Recent Results on Venn Diagrams

Frank Ruskey ${ }^{1}$
${ }^{1}$ Department of Computer Science, University of Victoria, CANADA.
CoCoa 2015, Fort Collins, Colorado

The Plan

1. Basic definitions.
2. Winkler's conjecture and recent connectivity result.
3. Symmetric Venn diagrams, the GKS result
4. Simple symmetric Venn diagrams, computer searches
5. Venn diagrams made from polyominoes (time permitting)

Venn diagram examples; famous and otherwise $(n=1)$.

Sunday February 15, 2015

DILBERT

BY SCOTT ADAMS
YOU SAID IT IN FRONT OF A DOZEN REPORTERS AT A BUSINESS EVENT.

$$
n=\text { number of curves }=1
$$

Venn diagram examples; famous and otherwise $(n=2)$.

Mitt Romney doesn't understand Venn diagrams

The Romney campaign have been making "venn diagrams". Oh dear.

From the "NewStatesman.com" July 2012.

Venn diagram examples; famous and otherwise $(n=2)$.

Mitt Romney doesn't understand Venn diagrams

The Romney campaign have been making "venn diagrams". Oh dear.

From the "NewStatesman.com" July 2012.

Venn diagram examples; famous and otherwise $(n=2)$.

Mitt Romney doesn't understand Venn diagrams

The Romney campaign have been making "venn diagrams". Oh dear.
A Venn Diagram, you see, is designed to show all possible logical relationships between a finite collection of sets. Put more simply, you label the left circle with one factor, the right circle with another, and the center with something that has properties of both. For example, this is a Venn Diragram:

From the "Upworthy.com".

Venn diagram examples; famous and otherwise $(n=2)$.

Mitt Romney doesn't understand Venn diagrams

The Romney campaign have been making "venn diagrams". Oh dear.
A Venn Diagram, you see, is designed to show all possible logical relationships between a finite collection of sets. Put more simply, you label the left circle with one factor, the right circle with another, and the center with something that has properties of both. For example, this is a Venn Diragram:

From the "Upworthy.com".

Venn diagram examples; famous and otherwise ($n=3,4$).
BE $=$ Biting $c+\bar{f}$
$U E=$ United Surge

Drawer by th Churchill ai thew castle ak
 Th. wald -to -G2 "If we ARE worthy".

Venn diagram examples; famous and otherwise ($n=3,4$).
B.E $=$ Bitinh $c+\bar{f}$
$U E=$ Unitid Curpe

Dramen by th Chunchill à thesor castle a k $5^{*} 乌$ uns $1548=$ illaotinati Emlando paition it Th. wald-to -G2 "If we ARE wortay".

Venn diagram examples; famous and otherwise ($n=3,4$).

An irreducible Venn diagram $(n=5)$

What is a Venn diagram?

- Made from simple closed curves $C_{1}, C_{2}, \ldots, C_{n}$.
- Only finitely many intersections.
- Each such intersection is
transverse (no "kissing").
- Let X_{i} denote the interior or the exterior of the curve C_{i} and consider the 2^{n} intersections

What is a Venn diagram?

- Made from simple closed curves $C_{1}, C_{2}, \ldots, C_{n}$.
- Only finitely many intersections.
- Each such intersection is transverse (no "kissing").
- Let X_{i} denote the interior or the exterior of the curve C_{i} and consider the 2^{n} intersections $X_{1} \cap X_{2} \cap \cdots \cap X_{n}$. Euler diagram if each such intersection is connected.

What is a Venn diagram?

- Made from simple closed curves $C_{1}, C_{2}, \ldots, C_{n}$.
- Only finitely many intersections.
- Each such intersection is transverse (no "kissing").
- Let X_{i} denote the interior or the exterior of the curve C_{i} and consider the 2^{n} intersections $X_{1} \cap X_{2} \cap \cdots \cap X_{n}$.
- Euler diagram if each such intersection is connected.

What is a Venn diagram?

- Made from simple closed curves $C_{1}, C_{2}, \ldots, C_{n}$.
- Only finitely many intersections.
- Each such intersection is transverse (no "kissing").
- Let X_{i} denote the interior or the exterior of the curve C_{i} and consider the 2^{n} intersections $X_{1} \cap X_{2} \cap \cdots \cap X_{n}$.
- Euler diagram if each such intersection is connected.

Euler but not Venn

What is a Venn diagram?

- Made from simple closed curves $C_{1}, C_{2}, \ldots, C_{n}$.
- Only finitely many intersections.
- Each such intersection is transverse (no "kissing").
- Let X_{i} denote the interior or the exterior of the curve C_{i} and consider the 2^{n} intersections $X_{1} \cap X_{2} \cap \cdots \cap X_{n}$.
- Euler diagram if each such intersection is connected.
- Venn diagram if Euler and no intersection is empty.

Venn (and Euler)

What is a Venn diagram?

- Made from simple closed curves $C_{1}, C_{2}, \ldots, C_{n}$.
- Only finitely many intersections.
- Each such intersection is transverse (no "kissing").
- Let X_{i} denote the interior or the exterior of the curve C_{i} and consider the 2^{n} intersections $X_{1} \cap X_{2} \cap \cdots \cap X_{n}$.
- Euler diagram if each such intersection is connected.
- Venn diagram if Euler and no intersection is empty.
- Independent family if no intersection is empty.

Neither Venn nor Euler

Winkler's conjecture

- An n-Venn diagram is reducible if there is some curve whose removal leaves an ($n-1$)-Venn diagram.
- An n-Venn diagram is extendible if the addition of some curve results in an ($n+1$)-Venn diagram.
- Not every Venn diagram is reducible. Every reducible diagram is extendible.
- Conjecture: Every simple n-Venn diagram is extendible to a simple $(n+1)$-Venn diagram
- Reference: Peter Winkler, Venn diagrams: Some observations and an open problem, Congressus Numerantium, 45 (1984) 267-274
- The conjecture is true if the simplicity condition is removed (Chilakamarri, Hamburger, and Pippert (1996)).
- The conjecture is true if $n \leq 5$. Determined by Bultena; there are 20 non-isomorphic (spherical) diagrams to check.

Winkler's conjecture

- An n-Venn diagram is reducible if there is some curve whose removal leaves an ($n-1$)-Venn diagram.
- An n-Venn diagram is extendible if the addition of some curve results in an ($n+1$)-Venn diagram.
- Not every Venn diagram is reducible. Every reducible diagram is extendible.
- Conjecture: Every simple n-Venn diagram is extendible to a simple $(n+1)$-Venn diagram.
- Reference: Peter Winkler, Venn diagrams: Some observations and an open problem, Congressus Numerantium, 45 (1984) 267-274.
- The conjecture is true if the simplicity condition is removed (Chilakamarri, Hamburger, and Pippert (1996)).
- The conjecture is true if $n \leq 5$. Determined by Bultena; there are 20 non-isomorphic (spherical) diagrams to check.

Winkler's conjecture

```
to be very" Hamiltonian. All Venn diagrams are well known
``` author have proved to be extendible, bus studied by the above) the edge-proportion drops examples for large \(n\). So, the question is:

Is every \(n-V e n n\) diagram extendible to
\[
\text { an }(n+1)-\text { Venn diagram? }
\]

\section*{Puzzled \\ Where Sets Meet (Venn Diagrams)}

Welcome to three new puzzles.
Solutions to the first two will be published next month; the third is as yet unsolved.

3.Prove or disprove that to any Venn diagram of order \(n\) another curve can be added, making it a Venn diagram of order \(n+1\); remember, only simple crossings allowed.

\section*{Venn diagrams and their duals}

\section*{Basic facts}
- If \(v\) is the number of vertices (intersection points) then
\[
\left\lceil\frac{2^{n}-2}{n-1}\right\rceil \leq v \leq 2^{n}-2
\]

Open: Venn diagrams meeting the lower bound for \(n>8\).
- The dual is a spanning planar subgraph of the hypercube. If the Venn diagram is simple, then the dual is maximal (every face is a quadrilateral).
- There is a natural directed dual graph.
- A Venn diagram is drawable with all curves convex if and only if the directed dual has only one source and one sink (Bultena, Grünbaum, R., 1999).
- If a Venn diagram is convexly drawable, then \(v \geq\binom{ n}{n / 2}\).
- Venn diagrams exist for all \(n\).

Minimum vertex Venn diagrams

\section*{Basic facts, cont.}
- Every Venn dual is 3-connected, every Venn graph is 3-connected. (Chilakamarri, Hamburger, Pippert, 1996)
- Every simple Venn graph is 4-connected. (Pruesse, R., 2015, arXiv).
- As a consequence, by a theorem of Tutte, every Venn diagram (graph) is Hamiltonian.
- Proof applies more generally to any collection of simple closed curves in general position if no curve has two edges on the same face (a key property of Venn diagrams).

Our result

Winkler conjecture

\section*{Tutte's Theorem for Winkler's conjecture?}

Problem: Venn diagram duals are only 3-connected in general, because Venn diagrams have 3-faces. In fact

Theorem
For \(n \geq 3\), any \(n\)-Venn diagram has at least 8 3-faces.

\section*{A 3-connected non-Hamilton collection of curves}

Iwamoto \& Touissant (1994) Finding Hamiltonian circuits in arrangements of Jordan curves is NP-complete.

What about non-simple Venn diagrams?
They are only 2-connected in general:

Examples of a general family on prime numbers of curves.

\section*{Open problems}
- Is every non-simple Venn graph Hamiltonian?
- Does every Venn diagram dual have a perfect matching?
- Is every monotone Venn diagram extendible? Recall: Monotone \(=\) drawable with all curves convex.

\section*{Symmetric Venn Diagrams}

\section*{Theorem}

Symmetric \(n\)-Venn diagrams exist if and only if \(n\) is prime.
Proof.
Necessity: (D. W. Henderson, Venn diagrams for more than four classes, American Mathematical Monthly, 70 (1963) 424-426).
\[
n \left\lvert\,\binom{ n}{k}\right. \text { for all } 0<k<n .
\]

Sufficiency: (Jerrold Griggs, Charles E. Killian and Carla D. Savage, Venn Diagrams and Symmetric Chain Decompositions in the Boolean Lattice, Electronic Journal of Combinatorics, Volume 11 (no. 1), \#R2, (2004)). (The GKS construction).

\section*{Small symmetric Venn diagrams}

(a)

(b)

(c)
(a) \(n=2\) Only one diagram.
(b) \(n=3\) Only one simple diagram.
(c) \(n=3\) And one non-simple diagram.

\section*{5 ellipses, by Grünbaum}

First symmetric 7-Venn (Edwards/Grünbaum)

A non-convex 7-Venn diagram, by Grünbaum

A "half-simple" 11-Venn diagram (rendered by Wagon)

\section*{NAMS cover (R. Savage, W-~~~)}
Q Springer
springer.com

New and Noteworthy from Springer

Symmetric chain decompositions give Venn diagrams

Symmetric chain decompositions give Venn diagrams

Symmetric chain decompositions give Venn diagrams

\section*{Symmetric chain decompositions give Venn diagrams}

1111

\section*{The Greene-Kleitman rule}

Parentheses matching with \(0=(\) and \(1=)\).

1110001100101000010

The Greene-Kleitman rule

Parentheses matching with \(0=(\) and \(1=)\).
1111001110101111011
1111001110101111010
1111001110101110010
1111001110101100010
1111001110101000010
1111001100101000010
1110001100101000010

The Greene-Kleitman rule

Parentheses matching with \(0=(\) and \(1=)\).
1111001110101111011
1111001110101111010
1111001110101110010
1111001110101100010
1111001110101000010
1111001100101000010
1110001100101000010
1100001100101000010
1000001100101000010
0000001100101000010

\section*{Choosing necklace representatives}
- Break the bitstring into blocks of 1s followed by 0s and list their sizes as a sequence, the block code.
- E.g., 1110001100101000010 has block code (6,4,2,5,2).
- Rotate block code to its unique lex minimum and act on the bitstring similarly. E.g., \((2,5,2,6,4)\) is lex minimum and gives 1010000101110001100.
- Apply Greene-Kleitman, ignoring the initial 1 and final 0.
- Key observation: block code is invariant under Greene-Kleitman!
10.10.00010.111000.1100

\section*{GKS 11-Venn (rendering by Weston)}

\section*{GKS 11-Venn (rendering by Weston}

\section*{Simplify, simplify!}

\section*{1/7-th of a Venn diagram}

\section*{1/7-th of a Venn diagram}

1/7-th of a Venn diagram

\section*{1/11-th of a Venn diagram (truncated)}

The chains Half-simple Venn diagrams: Number of vertices is \(>\left(2^{n}-2\right) / 2\). Killian,R,Savage,Weston (2004)

\section*{1/11-th of a Venn diagram (truncated)}

The opposing trees
Half-simple Venn diagrams: Number of vertices is \(>\left(2^{n}-2\right) / 2\).
Killian, R,Savage,Weston (2004)

\section*{1/11-th of a Venn diagram (truncated)}

Quadrangulating edges
Half-simple Venn diagrams: Number of vertices is \(>\left(2^{n}-2\right) / 2\).
Killian, R,Savage,Weston (2004)

\section*{1/11-th of a Venn diagram (truncated)}

More can be added by hand Half-simple Venn diagrams: Number of vertices is \(>\left(2^{n}-2\right) / 2\).
Killian,R,Savage,Weston (2004)

\section*{History}
- Henderson (1963) observed that if there is a symmetric \(n\)-Venn diagram, then \(n\) must be a prime number.
- From [GR75] regarding symmetric 7-Venn diagrams: "The present author's search for such a diagram has been unsuccessful ... at present it seems that no such diagram exists.'
one of which is non-convex and the other from (non-convex)
pentagons. Around the same time symmetric 7 -Venn
diagrams are also found by Edwards.

\section*{History}
- Henderson (1963) observed that if there is a symmetric \(n\)-Venn diagram, then \(n\) must be a prime number.
- From [GR75] regarding symmetric 7-Venn diagrams: "The present author's search for such a diagram has been unsuccessful ... at present it seems that no such diagram exists.'

\section*{History}
- Henderson (1963) observed that if there is a symmetric \(n\)-Venn diagram, then \(n\) must be a prime number.
- From [GR75] regarding symmetric 7-Venn diagrams: "The present author's search for such a diagram has been unsuccessful ... at present it seems that no such diagram exists."
- In [GR92b] Branko draws two symmetric 7-Venn diagrams, one of which is non-convex and the other from (non-convex) pentagons. Around the same time symmetric 7-Venn diagrams are also found by Edwards. there exists symmetric Venn diagrams with \(n\) sets.

\section*{History}
- Henderson (1963) observed that if there is a symmetric \(n\)-Venn diagram, then \(n\) must be a prime number.
- From [GR75] regarding symmetric 7-Venn diagrams: "The present author's search for such a diagram has been unsuccessful ... at present it seems that no such diagram exists."
- In [GR92b] Branko draws two symmetric 7-Venn diagrams, one of which is non-convex and the other from (non-convex) pentagons. Around the same time symmetric 7-Venn diagrams are also found by Edwards.

\section*{History}
- Henderson (1963) observed that if there is a symmetric \(n\)-Venn diagram, then \(n\) must be a prime number.
- From [GR75] regarding symmetric 7-Venn diagrams: "The present author's search for such a diagram has been unsuccessful ... at present it seems that no such diagram exists."
- In [GR92b] Branko draws two symmetric 7-Venn diagrams, one of which is non-convex and the other from (non-convex) pentagons. Around the same time symmetric 7-Venn diagrams are also found by Edwards.
- From [GR92b]: "Conjecture 3: For every positive prime \(n\) there exists symmetric Venn diagrams with \(n\) sets."

\section*{History}
- Henderson (1963) observed that if there is a symmetric \(n\)-Venn diagram, then \(n\) must be a prime number.
- From [GR75] regarding symmetric 7-Venn diagrams: "The present author's search for such a diagram has been unsuccessful ... at present it seems that no such diagram exists."
- In [GR92b] Branko draws two symmetric 7-Venn diagrams, one of which is non-convex and the other from (non-convex) pentagons. Around the same time symmetric 7-Venn diagrams are also found by Edwards.
- From [GR92b]: "Conjecture 3: For every positive prime \(n\) there exists symmetric Venn diagrams with \(n\) sets."
- Hamburger (2002) found a non-simple 11-Venn diagram.
\[
\text { non-simple symmetric } n \text {-Venn diagrams whenever } n \text { is prime. }
\]

\section*{History}
- Henderson (1963) observed that if there is a symmetric \(n\)-Venn diagram, then \(n\) must be a prime number.
- From [GR75] regarding symmetric 7-Venn diagrams: "The present author's search for such a diagram has been unsuccessful ... at present it seems that no such diagram exists."
- In [GR92b] Branko draws two symmetric 7-Venn diagrams, one of which is non-convex and the other from (non-convex) pentagons. Around the same time symmetric 7-Venn diagrams are also found by Edwards.
- From [GR92b]: "Conjecture 3: For every positive prime \(n\) there exists symmetric Venn diagrams with \(n\) sets."
- Hamburger (2002) found a non-simple 11-Venn diagram.
- Griggs, Killian and Savage (2004) proved the existence of non-simple symmetric \(n\)-Venn diagrams whenever \(n\) is prime.

11-Venn diagram and then a 13-Venn diagram (published in

\section*{History}
- Henderson (1963) observed that if there is a symmetric \(n\)-Venn diagram, then \(n\) must be a prime number.
- From [GR75] regarding symmetric 7-Venn diagrams: "The present author's search for such a diagram has been unsuccessful ... at present it seems that no such diagram exists."
- In [GR92b] Branko draws two symmetric 7-Venn diagrams, one of which is non-convex and the other from (non-convex) pentagons. Around the same time symmetric 7-Venn diagrams are also found by Edwards.
- From [GR92b]: "Conjecture 3: For every positive prime \(n\) there exists symmetric Venn diagrams with \(n\) sets."
- Hamburger (2002) found a non-simple 11-Venn diagram.
- Griggs, Killian and Savage (2004) proved the existence of non-simple symmetric \(n\)-Venn diagrams whenever \(n\) is prime.
- Khalegh Mamakani and R. (2014) find a symmetric simple 11-Venn diagram and then a 13-Venn diagram (published in Discrete and Computational Geometry).

The 6 polar symmetric convex Venn diagrams

Adelaide

Palmerston North

Hamilton

Manawatu

Massey

Victoria

\section*{The 17 remaining symmetric convex 7-Venn diagrams}

From Cao, Mamakani, and R. (2010)

A non-convex symmetric 7-Venn diagram, by Grünbaum

Another non-convex symmetric 7-Venn diagram

Open: How many simple non-convex 7-Venn diagrams? Or non-simple but convex? Or non-simple and non-convex?

\section*{Searching for simple symmetric Venn diagrams}

Again we restrict ourselves to monotone=convex diagrams.

\section*{Representing Monotone Venn diagrams}
- One fifth of Grünbaum's 5 ellipses:

- In total the diagram is represented by 143232143232143232143232143232.
- The representation is not unique (e.g., swap 1 and 4 above to get 213232).
- Call this a crossing sequence.

\section*{Crosscut symmetry}

Crosscut: Curve segment that sequentially crosses all other curves once.
Crosscut symmetry: Reflective symmetry across the crosscut (except top and bottom).
Strategy: Limit the search to diagrams that have crosscut symmetry.

\section*{Crosscut symmetry}

Curve intersections are palindromic (except \(C_{1}\)). E.g., the intersections with \(C_{5}\) are
\[
L_{5,1}=\left[C_{4}, C_{6}, C_{3}, C_{6}, C_{4}, C_{1}, C_{4}, C_{6}, C_{3}, C_{6}, C_{4}\right]
\]

The crossing sequence:
\[
\underbrace{1,3,2,5,4}_{\rho}, \underbrace{3,2,3,4}_{\alpha}, \underbrace{6,5,4,3,2}_{\delta}, \underbrace{5,4,3,4}_{\alpha^{r+}}
\]

\section*{Crosscut symmetry theorem}

Theorem
A simple monotone rotationally symmetric \(n\)-Venn diagram is crosscut symmetric if and only if it can be represented by a crossing sequence of the form \(\rho, \alpha, \delta, \alpha^{r+}\) where
- \(\rho\) is \(1,3,2,5,4, \ldots, n-2, n-3\).
- \(\delta\) is \(n-1, n-2, \ldots, 3,2\).
- \(\alpha\) and \(\alpha^{r+}\) are two sequences of length \(\left(2^{n-1}-(n-1)^{2}\right) / n\) such that \(\alpha^{r+}\) is obtained by reversing \(\alpha\) and adding 1 to each element; that is, \(\alpha^{r+}[i]=\alpha[|\alpha|-i+1]\).

Below is the \(\alpha\) sequence for Newroz.
[323434543234345434545654565676543254346545 676787656543457654658765457656876546576567]

The first simple 11-Venn diagram "Newroz"

The first simple 11-Venn diagram "Newroz"

Blow-up

\section*{Polar and Crosscut symmetry?}

\section*{Theorem}

Unless \(n \in\{2,3,5,7\}\) there is no symmetric Venn diagram with both polar and crosscut symmetry.
Proof summary:
- Consider a cluster in such a Venn diagram.
- Let \(R_{k}\) be the number of \(k\)-regions to the left of the crosscut.
- \(R_{k}=\left(\binom{n-1}{k}+(-1)^{k+1}\right) / n\).
- By the symmetries, each \(m=(n-1) / 2\) region (these lie along the "equator") is incident to at least one (\(m-1\))-point.
- Thus \(R_{m} \leq R_{m-1}+1\), and so \(m\) can't be too large

Our 15 minutes of fame
- Write-up in New Scientist Magazine: teaser; longer; gallery.
- In Wired UK.
- And on Physics Central.
- Appears in the AMS Math in the Media magazine (August 2012), and is the image of the month there.
- Commented on here: Gizmodo.
- Getting some attention on reddit.
- A very well written blog entry: Cartesian Product.
- On tumblr.
- It generated some comments on slashdot.
- We were the August 20 entry in the Math Munch.
- Comments in Farsi.
- Comments in Dutch.
- On Pirate Science.

Another symmetric 7-Venn diagram with crosscut symmetry

Note the smaller structures with crosscut symmetry. Here \(\alpha_{H}=3,2,4,3\).

\section*{Iterated crosscuts in general}

Note: labels are all off by 1.

\section*{Iterated crosscuts in general}

\(\rho, \alpha, \delta, \alpha^{r+}\) occurs again!

\section*{Using \(\alpha_{H}\) as a "seed".}

And restricting the search to consider only iterated crosscuts, yields an 11-Venn diagram.

\(\overbrace{7,6,5,4,3,2}^{\rho_{4}} \overbrace{3,4,3,4,5,4,5,6,5,4,3,6,5,6,5,4,5,4,7,6,5,4,6,5,7,6}^{\alpha_{4}}\),
\(\overbrace{8,7,6,5,4,3}^{\delta_{4}} \overbrace{7,8,6,7,5,6,7,8,5,6,5,6,7,6,7,4,5,6,7,6,5,6,5,4,5,4}^{\alpha_{4}^{r+}}\).

An iterated crosscut 11-Venn diagram (not Newroz)

Sequence for 11, size 4: \(\alpha_{E}=\)
\[
\begin{array}{llll}
3,2,4, & 3,5,4,3,2,4, & 3,5,4,6,5,4,3,5, & 4,6,5,7,6,5,4,3,2, \\
3,4, \\
3,4,5, & 4,5,6,5,4,3, & 6,5,6,5,4,5,4,7, & 6,5,4,6,5,7,6,8,7, \\
4,3,7, & 8,6,7,5,6,7, & 8,5,6,5,6,7,6,7, & 4,5,6,7,6,5,6,5,4,
\end{array}, 4,4,
\]

Sequence for 13, size 304: \(\alpha_{T}=\)
\[
\begin{array}{llll}
3,2,4, & 3,5,4,3,2,4, & 3,5,4,6,5,4,3,5, & 4,6,5,7,6,5,4,3,2, \\
3,4,5, & 4,5,6,5,4,3, & 6,5,6,5,4,5,4,7, & 6,5,4,6,5,7,6,8,7, \\
4,5, \\
4,3,7, & 8,6,7,5,6,7, & 8,5,6,5,6,7,6,7, & 4,5,6,7,6,5,6,5,4, \\
9,8,7, & 6,5,4,3,2,3, & 4,3,4,5,4,5,6,5, & 4,3,5,4,6,5,4,5,6, \\
7,6, \\
5,4,5, & 6,5,6,7,6,5, & 6,7,6,7,8,7,6,5, & 4,3,5,4,6,5,7,6,5, \\
5,7,6, & 8,7,8,7,6,5, & 4,5,6,7,6,5,4,7, & 6,8,7,6,5,7,6,5,8, \\
9,8,7, & 6,5,4,8,7,8, & 7,6,7,6,5,9,8,7, & 6,8,7,6,5,9,8,7,6,10,9, \\
8,7,6, & 5,4,3,7,8,9,10,6,7,8,9,7,8,9,10,6,7,8,7,8,9,8,9, & 5,6, \\
7,8,9,10,7,8,9,6,7, & 8,6,7,8,9,7,8,5, & 6,7,8,7,6,5,6,7,8, & 9,8, \\
9,7,8, & 6,7,5,6,7,8, & 6,7,5,6,4,5,6,7, & 8,9,8,7,8,7,6,7,8, \\
7,6,5, & 6,7,8,7,6,5, & 6,7,5,6,4,5,6,7, & 6,5,6,5,4,5,4 .
\end{array}
\]

A simple symmetric 13-Venn diagram!

\section*{The End}

Thanks for coming. Any questions?
```

