraic curve:= projective (absolutely irreducible, non-singular) algebraic variety of dimension 1 in a projective space $P G(r, \mathbb{K})$; $\mathbb{K}:=$ field of characteristic $p \geq 0$,
Assumption (w.l.g.): \mathbb{K} is algebraically closed field;
Every algebraic curve \mathcal{X} has a plane model \mathcal{C} :
$\mathcal{C}:=$ irreducible (in general singular) curve in $\operatorname{PG}(2, \mathbb{K})$;

Some background from Algebraic Geometry

Algebraic curve:= projective (absolutely irreducible, non-singular) algebraic variety of dimension 1 in a projective space $P G(r, \mathbb{K})$; $\mathbb{K}:=$ field of characteristic $p \geq 0$,
Assumption (w.l.g.): \mathbb{K} is algebraically closed field;
Every algebraic curve \mathcal{X} has a plane model \mathcal{C} :
$\mathcal{C}:=$ irreducible (in general singular) curve in $\operatorname{PG}(2, \mathbb{K})$;
\mathcal{C} is a model of \mathcal{X} if \exists a map

Some background from Algebraic Geometry

Algebraic curve: = projective (absolutely irreducible, non-singular) algebraic variety of dimension 1 in a projective space $P G(r, \mathbb{K})$; $\mathbb{K}:=$ field of characteristic $p \geq 0$,
Assumption (w.l.g.): \mathbb{K} is algebraically closed field;
Every algebraic curve \mathcal{X} has a plane model \mathcal{C} :
$\mathcal{C}:=$ irreducible (in general singular) curve in $\operatorname{PG}(2, \mathbb{K})$;
\mathcal{C} is a model of \mathcal{X} if \exists a map

$$
\Phi=\left\{\begin{array}{l}
P G(r, \mathbb{K}) \rightarrow P G(2, \mathbb{K}) \\
\left(Y_{0}, Y_{1}, \ldots, Y_{r}\right) \rightarrow\left(X_{0}, X_{1}, X_{2}\right) \\
\mathcal{X} \rightarrow \mathcal{C}
\end{array}\right.
$$

Some background from Algebraic Geometry

Algebraic curve: $=$ projective (absolutely irreducible, non-singular) algebraic variety of dimension 1 in a projective space $P G(r, \mathbb{K})$; $\mathbb{K}:=$ field of characteristic $p \geq 0$,
Assumption (w.l.g.): \mathbb{K} is algebraically closed field;
Every algebraic curve \mathcal{X} has a plane model \mathcal{C} :
$\mathcal{C}:=$ irreducible (in general singular) curve in $\operatorname{PG}(2, \mathbb{K})$;
\mathcal{C} is a model of \mathcal{X} if \exists a map

$$
\Phi=\left\{\begin{array}{l}
P G(r, \mathbb{K}) \rightarrow P G(2, \mathbb{K}) \\
\left(Y_{0}, Y_{1}, \ldots, Y_{r}\right) \rightarrow\left(X_{0}, X_{1}, X_{2}\right) \\
\mathcal{X} \rightarrow \mathcal{C}
\end{array}\right.
$$

$X_{i}=U_{i}\left(Y_{0}, Y_{1}, \ldots, Y_{r}\right)$ homogeneous polynomials of degree $d \geq 1$,

Some background from Algebraic Geometry

Algebraic curve: $=$ projective (absolutely irreducible, non-singular) algebraic variety of dimension 1 in a projective space $P G(r, \mathbb{K})$; $\mathbb{K}:=$ field of characteristic $p \geq 0$,
Assumption (w.l.g.): \mathbb{K} is algebraically closed field;
Every algebraic curve \mathcal{X} has a plane model \mathcal{C} :
$\mathcal{C}:=$ irreducible (in general singular) curve in $\operatorname{PG}(2, \mathbb{K})$;
\mathcal{C} is a model of \mathcal{X} if \exists a map

$$
\Phi=\left\{\begin{array}{l}
P G(r, \mathbb{K}) \rightarrow P G(2, \mathbb{K}) \\
\left(Y_{0}, Y_{1}, \ldots, Y_{r}\right) \rightarrow\left(X_{0}, X_{1}, X_{2}\right) \\
\mathcal{X} \rightarrow \mathcal{C}
\end{array}\right.
$$

$X_{i}=U_{i}\left(Y_{0}, Y_{1}, \ldots, Y_{r}\right)$ homogeneous polynomials of degree $d \geq 1$,
Φ is injective and surjective (apart from a finite number of points);

Some background from Algebraic Geometry

Algebraic curve: $=$ projective (absolutely irreducible, non-singular) algebraic variety of dimension 1 in a projective space $P G(r, \mathbb{K})$;
$\mathbb{K}:=$ field of characteristic $p \geq 0$,
Assumption (w.l.g.): \mathbb{K} is algebraically closed field;
Every algebraic curve \mathcal{X} has a plane model \mathcal{C} :
$\mathcal{C}:=$ irreducible (in general singular) curve in $\operatorname{PG}(2, \mathbb{K})$;
\mathcal{C} is a model of \mathcal{X} if \exists a map

$$
\Phi=\left\{\begin{array}{l}
P G(r, \mathbb{K}) \rightarrow P G(2, \mathbb{K}) \\
\left(Y_{0}, Y_{1}, \ldots, Y_{r}\right) \rightarrow\left(X_{0}, X_{1}, X_{2}\right) \\
\mathcal{X} \rightarrow \mathcal{C}
\end{array}\right.
$$

$X_{i}=U_{i}\left(Y_{0}, Y_{1}, \ldots, Y_{r}\right)$ homogeneous polynomials of degree $d \geq 1$,
Φ is injective and surjective (apart from a finite number of points);
Two algebraic curves with the same plane model are birationally isomorphic;

Some background from Algebraic Geometry

Algebraic curve: $=$ projective (absolutely irreducible, non-singular) algebraic variety of dimension 1 in a projective space $P G(r, \mathbb{K})$;
$\mathbb{K}:=$ field of characteristic $p \geq 0$,
Assumption (w.l.g.): \mathbb{K} is algebraically closed field;
Every algebraic curve \mathcal{X} has a plane model \mathcal{C} :
$\mathcal{C}:=$ irreducible (in general singular) curve in $\operatorname{PG}(2, \mathbb{K})$;
\mathcal{C} is a model of \mathcal{X} if \exists a map

$$
\Phi=\left\{\begin{array}{l}
P G(r, \mathbb{K}) \rightarrow P G(2, \mathbb{K}) \\
\left(Y_{0}, Y_{1}, \ldots, Y_{r}\right) \rightarrow\left(X_{0}, X_{1}, X_{2}\right) \\
\mathcal{X} \rightarrow \mathcal{C}
\end{array}\right.
$$

$X_{i}=U_{i}\left(Y_{0}, Y_{1}, \ldots, Y_{r}\right)$ homogeneous polynomials of degree $d \geq 1$,
Φ is injective and surjective (apart from a finite number of points);
Two algebraic curves with the same plane model are birationally isomorphic;

Concept of automorphism

Concept of automorphism

Let \mathcal{C} be a plane model of \mathcal{X};

Concept of automorphism

Let \mathcal{C} be a plane model of \mathcal{X};
$\mathcal{C}:=$ (projective, irreducible) plane curve with homogeneous equation $F\left(X_{0}, X_{1}, X_{2}\right)=0$;

Concept of automorphism

Let \mathcal{C} be a plane model of \mathcal{X};
$\mathcal{C}:=$ (projective, irreducible) plane curve with homogeneous equation $F\left(X_{0}, X_{1}, X_{2}\right)=0$;
homogeneous equation \rightarrow affine equation; $F\left(X_{0}, X_{1}, X_{2}\right) \rightarrow f(X, Y)=F(1, X, Y)$;

Concept of automorphism

Let \mathcal{C} be a plane model of \mathcal{X};
$\mathcal{C}:=$ (projective, irreducible) plane curve with homogeneous equation $F\left(X_{0}, X_{1}, X_{2}\right)=0$;
homogeneous equation \rightarrow affine equation; $F\left(X_{0}, X_{1}, X_{2}\right) \rightarrow f(X, Y)=F(1, X, Y)$;

Concept of automorphism

Let \mathcal{C} be a plane model of \mathcal{X};
$\mathcal{C}:=$ (projective, irreducible) plane curve with homogeneous equation $F\left(X_{0}, X_{1}, X_{2}\right)=0$;
homogeneous equation \rightarrow affine equation;
$F\left(X_{0}, X_{1}, X_{2}\right) \rightarrow f(X, Y)=F(1, X, Y)$;
$\alpha:=$ automorphism of \mathcal{C} (and of \mathcal{X});

$$
\alpha=\left\{\begin{array}{l}
P G(2, \mathbb{K}) \rightarrow P G(2, \mathbb{K}) \\
\left(X_{0}, X_{1}, X_{2}\right) \rightarrow\left(X_{0}^{\prime}, X_{1}^{\prime}, X_{2}^{\prime}\right) \\
\mathcal{C} \rightarrow \mathcal{C}
\end{array}\right.
$$

Concept of automorphism

Let \mathcal{C} be a plane model of \mathcal{X};
$\mathcal{C}:=$ (projective, irreducible) plane curve with homogeneous equation $F\left(X_{0}, X_{1}, X_{2}\right)=0$;
homogeneous equation \rightarrow affine equation;
$F\left(X_{0}, X_{1}, X_{2}\right) \rightarrow f(X, Y)=F(1, X, Y)$;
$\alpha:=$ automorphism of \mathcal{C} (and of \mathcal{X});

$$
\alpha=\left\{\begin{array}{l}
P G(2, \mathbb{K}) \rightarrow P G(2, \mathbb{K}) \\
\left(X_{0}, X_{1}, X_{2}\right) \rightarrow\left(X_{0}^{\prime}, X_{1}^{\prime}, X_{2}^{\prime}\right) \\
\mathcal{C} \rightarrow \mathcal{C}
\end{array}\right.
$$

$X_{i}^{\prime}=U_{i}\left(X_{0}, X_{1}, X_{2}\right)$ homogeneous polynomials of degree $d \geq 1$,

Concept of automorphism

Let \mathcal{C} be a plane model of \mathcal{X};
$\mathcal{C}:=$ (projective, irreducible) plane curve with homogeneous equation $F\left(X_{0}, X_{1}, X_{2}\right)=0$;
homogeneous equation \rightarrow affine equation;
$F\left(X_{0}, X_{1}, X_{2}\right) \rightarrow f(X, Y)=F(1, X, Y)$;
$\alpha:=$ automorphism of \mathcal{C} (and of \mathcal{X});

$$
\alpha=\left\{\begin{array}{l}
P G(2, \mathbb{K}) \rightarrow P G(2, \mathbb{K}) \\
\left(X_{0}, X_{1}, X_{2}\right) \rightarrow\left(X_{0}^{\prime}, X_{1}^{\prime}, X_{2}^{\prime}\right) \\
\mathcal{C} \rightarrow \mathcal{C}
\end{array}\right.
$$

$X_{i}^{\prime}=U_{i}\left(X_{0}, X_{1}, X_{2}\right)$ homogeneous polynomials of degree $d \geq 1$, α is surjective and injective on \mathcal{C} (apart from a finite number of points);

Concept of automorphism

Let \mathcal{C} be a plane model of \mathcal{X};
$\mathcal{C}:=$ (projective, irreducible) plane curve with homogeneous equation $F\left(X_{0}, X_{1}, X_{2}\right)=0$;
homogeneous equation \rightarrow affine equation;
$F\left(X_{0}, X_{1}, X_{2}\right) \rightarrow f(X, Y)=F(1, X, Y)$;
$\alpha:=$ automorphism of \mathcal{C} (and of \mathcal{X});

$$
\alpha=\left\{\begin{array}{l}
P G(2, \mathbb{K}) \rightarrow P G(2, \mathbb{K}) \\
\left(X_{0}, X_{1}, X_{2}\right) \rightarrow\left(X_{0}^{\prime}, X_{1}^{\prime}, X_{2}^{\prime}\right) \\
\mathcal{C} \rightarrow \mathcal{C}
\end{array}\right.
$$

$X_{i}^{\prime}=U_{i}\left(X_{0}, X_{1}, X_{2}\right)$ homogeneous polynomials of degree $d \geq 1$, α is surjective and injective on \mathcal{C} (apart from a finite number of points);
$\operatorname{Aut}(\mathcal{X}):=$ group of all automorphisms of \mathcal{X};

Concept of automorphism

Let \mathcal{C} be a plane model of \mathcal{X};
$\mathcal{C}:=$ (projective, irreducible) plane curve with homogeneous equation $F\left(X_{0}, X_{1}, X_{2}\right)=0$;
homogeneous equation \rightarrow affine equation;
$F\left(X_{0}, X_{1}, X_{2}\right) \rightarrow f(X, Y)=F(1, X, Y)$;
$\alpha:=$ automorphism of \mathcal{C} (and of \mathcal{X});

$$
\alpha=\left\{\begin{array}{l}
P G(2, \mathbb{K}) \rightarrow P G(2, \mathbb{K}) \\
\left(X_{0}, X_{1}, X_{2}\right) \rightarrow\left(X_{0}^{\prime}, X_{1}^{\prime}, X_{2}^{\prime}\right) \\
\mathcal{C} \rightarrow \mathcal{C}
\end{array}\right.
$$

$X_{i}^{\prime}=U_{i}\left(X_{0}, X_{1}, X_{2}\right)$ homogeneous polynomials of degree $d \geq 1$, α is surjective and injective on \mathcal{C} (apart from a finite number of points);
$\operatorname{Aut}(\mathcal{X}):=$ group of all automorphisms of \mathcal{X};
$G<\operatorname{Aut}(\mathcal{X}):=$ tame when $p \nmid|G|$, otherwise non-tame.

Genus of a curve

Genus of a curve

Choose $\mathcal{C}=\mathbf{v}(f(X, Y))$ with only ordinary singularities;

Genus of a curve

Choose $\mathcal{C}=\mathbf{v}(f(X, Y))$ with only ordinary singularities; $P \in \mathcal{C}$ ordinary r-fold point:=exactly r distinct tangents at P;

Genus of a curve

Choose $\mathcal{C}=\mathbf{v}(f(X, Y))$ with only ordinary singularities; $P \in \mathcal{C}$ ordinary r-fold point:=exactly r distinct tangents at P; $P_{1}, \ldots P_{k}$ singular points of $\mathcal{C},\left(P_{i}\right.$ is r_{i}-fold $)$;

Genus of a curve

Choose $\mathcal{C}=\mathbf{v}(f(X, Y))$ with only ordinary singularities; $P \in \mathcal{C}$ ordinary r-fold point:=exactly r distinct tangents at P;
$P_{1}, \ldots P_{k}$ singular points of $\mathcal{C},\left(P_{i}\right.$ is r_{i}-fold $)$;
The genus g of \mathcal{X} (and \mathcal{C}) is

$$
g:=\frac{1}{2}(n-1)(n-2)-\frac{1}{2} \sum_{i=1}^{k} r_{i}\left(r_{i}-1\right) ;
$$

Genus of a curve

Choose $\mathcal{C}=\mathbf{v}(f(X, Y))$ with only ordinary singularities; $P \in \mathcal{C}$ ordinary r-fold point:=exactly r distinct tangents at P;
$P_{1}, \ldots P_{k}$ singular points of $\mathcal{C},\left(P_{i}\right.$ is r_{i}-fold $)$;
The genus g of \mathcal{X} (and \mathcal{C}) is

$$
g:=\frac{1}{2}(n-1)(n-2)-\frac{1}{2} \sum_{i=1}^{k} r_{i}\left(r_{i}-1\right) ;
$$

Lines (and irreducible conics) have genus 0;

Genus of a curve

Choose $\mathcal{C}=\mathbf{v}(f(X, Y))$ with only ordinary singularities; $P \in \mathcal{C}$ ordinary r-fold point:=exactly r distinct tangents at P;
$P_{1}, \ldots P_{k}$ singular points of $\mathcal{C},\left(P_{i}\right.$ is r_{i}-fold $)$;
The genus g of \mathcal{X} (and \mathcal{C}) is

$$
g:=\frac{1}{2}(n-1)(n-2)-\frac{1}{2} \sum_{i=1}^{k} r_{i}\left(r_{i}-1\right) ;
$$

Lines (and irreducible conics) have genus 0 ;
Elliptic curves (birationally isomorphic to nonsingular plane cubics) have genus 1 ;

Genus of a curve

Choose $\mathcal{C}=\mathbf{v}(f(X, Y))$ with only ordinary singularities; $P \in \mathcal{C}$ ordinary r-fold point:=exactly r distinct tangents at P;
$P_{1}, \ldots P_{k}$ singular points of $\mathcal{C},\left(P_{i}\right.$ is r_{i}-fold $)$;
The genus g of \mathcal{X} (and \mathcal{C}) is

$$
g:=\frac{1}{2}(n-1)(n-2)-\frac{1}{2} \sum_{i=1}^{k} r_{i}\left(r_{i}-1\right) ;
$$

Lines (and irreducible conics) have genus 0 ;
Elliptic curves (birationally isomorphic to nonsingular plane cubics)
have genus 1 ;
$\operatorname{Aut}(\mathcal{X})$ is infinite if and only if $g(\mathcal{X}) \leq 1$;

Genus of a curve

Choose $\mathcal{C}=\mathbf{v}(f(X, Y))$ with only ordinary singularities; $P \in \mathcal{C}$ ordinary r-fold point:=exactly r distinct tangents at P;
$P_{1}, \ldots P_{k}$ singular points of $\mathcal{C},\left(P_{i}\right.$ is r_{i}-fold $)$;
The genus g of \mathcal{X} (and \mathcal{C}) is

$$
g:=\frac{1}{2}(n-1)(n-2)-\frac{1}{2} \sum_{i=1}^{k} r_{i}\left(r_{i}-1\right)
$$

Lines (and irreducible conics) have genus 0 ;
Elliptic curves (birationally isomorphic to nonsingular plane cubics)
have genus 1 ;
Aut (\mathcal{X}) is infinite if and only if $g(\mathcal{X}) \leq 1$;
If \mathcal{X} is a (nonsingular) plane curve with $g(\mathcal{X}) \geq 2$ then
$\operatorname{Aut}(\mathcal{X})<P G L(3, \mathbb{K})$.

p-rank of a curve

p-rank of a curve

Abelian group defined on the points of an elliptic curve;

p-rank of a curve

Abelian group defined on the points of an elliptic curve; (Not straightforward) generalization from $g=1$ to $g \geq 2$:

p-rank of a curve

Abelian group defined on the points of an elliptic curve; (Not straightforward) generalization from $g=1$ to $g \geq 2$: Jacobian variety $\mathcal{J}(\mathcal{X})$,

p-rank of a curve

Abelian group defined on the points of an elliptic curve;
(Not straightforward) generalization from $g=1$ to $g \geq 2$: Jacobian variety $\mathcal{J}(\mathcal{X})$, equivalently, the zero Picard group Pic_{0}.

p-rank of a curve

Abelian group defined on the points of an elliptic curve;
(Not straightforward) generalization from $g=1$ to $g \geq 2$: Jacobian variety $\mathcal{J}(\mathcal{X})$, equivalently, the zero Picard group Pic_{0}.
For any prime ℓ,

$$
G_{\ell}:=\left\{g \mid g \in \operatorname{Pic}_{0}, g^{\ell}=1\right\}
$$

p-rank of a curve

Abelian group defined on the points of an elliptic curve;
(Not straightforward) generalization from $g=1$ to $g \geq 2$: Jacobian variety $\mathcal{J}(\mathcal{X})$, equivalently, the zero Picard group Pic_{0}.
For any prime ℓ,

$$
G_{\ell}:=\left\{g \mid g \in \operatorname{Pic}_{0}, g^{\ell}=1\right\}
$$

If $\ell \neq p$, then $\left|G_{\ell}\right|=\ell^{2 g}$.

p-rank of a curve

Abelian group defined on the points of an elliptic curve;
(Not straightforward) generalization from $g=1$ to $g \geq 2$: Jacobian variety $\mathcal{J}(\mathcal{X})$, equivalently, the zero Picard group Pic_{0}.
For any prime ℓ,

$$
G_{\ell}:=\left\{g \mid g \in \operatorname{Pic}_{0}, g^{\ell}=1\right\}
$$

If $\ell \neq p$, then $\left|G_{\ell}\right|=\ell^{2 g}$.
If $\ell=p$, then $\left|G_{\ell}\right| \leq \ell^{g}$.

p-rank of a curve

Abelian group defined on the points of an elliptic curve;
(Not straightforward) generalization from $g=1$ to $g \geq 2$:
Jacobian variety $\mathcal{J}(\mathcal{X})$,
equivalently, the zero Picard group Pic_{0}.
For any prime ℓ,

$$
G_{\ell}:=\left\{g \mid g \in \mathrm{Pic}_{0}, g^{\ell}=1\right\}
$$

If $\ell \neq p$, then $\left|G_{\ell}\right|=\ell^{2 g}$.
If $\ell=p$, then $\left|G_{\ell}\right| \leq \ell^{g}$.
$\left|G_{p}\right|=p^{\gamma}$ and γ is the p-rank of \mathcal{X} (also called the Hasse-Witt invariant);

p-rank of a curve

Abelian group defined on the points of an elliptic curve;
(Not straightforward) generalization from $g=1$ to $g \geq 2$:
Jacobian variety $\mathcal{J}(\mathcal{X})$,
equivalently, the zero Picard group Pic_{0}.
For any prime ℓ,

$$
G_{\ell}:=\left\{g \mid g \in \operatorname{Pic}_{0}, g^{\ell}=1\right\}
$$

If $\ell \neq p$, then $\left|G_{\ell}\right|=\ell^{2 g}$.
If $\ell=p$, then $\left|G_{\ell}\right| \leq \ell^{g}$.
$\left|G_{p}\right|=p^{\gamma}$ and γ is the p-rank of \mathcal{X} (also called the Hasse-Witt invariant);

$$
0 \leq \gamma(\mathcal{X}) \leq g(\mathcal{X})
$$

Tools from Algebraic Geometry

Tools from Algebraic Geometry
$G:=$ finite automorphism group of an algebraic curve \mathcal{X};

Tools from Algebraic Geometry
$G:=$ finite automorphism group of an algebraic curve \mathcal{X}; G acts faithfully on \mathcal{X}.
$G:=$ finite automorphism group of an algebraic curve \mathcal{X}; G acts faithfully on \mathcal{X}.

- G has a finite number of short orbits: $\theta_{1}, \ldots, \theta_{k}$;
$G:=$ finite automorphism group of an algebraic curve \mathcal{X}; G acts faithfully on \mathcal{X}.
- G has a finite number of short orbits: $\theta_{1}, \ldots, \theta_{k}$;
- The stabilizer G_{P} of $P \in \mathcal{X}$ is $S \rtimes H$ with $|S|=p^{h}, p \nmid|H|$ and H cyclic;

Tools from Algebraic Geometry

$G:=$ finite automorphism group of an algebraic curve \mathcal{X}; G acts faithfully on \mathcal{X}.

- G has a finite number of short orbits: $\theta_{1}, \ldots, \theta_{k}$;
- The stabilizer G_{P} of $P \in \mathcal{X}$ is $S \rtimes H$ with $|S|=p^{h}, p \nmid|H|$ and H cyclic;
\exists a curve \mathcal{Y} whose points are the G-orbits of \mathcal{X};

Tools from Algebraic Geometry

$G:=$ finite automorphism group of an algebraic curve \mathcal{X}; G acts faithfully on \mathcal{X}.

- G has a finite number of short orbits: $\theta_{1}, \ldots, \theta_{k}$;
- The stabilizer G_{P} of $P \in \mathcal{X}$ is $S \rtimes H$ with $|S|=p^{h}, p \nmid|H|$ and H cyclic;
\exists a curve \mathcal{Y} whose points are the G-orbits of \mathcal{X};
$\mathcal{Y}:=q u o t i e n t ~ c u r v e ~ o f ~ \mathcal{X}$ by G;

Tools from Algebraic Geometry

$G:=$ finite automorphism group of an algebraic curve \mathcal{X}; G acts faithfully on \mathcal{X}.

- G has a finite number of short orbits: $\theta_{1}, \ldots, \theta_{k}$;
- The stabilizer G_{P} of $P \in \mathcal{X}$ is $S \rtimes H$ with $|S|=p^{h}, p \nmid|H|$ and H cyclic;
\exists a curve \mathcal{Y} whose points are the G-orbits of \mathcal{X}; $\mathcal{Y}:=q u o t i e n t$ curve of \mathcal{X} by $G ; \quad N_{\text {Aut } \mathcal{X}}(G) / G \leq \operatorname{Aut}(\mathcal{Y})$;

Tools from Algebraic Geometry

$G:=$ finite automorphism group of an algebraic curve \mathcal{X}; G acts faithfully on \mathcal{X}.

- G has a finite number of short orbits: $\theta_{1}, \ldots, \theta_{k}$;
- The stabilizer G_{P} of $P \in \mathcal{X}$ is $S \rtimes H$ with $|S|=p^{h}, p \nmid|H|$ and H cyclic;
\exists a curve \mathcal{Y} whose points are the G-orbits of \mathcal{X}; $\mathcal{Y}:=q u o t i e n t$ curve of \mathcal{X} by $G ; \quad N_{\text {Aut }}(G) / G \leq \operatorname{Aut}(\mathcal{Y})$;
If $k=0$ then $\mathcal{X} \mid \mathcal{Y}$ is unramified Galois extension;

Tools from Algebraic Geometry

$G:=$ finite automorphism group of an algebraic curve \mathcal{X};
G acts faithfully on \mathcal{X}.

- G has a finite number of short orbits: $\theta_{1}, \ldots, \theta_{k}$;
- The stabilizer G_{P} of $P \in \mathcal{X}$ is $S \rtimes H$ with $|S|=p^{h}, p \nmid|H|$ and H cyclic;
\exists a curve \mathcal{Y} whose points are the G-orbits of \mathcal{X};
$\mathcal{Y}:=q u o t i e n t$ curve of \mathcal{X} by $G ; \quad N_{\text {Aut }}(G) / G \leq \operatorname{Aut}(\mathcal{Y})$;
If $k=0$ then $\mathcal{X} \mid \mathcal{Y}$ is unramified Galois extension;
Hurwitz-Riemann Formula: If $p \nmid|G|$ then

$$
g(\mathcal{X})-1=|G|(g(\mathcal{Y})-1)+\frac{1}{2} \sum_{i=1}^{k}\left(|G|-\left|\theta_{i}\right|\right)
$$

Tools from Algebraic Geometry

$G:=$ finite automorphism group of an algebraic curve \mathcal{X};
G acts faithfully on \mathcal{X}.

- G has a finite number of short orbits: $\theta_{1}, \ldots, \theta_{k}$;
- The stabilizer G_{P} of $P \in \mathcal{X}$ is $S \rtimes H$ with $|S|=p^{h}, p \nmid|H|$ and H cyclic;
\exists a curve \mathcal{Y} whose points are the G-orbits of \mathcal{X};
$\mathcal{Y}:=q u o t i e n t$ curve of \mathcal{X} by $G ; \quad N_{\text {aut } \mathcal{X}}(G) / G \leq \operatorname{Aut}(\mathcal{Y})$;
If $k=0$ then $\mathcal{X} \mid \mathcal{Y}$ is unramified Galois extension;
Hurwitz-Riemann Formula: If $p \nmid|G|$ then

$$
g(\mathcal{X})-1=|G|(g(\mathcal{Y})-1)+\frac{1}{2} \sum_{i=1}^{k}\left(|G|-\left|\theta_{i}\right|\right)
$$

Deuring-Shafarveich Formula: If $|G|=p^{h}$ then

$$
\gamma(\mathcal{X})-1=|G|(\gamma(\mathcal{Y})-1)+\sum_{i=1}^{k}\left(|G|-\left|\theta_{i}\right|\right)
$$

Outline

4 ロ > 4向 (

Outline

- Upper bounds on $|\operatorname{Aut}(\mathcal{X})|$ depending on g, a survey.

Outline

- Upper bounds on $|\operatorname{Aut}(\mathcal{X})|$ depending on g, a survey.
- What are the possibilities for $\operatorname{Aut}(\mathcal{X})$ when \mathcal{X} has zero p-rank? A classification in even characteristic

Outline

- Upper bounds on $|\operatorname{Aut}(\mathcal{X})|$ depending on g, a survey.
- What are the possibilities for $\operatorname{Aut}(\mathcal{X})$ when \mathcal{X} has zero p-rank? A classification in even characteristic
- p-subgroups of $\operatorname{Aut}(\mathcal{X})$ of curves with positive p-rank.

Outline

- Upper bounds on $|\operatorname{Aut}(\mathcal{X})|$ depending on g, a survey.
- What are the possibilities for $\operatorname{Aut}(\mathcal{X})$ when \mathcal{X} has zero p-rank? A classification in even characteristic
- p-subgroups of $\operatorname{Aut}(\mathcal{X})$ of curves with positive p-rank.

Remark

In zero characteristic, the general study of $\operatorname{Aut}(\mathcal{X})$ relies on the fundamental group of the curve,

Outline

- Upper bounds on $|\operatorname{Aut}(\mathcal{X})|$ depending on g, a survey.
- What are the possibilities for $\operatorname{Aut}(\mathcal{X})$ when \mathcal{X} has zero p-rank? A classification in even characteristic
- p-subgroups of $\operatorname{Aut}(\mathcal{X})$ of curves with positive p-rank.

Remark

In zero characteristic, the general study of $\operatorname{Aut}(\mathcal{X})$ relies on the fundamental group of the curve, In positive characteristic, this approach only works in some special cases, see R. Pries and
K. Stevenson, A survey of Galois theory of curves in characteristic
p, Amer. Math. Soc., (2011)

Outline

- Upper bounds on $|\operatorname{Aut}(\mathcal{X})|$ depending on g, a survey.
- What are the possibilities for $\operatorname{Aut}(\mathcal{X})$ when \mathcal{X} has zero p-rank? A classification in even characteristic
- p-subgroups of $\operatorname{Aut}(\mathcal{X})$ of curves with positive p-rank.

Remark

In zero characteristic, the general study of $\operatorname{Aut}(\mathcal{X})$ relies on the fundamental group of the curve, In positive characteristic, this approach only works in some special cases, see R. Pries and K. Stevenson, A survey of Galois theory of curves in characteristic p, Amer. Math. Soc., (2011)
For further developments the potential of Finite Group Theory is needed.

The classical Hurwitz bound

From now on $g \geq 2$ is assumed

The classical Hurwitz bound

From now on $g \geq 2$ is assumed

- $\operatorname{Aut}(\mathcal{X})$ is a finite group.

From now on $g \geq 2$ is assumed

- $\operatorname{Aut}(\mathcal{X})$ is a finite group.
- If G is tame then $|G| \leq 84(g-1)$. (Hurwitz bound)

From now on $g \geq 2$ is assumed

- $\operatorname{Aut}(\mathcal{X})$ is a finite group.
- If G is tame then $|G| \leq 84(g-1)$. (Hurwitz bound)
- $|\operatorname{Aut}(\mathcal{X})|<16 g^{4}$; up to one exception, the Hermitian curve, [Stichtenoth (1973)].

From now on $g \geq 2$ is assumed

- $\operatorname{Aut}(\mathcal{X})$ is a finite group.
- If G is tame then $|G| \leq 84(g-1)$. (Hurwitz bound)
- $|\operatorname{Aut}(\mathcal{X})|<16 g^{4}$; up to one exception, the Hermitian curve, [Stichtenoth (1973)].
- $|\operatorname{Aut}(\mathcal{X})|<8 g^{3}$; up to four exceptions. [Henn (1976)]

From now on $g \geq 2$ is assumed

- $\operatorname{Aut}(\mathcal{X})$ is a finite group.
- If G is tame then $|G| \leq 84(g-1)$. (Hurwitz bound)
- $|\operatorname{Aut}(\mathcal{X})|<16 g^{4}$; up to one exception, the Hermitian curve, [Stichtenoth (1973)].
- $|\operatorname{Aut}(\mathcal{X})|<8 g^{3}$; up to four exceptions. [Henn (1976)]

Remark

Large automorphism group G of $\mathcal{X}:=|G|>g(\mathcal{X})$;

The classical Hurwitz bound

From now on $g \geq 2$ is assumed

- $\operatorname{Aut}(\mathcal{X})$ is a finite group.
- If G is tame then $|G| \leq 84(g-1)$. (Hurwitz bound)
- $|\operatorname{Aut}(\mathcal{X})|<16 g^{4}$; up to one exception, the Hermitian curve, [Stichtenoth (1973)].
- $|\operatorname{Aut}(\mathcal{X})|<8 g^{3}$; up to four exceptions. [Henn (1976)]

Remark

Large automorphism group G of $\mathcal{X}:=|G|>g(\mathcal{X})$;
Very large automorphism group G of $\mathcal{X}:=|G|>c g(\mathcal{X})^{2}$ with a constant c .

Four infinite families of curves \mathcal{X} with $|\operatorname{Aut}(\mathcal{X})| \geq 8 g^{3}$

(I) $\mathbf{v}\left(Y^{2}+Y+X^{2^{k}+1}\right), p=2$, a hyperelliptic curve of genus $g=2^{k-1}$ with $\operatorname{Aut}(\mathcal{X})$ fixing a point of \mathcal{X}. $|\operatorname{Aut}(\mathcal{X})|=2^{2 k+1}\left(2^{k}+1\right)$.

Four infinite families of curves \mathcal{X} with $|\operatorname{Aut}(\mathcal{X})| \geq 8 g^{3}$

(I) $\mathbf{v}\left(Y^{2}+Y+X^{2^{k}+1}\right), p=2$, a hyperelliptic curve of genus $g=2^{k-1}$ with $\operatorname{Aut}(\mathcal{X})$ fixing a point of \mathcal{X}. $|\operatorname{Aut}(\mathcal{X})|=2^{2 k+1}\left(2^{k}+1\right)$.
(II) The Roquette curve:
$\mathbf{v}\left(Y^{2}-\left(X^{q}-X\right)\right)$ with $p>2$, a hyperelliptic curve of genus $g=\frac{1}{2}(q-1) ; \operatorname{Aut}(\mathcal{X}) / M \cong \operatorname{PSL}(2, q)$ or $\operatorname{Aut}(\mathcal{X}) / M \cong \operatorname{PGL}(2, q)$, where $q=p^{r}$ and $|M|=2$;

Four infinite families of curves \mathcal{X} with $|\operatorname{Aut}(\mathcal{X})| \geq 8 g^{3}$

(I) $\mathbf{v}\left(Y^{2}+Y+X^{2^{k}+1}\right), p=2$, a hyperelliptic curve of genus $g=2^{k-1}$ with $\operatorname{Aut}(\mathcal{X})$ fixing a point of \mathcal{X}. $|\operatorname{Aut}(\mathcal{X})|=2^{2 k+1}\left(2^{k}+1\right)$.
(II) The Roquette curve:
$\mathbf{v}\left(Y^{2}-\left(X^{q}-X\right)\right)$ with $p>2$, a hyperelliptic curve of genus $g=\frac{1}{2}(q-1) ; \operatorname{Aut}(\mathcal{X}) / M \cong \operatorname{PSL}(2, q)$ or $\operatorname{Aut}(\mathcal{X}) / M \cong \operatorname{PGL}(2, q)$, where $q=p^{r}$ and $|M|=2$;
(III) The Hermitian curve:
$\mathbf{v}\left(Y^{n}+Y-X^{n+1}\right)$ with $n=p^{r}$, genus $\frac{1}{2} n(n-1)$, $\operatorname{Aut}(\mathcal{X}) \cong \operatorname{PGU}(3, n)$.
$|\operatorname{Aut}(\mathcal{X})|=\left(n^{3}+1\right) n^{3}\left(n^{2}-1\right)$.

Four infinite families of curves \mathcal{X} with $|\operatorname{Aut}(\mathcal{X})| \geq 8 g^{3}$

(I) $\mathbf{v}\left(Y^{2}+Y+X^{2^{k}+1}\right), p=2$, a hyperelliptic curve of genus $g=2^{k-1}$ with $\operatorname{Aut}(\mathcal{X})$ fixing a point of \mathcal{X}.
$|\operatorname{Aut}(\mathcal{X})|=2^{2 k+1}\left(2^{k}+1\right)$.
(II) The Roquette curve:
$\mathbf{v}\left(Y^{2}-\left(X^{q}-X\right)\right)$ with $p>2$, a hyperelliptic curve of genus $g=\frac{1}{2}(q-1) ; \operatorname{Aut}(\mathcal{X}) / M \cong \operatorname{PSL}(2, q)$ or $\operatorname{Aut}(\mathcal{X}) / M \cong \operatorname{PGL}(2, q)$, where $q=p^{r}$ and $|M|=2$;
(III) The Hermitian curve:
$\mathbf{v}\left(Y^{n}+Y-X^{n+1}\right)$ with $n=p^{r}$, genus $\frac{1}{2} n(n-1)$, $\operatorname{Aut}(\mathcal{X}) \cong \operatorname{PGU}(3, n)$.
$|\operatorname{Aut}(\mathcal{X})|=\left(n^{3}+1\right) n^{3}\left(n^{2}-1\right)$.
(IV) The DLS curve (Deligne-Lusztig curve of Suzuki type): $\mathbf{v}\left(X^{n_{0}}\left(X^{n}+X\right)+Y^{n}+Y\right)$, with $p=2, n_{0}=2^{r} \geq 2, n=2 n_{0}^{2}$, $g=n_{0}(n-1), \operatorname{Aut}(\mathcal{X}) \cong \mathrm{Sz}(n)$ where $\mathrm{Sz}(n)$ is the Suzuki $\operatorname{group},|\operatorname{Aut}(\mathcal{X})|=\left(n^{2}+1\right) n^{2}(n-1)$

Two more infinite families of curves \mathcal{X} with large $\operatorname{Aut}(\mathcal{X})$

(V) The DLR curve (the Deligne-Lusztig curve arising from the Ree group):
$\mathbf{v}\left(Y^{n^{2}}-\left[1+\left(X^{n}-X\right)^{n-1}\right] Y^{n}+\left(X^{n}-X\right)^{n-1} Y-X^{n}\left(X^{n}-\right.\right.$ $\left.X)^{n+3 n_{0}}\right)$, with $p=3, n_{0}=3^{r}, n=3 n_{0}^{2}$;
$g=\frac{3}{2} n_{0}(n-1)\left(n+n_{0}+1\right) ; \operatorname{Aut}(\mathcal{X}) \cong \operatorname{Ree}(n)$ where $\operatorname{Ree}(n)$ is the Ree group, $|\operatorname{Aut}(\mathcal{X})|=\left(n^{3}+1\right) n^{3}(n-1)$.
(V) The DLR curve (the Deligne-Lusztig curve arising from the Ree group):
$\mathbf{v}\left(Y^{n^{2}}-\left[1+\left(X^{n}-X\right)^{n-1}\right] Y^{n}+\left(X^{n}-X\right)^{n-1} Y-X^{n}\left(X^{n}-\right.\right.$ $\left.X)^{n+3 n_{0}}\right)$, with $p=3, n_{0}=3^{r}, n=3 n_{0}^{2}$;
$g=\frac{3}{2} n_{0}(n-1)\left(n+n_{0}+1\right) ; \operatorname{Aut}(\mathcal{X}) \cong \operatorname{Ree}(n)$ where $\operatorname{Ree}(n)$ is the Ree group, $|\operatorname{Aut}(\mathcal{X})|=\left(n^{3}+1\right) n^{3}(n-1)$.
(VI) The G.K curve:
$\mathbf{v}\left(Y^{n^{3}+1}+\left(X^{n}+X\right)\left(\sum_{i=0}^{n}(-1)^{i+1} X^{i(n-1)}\right)^{n+1}\right)$, a curve of genus $g=\frac{1}{2}\left(n^{3}+1\right)\left(n^{2}-2\right)+1$ with $\operatorname{Aut}(\mathcal{X})$ containing a subgroup isomorphic to $\operatorname{SU}(3, n), n=p^{r}$.
$|\operatorname{Aut}(\mathcal{X})|=\left(n^{3}+1\right) n^{3}(n-1)$.

Problems on curves with large automorphism groups, $\gamma=0$

Remark

All the above examples have zero p-rank.

Problems on curves with large automorphism groups, $\gamma=0$

Remark

All the above examples have zero p-rank.

- Problem 1: Find a function $f(g)$ such that if $|\operatorname{Aut}(\mathcal{X})|>f(g)$ then $\gamma=0$.

Problems on curves with large automorphism groups, $\gamma=0$

Remark

All the above examples have zero p-rank.

- Problem 1: Find a function $f(g)$ such that if $|\operatorname{Aut}(\mathcal{X})|>f(g)$ then $\gamma=0$.
- Problem 2: Determine the structure of large automorphism groups of curves with $\gamma=0$.

Problems on curves with large automorphism groups, $\gamma=0$

Remark

All the above examples have zero p-rank.

- Problem 1: Find a function $f(g)$ such that if $|\operatorname{Aut}(\mathcal{X})|>f(g)$ then $\gamma=0$.
- Problem 2: Determine the structure of large automorphism groups of curves with $\gamma=0$.
- Problem 3: \exists simple groups, other than those in the examples (II),...(VI), occurring as a section of a large automorphism group of an algebraic curve?

Problems on curves with large automorphism groups, $\gamma=0$

Remark

All the above examples have zero p-rank.

- Problem 1: Find a function $f(g)$ such that if $|\operatorname{Aut}(\mathcal{X})|>f(g)$ then $\gamma=0$.
- Problem 2: Determine the structure of large automorphism groups of curves with $\gamma=0$.
- Problem 3: \exists simple groups, other than those in the examples (II),...(VI), occurring as a section of a large automorphism group of an algebraic curve?

Theorem (Giulietti, K. 2015)

Let $p>2$. If G is solvable and $|G|>144 g(\mathcal{X})^{2}$ then $\gamma(\mathcal{X})=0$ and G fixes a point.

Problems on zero p-rank curves with very large p-group of automorphisms

- Curves with a large p-group S of automorphisms have p-rank γ equal to zero, (Stichtenoth, 1973, Nakajima, 1987).

Problems on zero p-rank curves with very large p-group of automorphisms

- Curves with a large p-group S of automorphisms have p-rank γ equal to zero, (Stichtenoth, 1973, Nakajima, 1987).
- Problem 4: "Big action problem" (Lehr-Matignon): What about zero p-rank curves with very large p-group S of automorphisms fixing a point?

Problems on zero p-rank curves with very large p-group of automorphisms

- Curves with a large p-group S of automorphisms have p-rank γ equal to zero, (Stichtenoth, 1973, Nakajima, 1987).
- Problem 4: "Big action problem" (Lehr-Matignon): What about zero p-rank curves with very large p-group S of automorphisms fixing a point? $|S| \geq\left(4 g^{2}\right) /(p-1)^{2} \Rightarrow$ $\mathcal{X}=\mathbf{v}\left(Y^{q}-Y+f(X)\right)$ s. t. $f(X)=X P(X)+c X, q=p^{h}$ and $P(X)$ is an additive polynomial of $\mathbb{K}[X]$, (Lehr-Matignon 2005).

Problems on zero p-rank curves with very large p-group of automorphisms

- Curves with a large p-group S of automorphisms have p-rank γ equal to zero, (Stichtenoth, 1973, Nakajima, 1987).
- Problem 4: "Big action problem" (Lehr-Matignon): What about zero p-rank curves with very large p-group S of automorphisms fixing a point? $|S| \geq\left(4 g^{2}\right) /(p-1)^{2} \Rightarrow$ $\mathcal{X}=\mathbf{v}\left(Y^{q}-Y+f(X)\right)$ s. t. $f(X)=X P(X)+c X, q=p^{h}$ and $P(X)$ is an additive polynomial of $\mathbb{K}[X]$, (Lehr-Matignon 2005).
- If $\operatorname{Aut}(\mathcal{X})$ fixes no point and $|S|>p g /(p-1)$ then \mathcal{X} is one of the curves (II) ... (VI). (Giulietti-K. 2010).

Large p-subgroups of automorphisms of zero p-rank curves

Large p-subgroups of automorphisms of zero p-rank curves

Lemma

[Bridge lemma]

Large p-subgroups of automorphisms of zero p-rank curves

Lemma

[Bridge lemma] Let \mathcal{X} be a zero p-rank curve, i.e. $\gamma=0$. Let $S \leq \operatorname{Aut}(\mathcal{X})$ with $|S|=p^{h}$. Then S fixes a point of P of \mathcal{X}, and no non-trivial element in S fixes a point distinct from P.

Large p-subgroups of automorphisms of zero p-rank curves

Lemma

[Bridge lemma] Let \mathcal{X} be a zero p-rank curve, i.e. $\gamma=0$. Let $S \leq \operatorname{Aut}(\mathcal{X})$ with $|S|=p^{h}$. Then S fixes a point of P of \mathcal{X}, and no non-trivial element in S fixes a point distinct from P.

Definition

A Sylow p-subgroup S_{p} of a finite group G is a trivial intersection set if S_{p} meets any other Sylow p-subgroup of G trivially.

Large p-subgroups of automorphisms of zero p-rank curves

Lemma

[Bridge lemma] Let \mathcal{X} be a zero p-rank curve, i.e. $\gamma=0$. Let $S \leq \operatorname{Aut}(\mathcal{X})$ with $|S|=p^{h}$. Then S fixes a point of P of \mathcal{X}, and no non-trivial element in S fixes a point distinct from P.

Definition

A Sylow p-subgroup S_{p} of a finite group G is a trivial intersection set if S_{p} meets any other Sylow p-subgroup of G trivially. If this is the case, G has the $T l$-condition with respect to the prime p.

Large p-subgroups of automorphisms of zero p-rank curves

Lemma

[Bridge lemma] Let \mathcal{X} be a zero p-rank curve, i.e. $\gamma=0$. Let $S \leq \operatorname{Aut}(\mathcal{X})$ with $|S|=p^{h}$. Then S fixes a point of P of \mathcal{X}, and no non-trivial element in S fixes a point distinct from P.

Definition

A Sylow p-subgroup S_{p} of a finite group G is a trivial intersection set if S_{p} meets any other Sylow p-subgroup of G trivially. If this is the case, G has the Tl-condition with respect to the prime p.

Theorem (Giulietti-K. 2005)

Let \mathcal{X} be a curve with $\gamma=0$. Then $G<\operatorname{Aut}(\mathcal{X})$ with $p||G|$ satisfies the TI-condition for its p-subgroups of Sylow.

Large p-subgroups of automorphisms of zero p-rank curves

Lemma

[Bridge lemma] Let \mathcal{X} be a zero p-rank curve, i.e. $\gamma=0$. Let $S \leq \operatorname{Aut}(\mathcal{X})$ with $|S|=p^{h}$. Then S fixes a point of P of \mathcal{X}, and no non-trivial element in S fixes a point distinct from P.

Definition

A Sylow p-subgroup S_{p} of a finite group G is a trivial intersection set if S_{p} meets any other Sylow p-subgroup of G trivially. If this is the case, G has the Tl-condition with respect to the prime p.

Theorem (Giulietti-K. 2005)

Let \mathcal{X} be a curve with $\gamma=0$. Then $G<\operatorname{Aut}(\mathcal{X})$ with $p||G|$ satisfies the TI-condition for its p-subgroups of Sylow.

Finite groups satisfying Tl-condition for some prime p

Theorem (Burnside-Gow, 1976)

Finite groups satisfying Tl-condition for some prime p

Theorem (Burnside-Gow, 1976)

Let G be a finite solvable group satisfying the Tl-condition for p. Then a Sylow p-subgroup S_{p} is either normal or cyclic, or $p=2$ and S_{2} is a generalized quaternion group.

Finite groups satisfying Tl-condition for some prime p

Theorem (Burnside-Gow, 1976)

Let G be a finite solvable group satisfying the Tl-condition for p. Then a Sylow p-subgroup S_{p} is either normal or cyclic, or $p=2$ and S_{2} is a generalized quaternion group.

Remark

Non-solvable groups satisfying the TI-condition are also exist. The known examples include the simple groups involved in the examples (II) ... (VI).

Finite groups satisfying Tl-condition for some prime p

Theorem (Burnside-Gow, 1976)

Let G be a finite solvable group satisfying the Tl-condition for p. Then a Sylow p-subgroup S_{p} is either normal or cyclic, or $p=2$ and S_{2} is a generalized quaternion group.

Remark

Non-solvable groups satisfying the TI-condition are also exist. The known examples include the simple groups involved in the examples (II) ... (VI).
Their complete classification is not done yet,

Finite groups satisfying TI-condition for some prime p

Theorem (Burnside-Gow, 1976)

Let G be a finite solvable group satisfying the TI-condition for p. Then a Sylow p-subgroup S_{p} is either normal or cyclic, or $p=2$ and S_{2} is a generalized quaternion group.

Remark

Non-solvable groups satisfying the TI-condition are also exist. The known examples include the simple groups involved in the examples (II) ... (VI).
Their complete classification is not done yet, Important partial classifications (under further conditions) were given by Hering, Herzog, Aschbacher, and more recently by Guralnick-Pries-Stevenson.

Theorem (Giulietti-K. 2010)

Theorem (Giulietti-K. 2010)

Let $p=2$ and \mathcal{X} a zero 2-rank algebraic curve of genus $g \geq 2$. Let $G \leq \operatorname{Aut}(\mathcal{X})$ with $2||G|$.

Theorem (Giulietti-K. 2010)

Let $p=2$ and \mathcal{X} a zero 2-rank algebraic curve of genus $g \geq 2$. Let $G \leq \operatorname{Aut}(\mathcal{X})$ with $2||G|$. Then one of the following cases holds.

Theorem (Giulietti-K. 2010)

Let $p=2$ and \mathcal{X} a zero 2-rank algebraic curve of genus $g \geq 2$. Let $G \leq \operatorname{Aut}(\mathcal{X})$ with $2||G|$. Then one of the following cases holds.
(a) G fixes no point of \mathcal{X} and the subgroup N of G generated by all its 2-elements is isomorphic to one of the groupsn: $\operatorname{PSL}(2, n), \operatorname{PSU}(3, n), \mathrm{SU}(3, n), \mathrm{Sz}(n)$ with $n=2^{r} \geq 4$; Here N coincides with the commutator subgroup G^{\prime} of G.

Theorem (Giulietti-K. 2010)

Let $p=2$ and \mathcal{X} a zero 2-rank algebraic curve of genus $g \geq 2$. Let $G \leq \operatorname{Aut}(\mathcal{X})$ with $2||G|$. Then one of the following cases holds.
(a) G fixes no point of \mathcal{X} and the subgroup N of G generated by all its 2-elements is isomorphic to one of the groupsn: $\operatorname{PSL}(2, n), \operatorname{PSU}(3, n), \mathrm{SU}(3, n), \mathrm{Sz}(n)$ with $n=2^{r} \geq 4$; Here N coincides with the commutator subgroup G^{\prime} of G.
(b) G fixes no point of \mathcal{X} and it has a non-trivial normal subgroup of odd order. A Sylow 2-subgroup S_{2} of G is either a cyclic group or a generalized quaternion group.

Theorem (Giulietti-K. 2010)

Let $p=2$ and \mathcal{X} a zero 2-rank algebraic curve of genus $g \geq 2$. Let $G \leq \operatorname{Aut}(\mathcal{X})$ with $2||G|$. Then one of the following cases holds.
(a) G fixes no point of \mathcal{X} and the subgroup N of G generated by all its 2-elements is isomorphic to one of the groupsn : $\operatorname{PSL}(2, n), \operatorname{PSU}(3, n), \operatorname{SU}(3, n), \operatorname{Sz}(n)$ with $n=2^{r} \geq 4$; Here N coincides with the commutator subgroup G^{\prime} of G.
(b) G fixes no point of \mathcal{X} and it has a non-trivial normal subgroup of odd order. A Sylow 2-subgroup S_{2} of G is either a cyclic group or a generalized quaternion group.
Furthermore, either $G=O(G) \rtimes S_{2}$, or $G / O(G) \cong \operatorname{SL}(2,3)$, or $G / O(G) \cong G L(2,3)$, or $G / O(G) \cong \mathcal{G}_{48}$.

Theorem (Giulietti-K. 2010)

Let $p=2$ and \mathcal{X} a zero 2-rank algebraic curve of genus $g \geq 2$. Let $G \leq \operatorname{Aut}(\mathcal{X})$ with $2||G|$. Then one of the following cases holds.
(a) G fixes no point of \mathcal{X} and the subgroup N of G generated by all its 2-elements is isomorphic to one of the groupsn: $\operatorname{PSL}(2, n), \operatorname{PSU}(3, n), \operatorname{SU}(3, n), \operatorname{Sz}(n)$ with $n=2^{r} \geq 4$; Here N coincides with the commutator subgroup G^{\prime} of G.
(b) G fixes no point of \mathcal{X} and it has a non-trivial normal subgroup of odd order. A Sylow 2-subgroup S_{2} of G is either a cyclic group or a generalized quaternion group.
Furthermore, either $G=O(G) \rtimes S_{2}$, or $G / O(G) \cong \operatorname{SL}(2,3)$, or $G / O(G) \cong \mathrm{GL}(2,3)$, or $G / O(G) \cong \mathcal{G}_{48}$.
(c) G fixes a point of \mathcal{X}, and $G=S_{2} \rtimes H$, with a subgroup H of odd order.

Corollary

Let \mathcal{X} be a zero 2-rank curve such that the subgroup G of $\operatorname{Aut}(\mathcal{X})$ fixes no point of \mathcal{X}.

Corollary

Let \mathcal{X} be a zero 2-rank curve such that the subgroup G of $\operatorname{Aut}(\mathcal{X})$ fixes no point of \mathcal{X}.

- If G is a solvable, then the Hurwitz bound holds for G; more precisely $|G| \leq 72(g-1)$.

Corollary

Let \mathcal{X} be a zero 2 -rank curve such that the subgroup G of $\operatorname{Aut}(\mathcal{X})$ fixes no point of \mathcal{X}.

- If G is a solvable, then the Hurwitz bound holds for G; more precisely $|G| \leq 72(g-1)$.
- If G is not solvable, then G is known and the possible genera of \mathcal{X} are computed from the order of its commutator subgroup G^{\prime} provided that G is large enough, namely whenever $|G| \geq 24 g(g-1)$.
- Problem 5: Find some more examples of zero 2-rank curves of genus g with $|\operatorname{Aut}(\mathcal{X})| \geq 24 g(g-1)$.
- Problem 5: Find some more examples of zero 2-rank curves of genus g with $|\operatorname{Aut}(\mathcal{X})| \geq 24 g(g-1)$.
- Problem 6: Characterize such examples using their automorphism groups.
- Problem 5: Find some more examples of zero 2-rank curves of genus g with $|\operatorname{Aut}(\mathcal{X})| \geq 24 g(g-1)$.
- Problem 6: Characterize such examples using their automorphism groups.
- Problem 7: How extend the above results to zero p-rank curves for $p>2$?
- Problem 5: Find some more examples of zero 2-rank curves of genus g with $|\operatorname{Aut}(\mathcal{X})| \geq 24 g(g-1)$.
- Problem 6: Characterize such examples using their automorphism groups.
- Problem 7: How extend the above results to zero p-rank curves for $p>2$?
- For Problem 7, progress made by Guralnick-Malmskog-Pries 2012.

Curves with large p-groups of automorphisms, case $\gamma>0$

Curves with large p-groups of automorphisms, case $\gamma>0$

$\mathcal{X}:=$ curve with genus g and p-rank $\gamma>0$.

Curves with large p-groups of automorphisms, case $\gamma>0$

$\mathcal{X}:=$ curve with genus g and p-rank $\gamma>0$.
$S:=p$-subgroup of $\operatorname{Aut}(\mathcal{X})$;

Curves with large p-groups of automorphisms, case $\gamma>0$

$\mathcal{X}:=$ curve with genus g and p-rank $\gamma>0$.
$S:=p$-subgroup of $\operatorname{Aut}(\mathcal{X})$;
Nakajima's bound (1987):

Curves with large p-groups of automorphisms, case $\gamma>0$

$\mathcal{X}:=$ curve with genus g and p-rank $\gamma>0$.
$S:=p$-subgroup of $\operatorname{Aut}(\mathcal{X})$;
Nakajima's bound (1987):

$$
|S| \leq\left\{\begin{array}{l}
4(\gamma-1) \text { for } p=2, \gamma>1 \\
\frac{p}{p-2}(\gamma-1) \text { for } p \neq 2, \gamma>1, \\
g-1 \text { for } \gamma=1
\end{array}\right.
$$

Curves with large p-groups of automorphisms, case $\gamma>0$

$\mathcal{X}:=$ curve with genus g and p-rank $\gamma>0$.
$S:=p$-subgroup of $\operatorname{Aut}(\mathcal{X})$;
Nakajima's bound (1987):

$$
|S| \leq\left\{\begin{array}{l}
4(\gamma-1) \text { for } p=2, \gamma>1 \\
\frac{p}{p-2}(\gamma-1) \text { for } p \neq 2, \gamma>1 \\
g-1 \text { for } \gamma=1
\end{array}\right.
$$

Problem 9: Determine the possibilities for the structures of S when \mathcal{X} extremal w.r. Nakajima's bound, or $|S|$ is closed to it.

Curves with large p-groups of automorphisms, case $\gamma>0$

$\mathcal{X}:=$ curve with genus g and p-rank $\gamma>0$.
$S:=p$-subgroup of $\operatorname{Aut}(\mathcal{X})$;
Nakajima's bound (1987):

$$
|S| \leq\left\{\begin{array}{l}
4(\gamma-1) \text { for } p=2, \gamma>1 \\
\frac{p}{p-2}(\gamma-1) \text { for } p \neq 2, \gamma>1 \\
g-1 \text { for } \gamma=1
\end{array}\right.
$$

Problem 9: Determine the possibilities for the structures of S when \mathcal{X} extremal w.r. Nakajima's bound, or $|S|$ is closed to it.
Hypothesis (I): $|S|>\frac{p^{2}}{p^{2}-p-1}(g-1)$ (and $|S| \geq 8$),

Curves with large p-groups of automorphisms, case $\gamma>0$

$\mathcal{X}:=$ curve with genus g and p-rank $\gamma>0$.
$S:=p$-subgroup of $\operatorname{Aut}(\mathcal{X})$;
Nakajima's bound (1987):

$$
|S| \leq\left\{\begin{array}{l}
4(\gamma-1) \text { for } p=2, \gamma>1 \\
\frac{p}{p-2}(\gamma-1) \text { for } p \neq 2, \gamma>1 \\
g-1 \text { for } \gamma=1
\end{array}\right.
$$

Problem 9: Determine the possibilities for the structures of S when \mathcal{X} extremal w.r. Nakajima's bound, or $|S|$ is closed to it.
Hypothesis (I): $|S|>\frac{p^{2}}{p^{2}-p-1}(g-1)$ (and $|S| \geq 8$),
If S fixes a point then $|S| \leq p g /(p-1)$.

Curves with large p-groups of automorphisms, case $\gamma>0$

$\mathcal{X}:=$ curve with genus g and p-rank $\gamma>0$.
$S:=p$-subgroup of $\operatorname{Aut}(\mathcal{X})$;
Nakajima's bound (1987):

$$
|S| \leq\left\{\begin{array}{l}
4(\gamma-1) \text { for } p=2, \gamma>1 \\
\frac{p}{p-2}(\gamma-1) \text { for } p \neq 2, \gamma>1 \\
g-1 \text { for } \gamma=1
\end{array}\right.
$$

Problem 9: Determine the possibilities for the structures of S when \mathcal{X} extremal w.r. Nakajima's bound, or $|S|$ is closed to it.
Hypothesis (I): $|S|>\frac{p^{2}}{p^{2}-p-1}(g-1)$ (and $|S| \geq 8$),
If S fixes a point then $|S| \leq p g /(p-1)$.
Hypothesis (II): S fixes no point on \mathcal{X}.

Case $p>2$

Case $p>2$

Theorem

(Giulietti-K. 2014/15) Let $p>2$. If $|S|>\frac{p^{2}}{p^{2}-p-1}(g-1)$ and S fixes no point on \mathcal{X}, then one of the following holds

Case $p>2$

Theorem

(Giulietti-K. 2014/15) Let $p>2$. If $|S|>\frac{p^{2}}{p^{2}-p-1}(g-1)$ and S fixes no point on \mathcal{X}, then one of the following holds

- (i) $|S|=p$, and \mathcal{X} is an ordinary curve of genus $g=p-1$.

Case $p>2$

Theorem

(Giulietti-K. 2014/15) Let $p>2$. If $|S|>\frac{p^{2}}{p^{2}-p-1}(g-1)$ and S fixes no point on \mathcal{X}, then one of the following holds

- (i) $|S|=p$, and \mathcal{X} is an ordinary curve of genus $g=p-1$.
- (ii) \mathcal{X} is an ordinary Nakajima extremal curve, and it is an unramified Galois extension of a curve in (i).
S is generated by two elements and the Galois extension is abelian, then S has maximal nilpotency class.

Case $p>2$

Theorem

(Giulietti-K. 2014/15) Let $p>2$. If $|S|>\frac{p^{2}}{p^{2}-p-1}(g-1)$ and S fixes no point on \mathcal{X}, then one of the following holds

- (i) $|S|=p$, and \mathcal{X} is an ordinary curve of genus $g=p-1$.
- (ii) \mathcal{X} is an ordinary Nakajima extremal curve, and it is an unramified Galois extension of a curve in (i).
S is generated by two elements and the Galois extension is abelian, then S has maximal nilpotency class.
- In both cases, either $\operatorname{Aut}(\mathcal{X})=S \rtimes D$ with D a subgroup of a dihedral group of order $2(p-1)$, or $p=3$ and, $\exists M<S$ of index $3, \operatorname{Aut}(\mathcal{X}) / M \cong L$ with $L<G L(2,3)$.

Case $p>2$, infinite families of examples

Case $p>2$, infinite families of examples

$$
\begin{aligned}
& F:=\mathbb{K}(x, y), x\left(y^{p}-y\right)-x^{2}+c=0, c \in \mathbb{K}^{*} \\
& g(F)=\gamma(F)=2
\end{aligned}
$$

Case $p>2$, infinite families of examples

$$
\begin{aligned}
& \text { - } F:=\mathbb{K}(x, y), x\left(y^{p}-y\right)-x^{2}+c=0, c \in \mathbb{K}^{*} ; \\
& g(F)=\gamma(F)=2 . \\
& \text { - } \varphi:=(x, y) \mapsto(x, y+1),
\end{aligned}
$$

Case $p>2$, infinite families of examples

$$
\begin{aligned}
& \text { - } F:=\mathbb{K}(x, y), x\left(y^{p}-y\right)-x^{2}+c=0, c \in \mathbb{K}^{*} \\
& g(F)=\gamma(F)=2 . \\
& \text { - } \varphi:=(x, y) \mapsto(x, y+1), \varphi \in \operatorname{Aut}(F) .
\end{aligned}
$$

Case $p>2$, infinite families of examples

- $F:=\mathbb{K}(x, y), x\left(y^{p}-y\right)-x^{2}+c=0, c \in \mathbb{K}^{*}$; $g(F)=\gamma(F)=2$.
- $\varphi:=(x, y) \mapsto(x, y+1), \varphi \in \operatorname{Aut}(F)$.
- $F_{N}:=$ largest unramified abelian extension of F of exponent N with two generators,

Case $p>2$, infinite families of examples

- $F:=\mathbb{K}(x, y), x\left(y^{p}-y\right)-x^{2}+c=0, c \in \mathbb{K}^{*}$; $g(F)=\gamma(F)=2$.
- $\varphi:=(x, y) \mapsto(x, y+1), \varphi \in \operatorname{Aut}(F)$.
- F_{N} :=largest unramified abelian extension of F of exponent N with two generators,
(i) $F_{N} \mid F$ is an unramified Galois extension of degree $p^{2 N}$,
(ii) F_{N} is generated by all function fields which are cyclic unramified extensions of F of degree p^{N},
(iii) $\operatorname{Gal}\left(F_{N} \mid F\right)=C_{p^{N}} \times C_{p^{N}}$ and $u^{p^{N}}=1$ for every element $u \in \operatorname{Gal}\left(F_{N} \mid F\right)$.

Case $p>2$, infinite families of examples

- $F:=\mathbb{K}(x, y), x\left(y^{p}-y\right)-x^{2}+c=0, c \in \mathbb{K}^{*}$; $g(F)=\gamma(F)=2$.
- $\varphi:=(x, y) \mapsto(x, y+1), \varphi \in \operatorname{Aut}(F)$.
- $F_{N}:=$ largest unramified abelian extension of F of exponent N with two generators,
(i) $F_{N} \mid F$ is an unramified Galois extension of degree $p^{2 N}$,
(ii) F_{N} is generated by all function fields which are cyclic unramified extensions of F of degree p^{N},
(iii) $\operatorname{Gal}\left(F_{N} \mid F\right)=C_{p^{N}} \times C_{p^{N}}$ and $u^{\rho^{N}}=1$ for every element $u \in \operatorname{Gal}\left(F_{N} \mid F\right)$.
- $M:=$ Galois closure of $F_{N} \mid \mathbb{K}$.

Case $p>2$, infinite families of examples

- $F:=\mathbb{K}(x, y), x\left(y^{p}-y\right)-x^{2}+c=0, c \in \mathbb{K}^{*}$; $g(F)=\gamma(F)=2$.
- $\varphi:=(x, y) \mapsto(x, y+1), \varphi \in \operatorname{Aut}(F)$.
- $F_{N}:=$ largest unramified abelian extension of F of exponent N with two generators,
(i) $F_{N} \mid F$ is an unramified Galois extension of degree $p^{2 N}$,
(ii) F_{N} is generated by all function fields which are cyclic unramified extensions of F of degree p^{N},
(iii) $\operatorname{Gal}\left(F_{N} \mid F\right)=C_{p^{N}} \times C_{p^{N}}$ and $u^{\rho^{N}}=1$ for every element $u \in \operatorname{Gal}\left(F_{N} \mid F\right)$.
- $M:=$ Galois closure of $F_{N} \mid \mathbb{K}$.

Lemma

$\operatorname{Gal}(M \mid \mathbb{K}(x))$ preserves F.

Case $p>2$, infinite families of examples

- $F:=\mathbb{K}(x, y), x\left(y^{p}-y\right)-x^{2}+c=0, c \in \mathbb{K}^{*}$; $g(F)=\gamma(F)=2$.
- $\varphi:=(x, y) \mapsto(x, y+1), \varphi \in \operatorname{Aut}(F)$.
- $F_{N}:=$ largest unramified abelian extension of F of exponent N with two generators,
(i) $F_{N} \mid F$ is an unramified Galois extension of degree $p^{2 N}$,
(ii) F_{N} is generated by all function fields which are cyclic unramified extensions of F of degree p^{N},
(iii) $\operatorname{Gal}\left(F_{N} \mid F\right)=C_{p^{N}} \times C_{p^{N}}$ and $u^{\rho^{N}}=1$ for every element $u \in \operatorname{Gal}\left(F_{N} \mid F\right)$.
- $M:=$ Galois closure of $F_{N} \mid \mathbb{K}$.

Lemma

$\operatorname{Gal}(M \mid \mathbb{K}(x))$ preserves $F . \Rightarrow \operatorname{Gal}(M \mid \mathbb{K}(x)) \leq \operatorname{Aut}\left(F_{N}\right)$.

Case $p>2$, infinite families of examples

- $F:=\mathbb{K}(x, y), x\left(y^{p}-y\right)-x^{2}+c=0, c \in \mathbb{K}^{*}$;

$$
g(F)=\gamma(F)=2
$$

- $\varphi:=(x, y) \mapsto(x, y+1), \varphi \in \operatorname{Aut}(F)$.
- $F_{N}:=$ largest unramified abelian extension of F of exponent N with two generators,
(i) $F_{N} \mid F$ is an unramified Galois extension of degree $p^{2 N}$,
(ii) F_{N} is generated by all function fields which are cyclic unramified extensions of F of degree p^{N},
(iii) $\operatorname{Gal}\left(F_{N} \mid F\right)=C_{p^{N}} \times C_{p^{N}}$ and $u^{\rho^{N}}=1$ for every element $u \in \operatorname{Gal}\left(F_{N} \mid F\right)$.
- $M:=$ Galois closure of $F_{N} \mid \mathbb{K}$.

Lemma

$\operatorname{Gal}(M \mid \mathbb{K}(x))$ preserves $F . \Rightarrow \operatorname{Gal}(M \mid \mathbb{K}(x)) \leq \operatorname{Aut}\left(F_{N}\right)$.

Corollary

F_{N} is an extremal function field w.r. Nakajima's bound.

Case $p=3$, Examples for small genera

Case $p=3$, Examples for small genera

- If $|S|=3$ then $\mathcal{X}=\mathbf{v}\left(\left(X\left(Y^{3}-Y\right)-X^{2}+c\right)\right.$ with $c \in \mathbb{K}^{*}$.

Case $p=3$, Examples for small genera

- If $|S|=3$ then $\mathcal{X}=\mathbf{v}\left(\left(X\left(Y^{3}-Y\right)-X^{2}+c\right)\right.$ with $c \in \mathbb{K}^{*}$.
- If $|S|=9$ then $S=C_{3} \times C_{3}$ and
$\mathcal{X}=\mathbf{v}\left(\left(X^{3}-X\right)\left(\left(Y^{3}-Y\right)+c\right)\right.$ with $c \in \mathbb{K}^{*}, g(\mathcal{X})=4$.

Case $p=3$, Examples for small genera

- If $|S|=3$ then $\mathcal{X}=\mathbf{v}\left(\left(X\left(Y^{3}-Y\right)-X^{2}+c\right)\right.$ with $c \in \mathbb{K}^{*}$.
- If $|S|=9$ then $S=C_{3} \times C_{3}$ and $\mathcal{X}=\mathbf{v}\left(\left(X^{3}-X\right)\left(\left(Y^{3}-Y\right)+c\right)\right.$ with $c \in \mathbb{K}^{*}, g(\mathcal{X})=4$.
- If $|S|=27$ then $S=U T(3,3)$ and $\mathcal{X}=\mathbf{v}\left(\left(X^{3}-X\right)\left(Y^{3}-Y\right)+c, Z^{3}-Z-X^{3} Y+Y X^{3}\right)$ with $c \in \mathbb{K}^{*}, g(\mathcal{X})=10$.

Case $p=3$, Examples for small genera

- If $|S|=3$ then $\mathcal{X}=\mathbf{v}\left(\left(X\left(Y^{3}-Y\right)-X^{2}+c\right)\right.$ with $c \in \mathbb{K}^{*}$.
- If $|S|=9$ then $S=C_{3} \times C_{3}$ and $\mathcal{X}=\mathbf{v}\left(\left(X^{3}-X\right)\left(\left(Y^{3}-Y\right)+c\right)\right.$ with $c \in \mathbb{K}^{*}, g(\mathcal{X})=4$.
- If $|S|=27$ then $S=U T(3,3)$ and $\mathcal{X}=\mathbf{v}\left(\left(X^{3}-X\right)\left(Y^{3}-Y\right)+c, Z^{3}-Z-X^{3} Y+Y X^{3}\right)$ with $c \in \mathbb{K}^{*}, g(\mathcal{X})=10$.
- For $|S|=81$ an explicit example: $S \cong \operatorname{Syl}_{3}\left(\operatorname{Sym}_{9}\right)$, $\mathcal{X}=\mathbf{v}\left(\left(X^{3}-X\right)\left(Y^{3}-Y\right)+c, U^{3}-U-X\right.$, $\left.(U-Y)\left(W^{3}-W\right)-1,(U-(Y+1))\left(T^{3}-T\right)-1\right)$ with $c \in \mathbb{K}^{*}, g(\mathcal{X})=28$.

Case $p=2$

4ロ ロ 4占〉（

Case $p=2$

Theorem (Giulietti-K. 2012)

Case $p=2$

Theorem (Giulietti-K. 2012)
 Let $p=2$. If $|S|>2(g-1),|S| \geq 8$ and S fixes no point on \mathcal{X}, then one of the following cases occurs

Case $p=2$

Theorem (Giulietti-K. 2012)
Let $p=2$. If $|S|>2(g-1),|S| \geq 8$ and S fixes no point on \mathcal{X}, then one of the following cases occurs

- $|S|=4(g-1), \mathcal{X}$ is an ordinary bielliptic curve.

Case $p=2$

Theorem (Giulietti-K. 2012)
Let $p=2$. If $|S|>2(g-1),|S| \geq 8$ and S fixes no point on \mathcal{X}, then one of the following cases occurs

- $|S|=4(g-1), \mathcal{X}$ is an ordinary bielliptic curve. Either (ia) S is dihedral, or

Case $p=2$

Theorem (Giulietti-K. 2012)

Let $p=2$. If $|S|>2(g-1),|S| \geq 8$ and S fixes no point on \mathcal{X}, then one of the following cases occurs

- $|S|=4(g-1), \mathcal{X}$ is an ordinary bielliptic curve. Either
(ia) S is dihedral, or
(ib) $S=(E \times\langle u\rangle) \rtimes\langle w\rangle$ where E is cyclic group of order $g-1$ and u and w are involutions.

Case $p=2$

Theorem (Giulietti-K. 2012)

Let $p=2$. If $|S|>2(g-1),|S| \geq 8$ and S fixes no point on \mathcal{X}, then one of the following cases occurs

- $|S|=4(g-1), \mathcal{X}$ is an ordinary bielliptic curve. Either (ia) S is dihedral, or
(ib) $S=(E \times\langle u\rangle) \rtimes\langle w\rangle$ where E is cyclic group of order $g-1$ and u and w are involutions.
- $|S|=2 g+2$, and $S=A \rtimes B, A$ is an elementary abelian subgroup of index 2 and $B=2$;

Case $p=2$

Theorem (Giulietti-K. 2012)

Let $p=2$. If $|S|>2(g-1),|S| \geq 8$ and S fixes no point on \mathcal{X}, then one of the following cases occurs

- $|S|=4(g-1), \mathcal{X}$ is an ordinary bielliptic curve. Either
(ia) S is dihedral, or
(ib) $S=(E \times\langle u\rangle) \rtimes\langle w\rangle$ where E is cyclic group of order $g-1$ and u and w are involutions.
- $|S|=2 g+2$, and $S=A \rtimes B, A$ is an elementary abelian subgroup of index 2 and $B=2$;
- Every central involution of S is inductive.

Case $p=2$

Theorem (Giulietti-K. 2012)

Let $p=2$. If $|S|>2(g-1),|S| \geq 8$ and S fixes no point on \mathcal{X}, then one of the following cases occurs

- $|S|=4(g-1), \mathcal{X}$ is an ordinary bielliptic curve. Either (ia) S is dihedral, or
(ib) $S=(E \times\langle u\rangle) \rtimes\langle w\rangle$ where E is cyclic group of order $g-1$ and u and w are involutions.
- $|S|=2 g+2$, and $S=A \rtimes B, A$ is an elementary abelian subgroup of index 2 and $B=2$;
- Every central involution of S is inductive.

Involution $u \in Z(S)$ is inductive: $=S /\langle u\rangle$, viewed as a subgroup of Aut $(\overline{\mathcal{X}})$ of the quotient curve $\mathcal{X}=\mathcal{X} /\langle u\rangle$ satisfies the hypotheses of the theorem.

Case $p=2$, examples

Case $p=2$, examples

- For every $2^{h}, \exists$ a curve of type (ia): (extremal curve w.r. Nakajima's bound with dihedral 2-group of automorphisms).

Case $p=2$, examples

- For every $2^{h}, \exists$ a curve of type (ia): (extremal curve w.r. Nakajima's bound with dihedral 2-group of automorphisms).
- \exists a sporadic example of type (ib) with $g=9$ and $S=D_{8} \times C_{2}$.

Case $p=2$, examples

- For every $2^{h}, \exists$ a curve of type (ia): (extremal curve w.r. Nakajima's bound with dihedral 2-group of automorphisms).
- \exists a sporadic example of type (ib) with $g=9$ and $S=D_{8} \times C_{2}$.
- For $q=2^{h}$, the hyperelliptic curve

$$
\mathcal{X}:=\mathbf{v}\left(\left(Y^{2}+Y+X\right)\left(X^{q}+X\right)+\sum_{\alpha \in \mathbb{F}_{q}} \frac{X^{q}+X}{X+\alpha}\right)
$$

has genus $g=q-1$ and an elementary abelian automorphism group of order $2 q$.

Case $p=2$, examples

- For every $2^{h}, \exists$ a curve of type (ia): (extremal curve w.r. Nakajima's bound with dihedral 2-group of automorphisms).
- \exists a sporadic example of type (ib) with $g=9$ and $S=D_{8} \times C_{2}$.
- For $q=2^{h}$, the hyperelliptic curve

$$
\mathcal{X}:=\mathbf{v}\left(\left(Y^{2}+Y+X\right)\left(X^{q}+X\right)+\sum_{\alpha \in \mathbb{F}_{q}} \frac{X^{q}+X}{X+\alpha}\right)
$$

has genus $g=q-1$ and an elementary abelian automorphism group of order $2 q$.

- Examples involving inductive involutions are also known.

Case $p=2$, examples

- For every $2^{h}, \exists$ a curve of type (ia): (extremal curve w.r. Nakajima's bound with dihedral 2-group of automorphisms).
- \exists a sporadic example of type (ib) with $g=9$ and $S=D_{8} \times C_{2}$.
- For $q=2^{h}$, the hyperelliptic curve

$$
\mathcal{X}:=\mathbf{v}\left(\left(Y^{2}+Y+X\right)\left(X^{q}+X\right)+\sum_{\alpha \in \mathbb{F}_{q}} \frac{X^{q}+X}{X+\alpha}\right)
$$

has genus $g=q-1$ and an elementary abelian automorphism group of order $2 q$.

- Examples involving inductive involutions are also known.

Problem 11: Construct infinite family of curves of type (ib).

