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Some background from Algebraic Geometry

Algebraic curve:= projective (absolutely irreducible, non-singular)
algebraic variety of dimension 1 in a projective space PG (r ,K);
K:= field of characteristic p ≥ 0,

Assumption (w.l.g.): K is algebraically closed field;

Every algebraic curve X has a plane model C:
C := irreducible (in general singular) curve in PG (2,K);
C is a model of X if ∃ a map

Φ =


PG (r ,K)→ PG (2,K)

(Y0,Y1, . . . ,Yr )→ (X0,X1,X2)

X → C

Xi = Ui (Y0,Y1, . . . ,Yr ) homogeneous polynomials of degree
d ≥ 1,
Φ is injective and surjective (apart from a finite number of points);
Two algebraic curves with the same plane model are birationally
isomorphic;
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Concept of automorphism

Let C be a plane model of X ;
C:= (projective, irreducible) plane curve with homogeneous
equation F (X0,X1,X2) = 0;
homogeneous equation → affine equation;
F (X0,X1,X2)→ f (X ,Y ) = F (1,X ,Y );
α:=automorphism of C (and of X );

α =


PG (2,K)→ PG (2,K)

(X0,X1,X2)→ (X ′0,X
′
1,X

′
2)

C → C

X ′i = Ui (X0,X1,X2) homogeneous polynomials of degree d ≥ 1,
α is surjective and injective on C (apart from a finite number of
points);
Aut(X ):=group of all automorphisms of X ;
G < Aut(X ):= tame when p - |G |, otherwise non-tame.
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Gábor Korchmáros Automorphism Groups of Algebraic Curves



Concept of automorphism

Let C be a plane model of X ;
C:= (projective, irreducible) plane curve with homogeneous
equation F (X0,X1,X2) = 0;
homogeneous equation → affine equation;
F (X0,X1,X2)→ f (X ,Y ) = F (1,X ,Y );
α:=automorphism of C (and of X );

α =


PG (2,K)→ PG (2,K)

(X0,X1,X2)→ (X ′0,X
′
1,X

′
2)

C → C

X ′i = Ui (X0,X1,X2) homogeneous polynomials of degree d ≥ 1,

α is surjective and injective on C (apart from a finite number of
points);
Aut(X ):=group of all automorphisms of X ;
G < Aut(X ):= tame when p - |G |, otherwise non-tame.
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Genus of a curve

Choose C = v(f (X ,Y )) with only ordinary singularities;
P ∈ C ordinary r -fold point:=exactly r distinct tangents at P;

P1, . . .Pk singular points of C, (Pi is ri -fold);
The genus g of X (and C) is

g :=
1

2
(n − 1)(n − 2)− 1

2

k∑
i=1

ri (ri − 1);

Lines (and irreducible conics) have genus 0;
Elliptic curves (birationally isomorphic to nonsingular plane cubics)
have genus 1;
Aut(X ) is infinite if and only if g(X ) ≤ 1;
If X is a (nonsingular) plane curve with g(X ) ≥ 2 then
Aut(X ) < PGL(3,K).
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p-rank of a curve

Abelian group defined on the points of an elliptic curve;

(Not straightforward) generalization from g = 1 to g ≥ 2:
Jacobian variety J (X ),
equivalently, the zero Picard group Pic0.
For any prime `,

G` := {g |g ∈ Pic0, g
` = 1}.

If ` 6= p, then |G`| = `2g .
If ` = p, then |G`| ≤ `g .

|Gp| = pγ and γ is the p-rank of X (also called the Hasse-Witt
invariant);

0 ≤ γ(X ) ≤ g(X ).
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Tools from Algebraic Geometry

G := finite automorphism group of an algebraic curve X ;
G acts faithfully on X .

G has a finite number of short orbits: θ1, . . . , θk ;
The stabilizer GP of P ∈ X is S o H with |S | = ph, p - |H|
and H cyclic;

∃ a curve Y whose points are the G -orbits of X ;
Y:= quotient curve of X by G ; NAutX (G )/G ≤ Aut(Y);
If k = 0 then X|Y is unramified Galois extension;
Hurwitz-Riemann Formula: If p - |G | then

g(X )− 1 = |G |(g(Y)− 1) + 1
2

k∑
i=1

(|G | − |θi |)

Deuring-Shafarveich Formula: If |G | = ph then

γ(X )− 1 = |G |(γ(Y)− 1) +
k∑

i=1

(|G | − |θi |)
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Gábor Korchmáros Automorphism Groups of Algebraic Curves



Tools from Algebraic Geometry

G := finite automorphism group of an algebraic curve X ;
G acts faithfully on X .

G has a finite number of short orbits: θ1, . . . , θk ;
The stabilizer GP of P ∈ X is S o H with |S | = ph, p - |H|
and H cyclic;

∃ a curve Y whose points are the G -orbits of X ;
Y:= quotient curve of X by G ; NAutX (G )/G ≤ Aut(Y);
If k = 0 then X|Y is unramified Galois extension;

Hurwitz-Riemann Formula: If p - |G | then

g(X )− 1 = |G |(g(Y)− 1) + 1
2

k∑
i=1

(|G | − |θi |)

Deuring-Shafarveich Formula: If |G | = ph then

γ(X )− 1 = |G |(γ(Y)− 1) +
k∑

i=1

(|G | − |θi |)
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Outline

Upper bounds on |Aut(X )| depending on g , a survey.

What are the possibilities for Aut(X ) when X has zero
p-rank? A classification in even characteristic

p-subgroups of Aut(X ) of curves with positive p-rank.

Remark

In zero characteristic, the general study of Aut(X ) relies on the
fundamental group of the curve, In positive characteristic, this
approach only works in some special cases, see R. Pries and
K. Stevenson, A survey of Galois theory of curves in characteristic
p, Amer. Math. Soc., (2011)
For further developments the potential of Finite Group Theory is
needed.
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The classical Hurwitz bound

From now on g ≥ 2 is assumed

Aut(X ) is a finite group.

If G is tame then |G | ≤ 84(g − 1). (Hurwitz bound)

|Aut(X )| < 16g 4; up to one exception, the Hermitian curve,
[Stichtenoth (1973)].

|Aut(X )| < 8g 3; up to four exceptions. [Henn (1976)]

Remark

Large automorphism group G of X :=|G | > g(X );
Very large automorphism group G of X :=|G | > cg(X )2 with a
constant c.
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Gábor Korchmáros Automorphism Groups of Algebraic Curves



The classical Hurwitz bound

From now on g ≥ 2 is assumed

Aut(X ) is a finite group.

If G is tame then |G | ≤ 84(g − 1). (Hurwitz bound)

|Aut(X )| < 16g 4; up to one exception, the Hermitian curve,
[Stichtenoth (1973)].

|Aut(X )| < 8g 3; up to four exceptions. [Henn (1976)]

Remark

Large automorphism group G of X :=|G | > g(X );
Very large automorphism group G of X :=|G | > cg(X )2 with a
constant c.
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Four infinite families of curves X with |Aut(X )| ≥ 8g 3

(I) v(Y 2 + Y + X 2k +1), p = 2, a hyperelliptic curve of genus
g = 2k−1 with Aut(X ) fixing a point of X .
|Aut(X )| = 22k+1(2k + 1).

(II) The Roquette curve:
v(Y 2 − (X q − X )) with p > 2, a hyperelliptic curve of genus
g = 1

2 (q − 1); Aut(X )/M ∼= PSL(2, q) or
Aut(X )/M ∼= PGL(2, q), where q = pr and |M| = 2;

(III) The Hermitian curve:
v(Y n + Y − X n+1) with n = pr , genus 1

2 n(n − 1),
Aut(X ) ∼= PGU(3, n).
|Aut(X )| = (n3 + 1)n3(n2 − 1).

(IV) The DLS curve (Deligne-Lusztig curve of Suzuki type):
v(X n0(X n + X ) + Y n + Y ), with p = 2, n0 = 2r ≥ 2, n = 2n2

0,
g = n0(n − 1), Aut(X ) ∼= Sz(n) where Sz(n) is the Suzuki
group, |Aut(X )| = (n2 + 1)n2(n − 1)
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Two more infinite families of curves X with large Aut(X )

(V) The DLR curve (the Deligne-Lusztig curve arising from the
Ree group):
v(Y n2 − [1 + (X n − X )n−1]Y n + (X n − X )n−1Y − X n(X n −
X )n+3n0), with p = 3, n0 = 3r , n = 3n2

0;
g = 3

2 n0(n − 1)(n + n0 + 1); Aut(X ) ∼= Ree(n) where Ree(n)
is the Ree group, |Aut(X )| = (n3 + 1)n3(n − 1).

(VI) The G.K curve:
v(Y n3+1 + (X n + X )(

∑n
i=0(−1)i+1X i(n−1))n+1), a curve of

genus g = 1
2 (n3 + 1)(n2 − 2) + 1 with Aut(X ) containing a

subgroup isomorphic to SU(3, n), n = pr .
|Aut(X )| = (n3 + 1)n3(n − 1).
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Problems on curves with large automorphism groups, γ = 0

Remark

All the above examples have zero p-rank.

Problem 1: Find a function f (g) such that if
|Aut(X )| > f (g) then γ = 0.

Problem 2: Determine the structure of large automorphism
groups of curves with γ = 0.

Problem 3: ∃ simple groups, other than those in the examples
(II),. . . (VI), occurring as a section of a large automorphism
group of an algebraic curve?

Theorem (Giulietti, K. 2015)

Let p > 2. If G is solvable and |G | > 144g(X )2 then γ(X ) = 0
and G fixes a point.
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Problems on zero p-rank curves with very large p-group of
automorphisms

Curves with a large p-group S of automorphisms have p-rank
γ equal to zero, (Stichtenoth, 1973, Nakajima, 1987).

Problem 4: “Big action problem” (Lehr-Matignon): What
about zero p-rank curves with very large p-group S of
automorphisms fixing a point?

|S | ≥ (4g 2)/(p − 1)2 ⇒
X = v(Y q − Y + f (X )) s. t. f (X ) = XP(X ) + cX , q = ph

and P(X ) is an additive polynomial of K[X ], (Lehr-Matignon
2005).

If Aut(X ) fixes no point and |S | > pg/(p − 1) then X is one
of the curves (II) . . . (VI). (Giulietti-K. 2010).
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Large p-subgroups of automorphisms of zero p-rank curves

Lemma

[Bridge lemma] Let X be a zero p-rank curve, i.e. γ = 0. Let
S ≤ Aut(X ) with |S | = ph. Then S fixes a point of P of X , and
no non-trivial element in S fixes a point distinct from P.

Definition

A Sylow p-subgroup Sp of a finite group G is a trivial intersection
set if Sp meets any other Sylow p-subgroup of G trivially. If this is
the case, G has the TI-condition with respect to the prime p.

Theorem (Giulietti-K. 2005)

Let X be a curve with γ = 0. Then G < Aut(X ) with p | |G |
satisfies the TI-condition for its p-subgroups of Sylow.
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Finite groups satisfying TI-condition for some prime p

.

Theorem (Burnside-Gow, 1976)

Let G be a finite solvable group satisfying the TI-condition for p.
Then a Sylow p-subgroup Sp is either normal or cyclic, or p = 2
and S2 is a generalized quaternion group.

Remark

Non-solvable groups satisfying the TI-condition are also exist. The
known examples include the simple groups involved in the
examples (II) . . . (VI).
Their complete classification is not done yet,
Important partial classifications (under further conditions) were
given by Hering, Herzog, Aschbacher, and more recently by
Guralnick-Pries-Stevenson.
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Gábor Korchmáros Automorphism Groups of Algebraic Curves



Finite groups satisfying TI-condition for some prime p

.

Theorem (Burnside-Gow, 1976)

Let G be a finite solvable group satisfying the TI-condition for p.
Then a Sylow p-subgroup Sp is either normal or cyclic, or p = 2
and S2 is a generalized quaternion group.

Remark

Non-solvable groups satisfying the TI-condition are also exist. The
known examples include the simple groups involved in the
examples (II) . . . (VI).

Their complete classification is not done yet,
Important partial classifications (under further conditions) were
given by Hering, Herzog, Aschbacher, and more recently by
Guralnick-Pries-Stevenson.
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Theorem (Giulietti-K. 2010)

Let p = 2 and X a zero 2-rank algebraic curve of genus g ≥ 2. Let
G ≤ Aut(X ) with 2 | |G |. Then one of the following cases holds.

(a) G fixes no point of X and the subgroup N of G generated by
all its 2-elements is isomorphic to one of the groupsn :
PSL(2, n), PSU(3, n), SU(3, n), Sz(n) with n = 2r ≥ 4; Here
N coincides with the commutator subgroup G ′ of G .

(b) G fixes no point of X and it has a non-trivial normal
subgroup of odd order. A Sylow 2-subgroup S2 of G is either
a cyclic group or a generalized quaternion group.

Furthermore, either G = O(G ) o S2, or G/O(G ) ∼= SL(2, 3),
or G/O(G ) ∼= GL(2, 3), or G/O(G ) ∼= G48.

(c) G fixes a point of X , and G = S2 o H, with a subgroup H of
odd order.
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Corollary

Let X be a zero 2-rank curve such that the subgroup G of Aut(X )
fixes no point of X .

If G is a solvable, then the Hurwitz bound holds for G ; more
precisely |G | ≤ 72(g − 1).

If G is not solvable, then G is known and the possible genera
of X are computed from the order of its commutator
subgroup G ′ provided that G is large enough, namely
whenever |G | ≥ 24g(g − 1).
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Problem 5: Find some more examples of zero 2-rank curves of
genus g with |Aut(X )| ≥ 24g(g − 1).

Problem 6: Characterize such examples using their
automorphism groups.

Problem 7: How extend the above results to zero p-rank
curves for p > 2?

For Problem 7, progress made by Guralnick-Malmskog-Pries
2012.
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Curves with large p-groups of automorphisms, case γ > 0

X :=curve with genus g and p-rank γ > 0.
S :=p-subgroup of Aut(X );
Nakajima’s bound (1987):

|S | ≤


4(γ − 1) for p = 2, γ > 1

p
p−2 (γ − 1) for p 6= 2, γ > 1,

g − 1 for γ = 1.

Problem 9: Determine the possibilities for the structures of S when
X extremal w.r. Nakajima’s bound, or |S | is closed to it.

Hypothesis (I): |S | > p2

p2−p−1
(g − 1) (and |S | ≥ 8),

If S fixes a point then |S | ≤ pg/(p − 1).

Hypothesis (II): S fixes no point on X .
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Case p > 2

Theorem

(Giulietti-K. 2014/15) Let p > 2. If |S | > p2

p2−p−1
(g − 1) and S

fixes no point on X , then one of the following holds

(i) |S | = p, and X is an ordinary curve of genus g = p − 1.

(ii) X is an ordinary Nakajima extremal curve, and it is an
unramified Galois extension of a curve in (i).
S is generated by two elements and the Galois extension is
abelian, then S has maximal nilpotency class.

In both cases, either Aut(X )=S o D with D a subgroup of a
dihedral group of order 2(p − 1), or p = 3 and, ∃ M < S of
index 3, Aut(X )/M ∼= L with L < GL(2, 3).
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Case p > 2, infinite families of examples

F :=K(x , y), x(y p − y)− x2 + c = 0, c ∈ K∗;

g(F ) = γ(F ) = 2.

ϕ := (x , y) 7→ (x , y + 1),ϕ ∈ Aut(F ).
FN :=largest unramified abelian extension of F of exponent N
with two generators,

(i) FN |F is an unramified Galois extension of degree p2N ,
(ii) FN is generated by all function fields which are cyclic

unramified extensions of F of degree pN ,

(iii) Gal(FN |F ) = CpN × CpN and upN

= 1 for every element
u ∈ Gal(FN |F ).

M :=Galois closure of FN |K.

Lemma

Gal(M|K(x)) preserves F . ⇒ Gal(M|K(x)) ≤ Aut(FN).

Corollary

FN is an extremal function field w.r. Nakajima’s bound.
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Case p = 3, Examples for small genera

If |S | = 3 then X = v((X (Y 3 − Y )− X 2 + c) with c ∈ K∗.
If |S | = 9 then S = C3 × C3 and
X = v((X 3 − X )((Y 3 − Y ) + c) with c ∈ K∗, g(X ) = 4.

If |S | = 27 then S = UT (3, 3) and
X = v((X 3 − X )(Y 3 − Y ) + c ,Z 3 − Z − X 3Y + YX 3) with
c ∈ K∗, g(X ) = 10.

For |S | = 81 an explicit example: S ∼= Syl3(Sym9),
X = v((X 3 − X )(Y 3 − Y ) + c ,U3 − U − X ,
(U − Y )(W 3 −W )− 1, (U − (Y + 1))(T 3 − T )− 1) with
c ∈ K∗, g(X ) = 28.

Gábor Korchmáros Automorphism Groups of Algebraic Curves



Case p = 3, Examples for small genera

If |S | = 3 then X = v((X (Y 3 − Y )− X 2 + c) with c ∈ K∗.

If |S | = 9 then S = C3 × C3 and
X = v((X 3 − X )((Y 3 − Y ) + c) with c ∈ K∗, g(X ) = 4.

If |S | = 27 then S = UT (3, 3) and
X = v((X 3 − X )(Y 3 − Y ) + c ,Z 3 − Z − X 3Y + YX 3) with
c ∈ K∗, g(X ) = 10.

For |S | = 81 an explicit example: S ∼= Syl3(Sym9),
X = v((X 3 − X )(Y 3 − Y ) + c ,U3 − U − X ,
(U − Y )(W 3 −W )− 1, (U − (Y + 1))(T 3 − T )− 1) with
c ∈ K∗, g(X ) = 28.
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Gábor Korchmáros Automorphism Groups of Algebraic Curves



Case p = 3, Examples for small genera

If |S | = 3 then X = v((X (Y 3 − Y )− X 2 + c) with c ∈ K∗.
If |S | = 9 then S = C3 × C3 and
X = v((X 3 − X )((Y 3 − Y ) + c) with c ∈ K∗, g(X ) = 4.

If |S | = 27 then S = UT (3, 3) and
X = v((X 3 − X )(Y 3 − Y ) + c ,Z 3 − Z − X 3Y + YX 3) with
c ∈ K∗, g(X ) = 10.

For |S | = 81 an explicit example: S ∼= Syl3(Sym9),
X = v((X 3 − X )(Y 3 − Y ) + c ,U3 − U − X ,
(U − Y )(W 3 −W )− 1, (U − (Y + 1))(T 3 − T )− 1) with
c ∈ K∗, g(X ) = 28.
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Case p = 2

Theorem (Giulietti-K. 2012)

Let p = 2. If |S | > 2(g − 1), |S | ≥ 8 and S fixes no point on X ,
then one of the following cases occurs

|S | = 4(g − 1), X is an ordinary bielliptic curve. Either

(ia) S is dihedral, or
(ib) S = (E × 〈u〉) o 〈w〉 where E is cyclic group of order g − 1

and u and w are involutions.

|S | = 2g + 2, and S = A o B, A is an elementary abelian
subgroup of index 2 and B = 2;

Every central involution of S is inductive.

Involution u ∈ Z (S) is inductive:= S/〈u〉, viewed as a subgroup of
Aut(X̄ ) of the quotient curve X = X/〈u〉 satisfies the hypotheses
of the theorem.
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Gábor Korchmáros Automorphism Groups of Algebraic Curves



Case p = 2, examples

For every 2h,∃ a curve of type (ia): (extremal curve w.r.
Nakajima’s bound with dihedral 2-group of automorphisms).

∃ a sporadic example of type (ib) with g = 9 and
S = D8 × C2.

For q = 2h, the hyperelliptic curve

X := v((Y 2 + Y + X )(X q + X ) +
∑
α∈Fq

X q + X

X + α
)

has genus g = q − 1 and an elementary abelian automorphism
group of order 2q.

Examples involving inductive involutions are also known.

Problem 11: Construct infinite family of curves of type (ib).
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