Self-complementary strongly regular graphs revisited

\author{
Ferenc Szöllősi
 (joint work in part with Patric Östergård)
 ```
szoferi@gmail.com

```
}

Department of Communications and Networking, Aalto University

\section*{Talk at CoCoA15 \\ Fort Collins}

\section*{What is this talk about?}

This talk is about strongly regular graphs.

\section*{Definition:}

A \((v, k, \lambda, \mu)\)-graph is strongly regular, if it is a \(k\)-regular graph of order \(v\) where two adjacent vertices have \(\lambda\) common neighbors, and two nonadjacent vertices have \(\mu\) common neighbors.

The smallest open case with respect to \(v\) is the following.

\section*{Problem}

Decide the existence of \(\operatorname{SRG}(65,32,15,16)\).

We outline two possible attacks against Problem.

\section*{Graphs with symmetries - tactical decomposition}

We think of a graph as a well-chosen adjacency matrix \(A\).
- Assume that \(A\) has an automorphism \(\sigma\) with \(m \sigma\)-orbits of size \(b_{i}\);
- assume that \(\boldsymbol{A}\) satisfies a quadratic equation \(\boldsymbol{A}^{2}=\alpha I+\beta J+\gamma \boldsymbol{A}\).

Then there is a reduced matrix \(R\) of size \(m\) for which
\[
R^{T} \Delta R=\alpha \Delta+\beta r r^{T}+\gamma \Delta R
\]
holds with \(r=\left[b_{i}\right]^{T}\), and \(\Delta=\operatorname{diag}(r)\).
\([R]_{i, j}\) is the row sum of the \((i, j)\)-th block of \(A\).
If \(\sigma\) is trivial, then \(R=A\). If not, then \(R\) is a smaller matrix with entries \(\left\{0, \ldots, \max b_{i}\right\}\).
\(R\) is also called orbit-matrix, or block-valency matrix.

\section*{Naive approach}
- Classify the orbit matrices as a first step;
- Reconstruct the adjacency matrices as a second step.

This is a dead end.

\section*{Theorem[Behbahani, 2009]}

Assume that a \(\operatorname{SRG}(65,32,15,16)\) has an automorphism of order \(q\). Then the possible prime divisors of \(q\) are 2,3 , or 5 . Moreover, there exist exactly 36 orbit matrices corresponding to the automorphism 5 case.

Estimate (Behbahani): 10 million days (?!) to reconstruct the graphs from the orbit matrices.

Classifying the orbit matrices corresponding to the automorphism 2, 3 cases is probably hopeless.

\section*{Attack1: Self-complementary strongly regular graphs}

\section*{Definition}

A graph is self-complementary, if it is isomorphic to its own complement.

Examples: Paley graphs.

\section*{Problem}

Is there a self-complementary \(\operatorname{SRG}(65,32,15,16)\) ?

Answer: I still don't know, but at least this is something to aim for.
This condition gives rise to some highly structured orbit matrices.

\section*{Results on self-complementary graphs}

\section*{Lemma}

A self-complementary strongly regular graph is necessarily a conference graph.

Proof: \(A\) and \(J-A-I\) must have the same parameters.
If \(A\) is self-complementary, then there is a complementing permutation (of the vertex set) \(\sigma\) mapping edges to non-edges.

\section*{Lemma}

If \(\sigma\) is a complementing permutation, then it has at most one fixedpoint, and moreover, the length of every cycle is divisible by 4 . Moreover, \(\sigma\) can be chosen in a way that all cycle lengths are 2-powers.

Remark: \(\sigma^{2}\) is a non-trivial automorphism.

\section*{Example: Paley(13)}

Self-complementarity leads to alternating circulant block structure;
Example: A self-complementary s.r.g of order 13: \(A^{2}=3(J+I)-A\).
\(A=\left[\begin{array}{l|llll|lll|llll}0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1\end{array}\right)\)

\section*{Example (ctd.)}

Self-complementarity leads to alternating circulant block structure;
Example: A self-complementary s.r.g of order 13: \(A^{2}=3(J+I)-A\).
\(A=\left[\begin{array}{c||ll|ll||ll|ll||ll|ll}0 & 1 & 1 & 0 & 0 & 1 & 1 & 0 & 0 & 1 & 1 & 0 & 0 \\ \hline \hline 1 & 0 & 0 & 0 & 1 & 0 & 1 & 0 & 0 & 0 & 1 & 1 & 1 \\ 1 & 0 & 0 & 1 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 1 & 1 \\ \hline 0 & 0 & 1 & 0 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 & 0 & 1 & 1 & 0 & 1 & 0 & 0 & 0 & 1 \\ \hline \hline 1 & 0 & 1 & 1 & 1 & 0 & 0 & 0 & 1 & 0 & 1 & 0 & 0 \\ 1 & 1 & 0 & 1 & 1 & 0 & 0 & 1 & 0 & 1 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 1 & 1 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 1 & 0 & 1 & 0 & 1 & 1 & 0 & 1 \\ \hline \hline 1 & 0 & 1 & 0 & 0 & 0 & 1 & 1 & 1 & 0 & 0 & 0 & 1 \\ 1 & 1 & 0 & 0 & 0 & 1 & 0 & 1 & 1 & 0 & 0 & 1 & 0 \\ \hline 0 & 1 & 1 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 1 \\ 0 & 1 & 1 & 0 & 1 & 0 & 0 & 0 & 1 & 1 & 0 & 1 & 0\end{array}\right]\)

Therefore tactical decomposition can be used!

\section*{Example (ctd. ctd.)}

If \(A\) is the adjacency matrix of a self-complementary \(\operatorname{SRG}(4 t+1,2 t, t-1, t)\), then
\[
A^{2}=t(J+I)-A
\]

Assume that \(A\) has an \(s \times s\) block partition for circulant blocks with orbit sizes \(b_{1}, \ldots, b_{s}\). Let \(r:=\left(b_{1}, b_{2}, \ldots, b_{s}\right)^{T}\), and let \(\Delta:=\operatorname{diag}(r)\). Then
\[
R^{T} \Delta R=t\left(\Delta+r r^{T}\right)-\Delta R
\]

Example (continued):
\[
R=\left[\begin{array}{l|ll|ll|ll}
0 & 2 & 0 & 2 & 0 & 2 & 0 \\
\hline 1 & 0 & 1 & 1 & 0 & 1 & 2 \\
0 & 1 & 1 & 2 & 1 & 0 & 1 \\
\hline 1 & 1 & 2 & 0 & 1 & 1 & 0 \\
0 & 0 & 1 & 1 & 1 & 2 & 1 \\
\hline 1 & 1 & 0 & 1 & 2 & 0 & 1 \\
0 & 2 & 1 & 0 & 1 & 1 & 1
\end{array}\right]
\]

Every other column follows for free.

\section*{Mathon's results}

\section*{Philosophy}
- Self-complementarity lead to circulant structure;
- Block-valency matrices can be classified;
- Then the circulant matrices can be reconstructed.

\section*{Theorem}

All self-complementary strongly regular graphs are known up to \(n \leq 49\). (There are examples beyond the Paley-graphs.)

The main result of Mathon, however, is the discovery of new conference graphs of order 45 in this way, which have higher symmetries than what he found in 1978 by hand!
- "Computer trumps paper and pencil."

Remark: Mathon incorrectly claims certain results.

\section*{Some new results (Patent pending)}

We have classified all orbit matrices related to self-complementary strongly regular graphs of order \(n \leq 65\), except for two difficult cases.
- For \(n=53\) there are \(3+9+13+103\) such matrices;
- ( \(n=57\) is nonexistent)
- For \(n=61\) there are \(9+1+\) ??? such matrices;
- For \(n=65\) there are \(1+3+\) ??? such matrices;
- (It is possible to explore some cases of order \(n=85\).)

The cases depend on the length of the cycles of the complementing permutations.

\section*{Theorem}

There does not exists self-complementary strongly regular graphs of order 65 , except possible when the cycle length is \((1,4, \ldots, 4)\).

Remark: There should be no problem reconstructing the graphs.

\section*{Attack2: Via conference matrices}

\section*{Definition:}

A conference matrix is an orthogonal \(\{-1,0,1\}\)-matrix with zero diagonal and \(\pm 1\) entries otherwise.

In particular, if \(C\) is a conference matrix of order \(n\), then \(C C^{T}=(n-1) l\).

\section*{Lemma:}

If \(A\) is the adjacency matrix of a conference graph, \(B\) is the matrix \(A\), bordered by a row and column of 1 (except for the diagonal entry), then \(C:=2 A-J+I\) is a conference matrix.

\section*{Example}
\[
\begin{gathered}
A=\left[\begin{array}{lllll}
0 & 1 & 0 & 0 & 1 \\
1 & 0 & 1 & 0 & 0 \\
0 & 1 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 & 1 \\
1 & 0 & 0 & 1 & 0
\end{array}\right] \rightsquigarrow B=\left[\begin{array}{c|ccccc}
0 & 1 & 1 & 1 & 1 & 1 \\
\hline 1 & 0 & 1 & 0 & 0 & 1 \\
1 & 1 & 0 & 1 & 0 & 0 \\
1 & 0 & 1 & 0 & 1 & 0 \\
1 & 0 & 0 & 1 & 0 & 1 \\
1 & 1 & 0 & 0 & 1 & 0
\end{array}\right] . \\
C=\left[\begin{array}{c|ccccc}
0 & 1 & 1 & 1 & 1 & 1 \\
\hline 1 & 0 & 1 & -1 & -1 & 1 \\
1 & 1 & 0 & 1 & -1 & -1 \\
1 & -1 & 1 & 0 & 1 & -1 \\
1 & -1 & -1 & 1 & 0 & 1 \\
1 & 1 & -1 & -1 & 1 & 0
\end{array}\right] .
\end{gathered}
\]

\section*{Problem[Might be easy?]}

What is the relation between the symmetries of \(A\) and \(C\) ?

\section*{Results}

\section*{Problem}

Study the symmetries of conference matrices.
We considered conference matrices with fixedpoint-free automorphisms of order 3.

\section*{Theorem}
- There exists conference matrices with the previous structure for \(n \in\{6,18,30,42\}\);
- Cases \(n \in\{54,66\}\) are open;
- Case \(n=78\) is impossible (as \(n-1\) is not the sum of two squares).

Remark: 54 is doable.
Remark: What about other automorphisms?

\section*{Summary: What happened during this talk?}
- I recalled an existence-type problem on conference graphs.
- I recalled the tool of tactical decomposition.
- I combined it with the property of self-complementarity.
- I discovered some new exciting orbit matrices of order 65...,
- ...which all turned out to be a dead-end.
- I pointed out the related objects called conference matrices.
- I constructed some new conference matrices of low orders.
- More results to come.

\section*{Thank you...}
...and see you at NORCOM2016 in Finland next year.```

