Symmetric coverings and the Bruck-Ryser-Chowla theorem

Daniel Horsley (Monash University, Australia)

Joint work with
Darryn Bryant, Melinda Buchanan, Barbara Maenhaut and Victor Scharaschkin and with
Nevena Francetić and Sarada Herke

Part 1:

The Bruck-Ryser-Chowla theorem

Symmetric designs

Symmetric designs

A (v, k, λ)-design is a set of v points and a collection of blocks, each with k points, such that any two points occur together in exactly λ blocks.

Symmetric designs

A (v, k, λ)-design is a set of v points and a collection of blocks, each with k points, such that any two points occur together in exactly λ blocks.

A (v, k, λ)-design is symmetric if it has exactly v blocks.

Symmetric designs

A (v, k, λ)-design is a set of v points and a collection of blocks, each with k points, such that any two points occur together in exactly λ blocks.

A (v, k, λ)-design is symmetric if it has exactly v blocks.

Symmetric designs

A (v, k, λ)-design is a set of v points and a collection of blocks, each with k points, such that any two points occur together in exactly λ blocks.

A (v, k, λ)-design is symmetric if it has exactly v blocks.

A symmetric (v, k, λ)-design has $v=\frac{k(k-1)}{\lambda}+1$.

The BRC theorem

The BRC theorem

Bruck-Ryser-Chowla theorem (1950) If a symmetric (v, k, λ)-design exists then

- if v is even, then $k-\lambda$ is square; and
- if v is odd, then $x^{2}=(k-\lambda) y^{2}+(-1)^{(v-1) / 2} \lambda z^{2}$ has a solution for integers x, y, z, not all zero.

BRC proof

BRC proof

The incidence matrix M of a symmetric (v, k, λ)-design is a $v \times v$ matrix whose (i, j) entry is 1 if point i is in block j and 0 otherwise.

BRC proof

The incidence matrix M of a symmetric (v, k, λ)-design is a $v \times v$ matrix whose (i, j) entry is 1 if point i is in block j and 0 otherwise.

BRC proof

The incidence matrix M of a symmetric (v, k, λ)-design is a $v \times v$ matrix whose (i, j) entry is 1 if point i is in block j and 0 otherwise.
b_{1}
point $x_{1}\left(\begin{array}{lllllllllllll}1 & 0 & 0 & 0 & 1 & 0 & 0 & 1 & 1 & 0 & 0 & 0 & 0\end{array}\right)$

BRC proof

The incidence matrix M of a symmetric (v, k, λ)-design is a $v \times v$ matrix whose (i, j) entry is 1 if point i is in block j and 0 otherwise.
b_{2}
point $x_{1}\left(\begin{array}{lllllllllllll}1 & 0 & 0 & 0 & 1 & 0 & 0 & 1 & 1 & 0 & 0 & 0 & 0\end{array}\right)$

BRC proof

The incidence matrix M of a symmetric (v, k, λ)-design is a $v \times v$ matrix whose (i, j) entry is 1 if point i is in block j and 0 otherwise.

BRC proof

The incidence matrix M of a symmetric (v, k, λ)-design is a $v \times v$ matrix whose (i, j) entry is 1 if point i is in block j and 0 otherwise.

The dot product of two distinct rows is λ.

BRC proof

The incidence matrix M of a symmetric (v, k, λ)-design is a $v \times v$ matrix whose (i, j) entry is 1 if point i is in block j and 0 otherwise.

The dot product of two distinct rows is λ.

BRC proof

The incidence matrix M of a symmetric (v, k, λ)-design is a $v \times v$ matrix whose (i, j) entry is 1 if point i is in block j and 0 otherwise.

The dot product of two distinct rows is λ.

BRC proof

The incidence matrix M of a symmetric (v, k, λ)-design is a $v \times v$ matrix whose (i, j) entry is 1 if point i is in block j and 0 otherwise.

The dot product of two distinct rows is λ.
The dot product of a row with itself is $k=\frac{\lambda(v-1)}{k-1}$.

BRC proof

The incidence matrix M of a symmetric (v, k, λ)-design is a $v \times v$ matrix whose (i, j) entry is 1 if point i is in block j and 0 otherwise.

The dot product of two distinct rows is λ.
The dot product of a row with itself is $k=\frac{\lambda(v-1)}{k-1}$.

BRC proof

BRC proof

If M is the incidence matrix of a symmetric $(13, k, \lambda)$-design, then

$$
M^{T}=\left(\begin{array}{lllllllllllll}
k & \lambda \\
\lambda & k & \lambda \\
\lambda & \lambda & k & \lambda \\
\lambda & \lambda & \lambda & k & \lambda \\
\lambda & \lambda & \lambda & \lambda & k & \lambda \\
\lambda & \lambda & \lambda & \lambda & \lambda & k & \lambda \\
\lambda & \lambda & \lambda & \lambda & \lambda & \lambda & k & \lambda & \lambda & \lambda & \lambda & \lambda & \lambda \\
\lambda & k & \lambda & \lambda & \lambda & \lambda & \lambda \\
\lambda & k & \lambda & \lambda & \lambda & \lambda \\
\lambda & k & \lambda & \lambda & \lambda \\
\lambda & k & \lambda & \lambda \\
\lambda & k & \lambda \\
\lambda & k
\end{array}\right) .
$$

BRC proof

If M is the incidence matrix of a symmetric $(13, k, \lambda)$-design, then

$$
M^{T}=\left(\begin{array}{lllllllllllll}
k & \lambda \\
\lambda & k & \lambda \\
\lambda & \lambda & k & \lambda \\
\lambda & \lambda & \lambda & k & \lambda \\
\lambda & \lambda & \lambda & \lambda & k & \lambda \\
\lambda & \lambda & \lambda & \lambda & \lambda & k & \lambda \\
\lambda & \lambda & \lambda & \lambda & \lambda & \lambda & k & \lambda & \lambda & \lambda & \lambda & \lambda & \lambda \\
\lambda & k & \lambda & \lambda & \lambda & \lambda & \lambda \\
\lambda & k & \lambda & \lambda & \lambda & \lambda \\
\lambda & k & \lambda & \lambda & \lambda \\
\lambda & k & \lambda & \lambda \\
\lambda & k & \lambda \\
\lambda & k
\end{array}\right) .
$$

The BRC theorem can be proved by observing that

- $\operatorname{det}\left(M M^{T}\right)=\operatorname{det}(M)^{2}$ is square; and
- $M M^{T}$ is rationally congruent to I.
(A is rationally congruent to B if $A=Q B Q^{T}$ for an invertible rational matrix Q.)

Part 2:

Extending BRC to coverings

Pair covering designs

Pair covering designs

Recall a symmetric (v, k, λ)-design has $v=\frac{k(k-1)}{\lambda}+1$.

Pair covering designs

When $v=\frac{k(k-1)-d}{\lambda}+1$, there may exist a symmetric (v, k, λ)-covering with an d-regular excess.

Pair covering designs

When $v=\frac{k(k-1)-d}{\lambda}+1$, there may exist a symmetric (v, k, λ)-covering with an d-regular excess.

A symmetric (v, k, λ)-covering has v points and v blocks, each containing k points. Any two points occur together in at least λ blocks.

Pair covering designs

When $v=\frac{k(k-1)-d}{\lambda}+1$, there may exist a symmetric (v, k, λ)-covering with an d-regular excess.

A symmetric (v, k, λ)-covering has v points and v blocks, each containing k points. Any two points occur together in at least λ blocks.
The excess is the multigraph on the point set in which $\mu(x y)=r_{x y}-\lambda$.

Pair covering designs

When $v=\frac{k(k-1)-d}{\lambda}+1$, there may exist a symmetric (v, k, λ)-covering with an d-regular excess.
A symmetric (v, k, λ)-covering has v points and v blocks, each containing k points. Any two points occur together in at least λ blocks.
The excess is the multigraph on the point set in which $\mu(x y)=r_{x y}-\lambda$.

Pair covering designs

When $v=\frac{k(k-1)-d}{\lambda}+1$, there may exist a symmetric (v, k, λ)-covering with an d-regular excess.
A symmetric (v, k, λ)-covering has v points and v blocks, each containing k points. Any two points occur together in at least λ blocks.
The excess is the multigraph on the point set in which $\mu(x y)=r_{x y}-\lambda$.

A symmetric $(11,4,1)$-covering with a $C_{7} \cup C_{4}$ excess.

Pair covering designs

When $v=\frac{k(k-1)-d}{\lambda}+1$, there may exist a symmetric (v, k, λ)-covering with an d-regular excess.
A symmetric (v, k, λ)-covering has v points and v blocks, each containing k points. Any two points occur together in at least λ blocks.
The excess is the multigraph on the point set in which $\mu(x y)=r_{x y}-\lambda$.

A symmetric $(11,4,1)$-covering with a $C_{5} \cup C_{4} \cup C_{2}$ excess.

BRC results for coverings

BRC results for coverings

- The Bruck-Ryser-Chowla theorem establishes the non-existence of certain symmetric coverings with empty excesses.

BRC results for coverings

- The Bruck-Ryser-Chowla theorem establishes the non-existence of certain symmetric coverings with empty excesses.
- Bose and Connor (1952) used similar methods to establish the non-existence of certain symmetric coverings with 1-regular excesses.

BRC results for coverings

- The Bruck-Ryser-Chowla theorem establishes the non-existence of certain symmetric coverings with empty excesses.
- Bose and Connor (1952) used similar methods to establish the non-existence of certain symmetric coverings with 1-regular excesses.
- My results concern nonexistence of symmetric coverings with 2-regular excesses.

Degenerate coverings

Degenerate coverings

There is a $(\lambda+4, \lambda+2, \lambda)$-symmetric covering with excess D for every $\lambda \geqslant 1$ and every 2 -regular graph D on $\lambda+4$ vertices.
(It has block set $\{V \backslash\{x, y\}: x y \in E(D)\}$.)

What does $M M^{T}$ look like now?

What does $M M^{T}$ look like now?

If M is the incidence matrix of a $(11, k, \lambda)$-covering with excess C_{11},

$$
M^{T}=\left(\begin{array}{ccccccccccc}
k & \lambda+1 & \lambda & \lambda+1 \\
\lambda+1 & k & \lambda+1 & \lambda \\
\lambda & \lambda+1 & k & \lambda+1 & \lambda \\
\lambda & \lambda & \lambda+1 & k & \lambda+1 & \lambda & \lambda & \lambda & \lambda & \lambda & \lambda \\
\lambda & \lambda & \lambda & \lambda+1 & k & \lambda+1 & \lambda & \lambda & \lambda & \lambda & \lambda \\
\lambda & \lambda & \lambda & \lambda & \lambda+1 & k & \lambda+1 & \lambda & \lambda & \lambda & \lambda \\
\lambda & \lambda & \lambda & \lambda & \lambda & \lambda+1 & k & \lambda+1 & \lambda & \lambda & \lambda \\
\lambda & \lambda & \lambda & \lambda & \lambda & \lambda & \lambda+1 & k & \lambda+1 & \lambda & \lambda \\
\lambda & \lambda+1 & k & \lambda+1 & \lambda \\
\lambda & \lambda+1 & k & \lambda+1 \\
\lambda+1 & \lambda & \lambda+1 & k
\end{array}\right) .
$$

What does $M M^{T}$ look like now?

If M is the incidence matrix of a $(11, k, \lambda)$-covering with excess $C_{7} \cup C_{4}$,

$$
M^{T}=\left(\begin{array}{ccccccccccc}
k & \lambda+1 & \lambda & \lambda & \lambda & \lambda & \lambda+1 & \lambda & \lambda & \lambda & \lambda \\
\lambda+1 & k & \lambda+1 & \lambda \\
\lambda & \lambda+1 & k & \lambda+1 & \lambda \\
\lambda & \lambda & \lambda+1 & k & \lambda+1 & \lambda & \lambda & \lambda & \lambda & \lambda & \lambda \\
\lambda & \lambda & \lambda & \lambda+1 & k & \lambda+1 & \lambda & \lambda & \lambda & \lambda & \lambda \\
\lambda & \lambda & \lambda & \lambda & \lambda+1 & k & \lambda+1 & \lambda & \lambda & \lambda & \lambda \\
\lambda+1 & \lambda & \lambda & \lambda & \lambda & \lambda+1 & k & \lambda & \lambda & \lambda & \lambda \\
\lambda & k & \lambda+1 & \lambda & \lambda+1 \\
\lambda & \lambda+1 & k & \lambda+1 & \lambda \\
\lambda & \lambda+1 & k & \lambda+1 \\
\lambda & \lambda+1 & \lambda & \lambda+1 & k
\end{array}\right) .
$$

What does $M M^{T}$ look like now?

If M is the incidence matrix of a $(11, k, \lambda)$-covering with excess $C_{6} \cup C_{3} \cup C_{2}$,

$$
M^{T}=\left(\begin{array}{ccccccccccc}
k & \lambda+1 & \lambda & \lambda & \lambda & \lambda+1 & \lambda & \lambda & \lambda & \lambda & \lambda \\
\lambda+1 & k & \lambda+1 & \lambda \\
\lambda & \lambda+1 & k & \lambda+1 & \lambda \\
\lambda & \lambda & \lambda+1 & k & \lambda+1 & \lambda & \lambda & \lambda & \lambda & \lambda & \lambda \\
\lambda & \lambda & \lambda & \lambda+1 & k & \lambda+1 & \lambda & \lambda & \lambda & \lambda & \lambda \\
\lambda+1 & \lambda & \lambda & \lambda & \lambda+1 & k & \lambda & \lambda & \lambda & \lambda & \lambda \\
\lambda & \lambda & \lambda & \lambda & \lambda & \lambda & k & \lambda+1 & \lambda+1 & \lambda & \lambda \\
\lambda & \lambda & \lambda & \lambda & \lambda & \lambda & \lambda+1 & k & \lambda+1 & \lambda & \lambda \\
\lambda & \lambda & \lambda & \lambda & \lambda & \lambda & \lambda+1 & \lambda+1 & k & \lambda & \lambda \\
\lambda & k & \lambda+2 \\
\lambda & \lambda+2 & k
\end{array}\right) .
$$

Determinant results (with BBM\&S)

Determinant results (with BBM\&S)

Based around the observation that $\operatorname{det}\left(M M^{T}\right)$ is square.

Determinant results (with BBM\&S)

Based around the observation that $\operatorname{det}\left(M M^{\top}\right)$ is square.
Lemma For a (v, k, λ)-covering with a 2 -regular excess,

$$
\operatorname{det}\left(M M^{\top}\right)=(k-\lambda+2)^{t-1}(k-\lambda-2)^{e} \quad \text { (up to a square), }
$$

where t is the number of cycles in the excess, and e is the number of even cycles.

Determinant results (with BBM\&S)

Based around the observation that $\operatorname{det}\left(M M^{\top}\right)$ is square.
Lemma For a (v, k, λ)-covering with a 2 -regular excess,

$$
\operatorname{det}\left(M M^{\top}\right)=(k-\lambda+2)^{t-1}(k-\lambda-2)^{e} \quad \text { (up to a square), }
$$

where t is the number of cycles in the excess, and e is the number of even cycles.
Theorem If there exists a nondegenerate symmetric (v, k, λ)-covering with a 2-regular excess, then

- v is even, $k-\lambda-2$ is square, and the excess has an odd number of cycles; or
- v is even, $k-\lambda+2$ is square, and the excess has an even number of cycles; or
- v is odd and the excess has an odd number of cycles.

Determinant results (with BBM\&S)

Based around the observation that $\operatorname{det}\left(M M^{T}\right)$ is square.
Lemma For a (v, k, λ)-covering with a 2 -regular excess,

$$
\operatorname{det}\left(M M^{\top}\right)=(k-\lambda+2)^{t-1}(k-\lambda-2)^{e} \quad \text { (up to a square), }
$$

where t is the number of cycles in the excess, and e is the number of even cycles.
Theorem If there exists a nondegenerate symmetric (v, k, λ)-covering with a 2-regular excess, then

- v is even, $k-\lambda-2$ is square, and the excess has an odd number of cycles; or
- v is even, $k-\lambda+2$ is square, and the excess has an even number of cycles; or
- v is odd and the excess has an odd number of cycles.

Corollary There does not exist a nondegenerate symmetric (v, k, λ)-covering with a 2 -regular excess if v is even and neither $k-\lambda-2$ nor $k-\lambda+2$ is square.

Rational congruence results (with F\&H)

Rational congruence results (with F\&H)

Based around the observation that $C_{p}\left(M M^{T}\right)=C_{p}(I)$ for each prime p.

Rational congruence results (with F\&H)

Based around the observation that $C_{p}\left(M M^{T}\right)=C_{p}(I)$ for each prime p.

- Computing $C_{p}\left(M M^{T}\right)$ naively involves calculating the determinant of every leading principal minor of $M M^{T}$.
- We give an efficient algorithm for finding $C_{p}\left(M M^{\top}\right)$ (instead involving calculating the first v terms of a recursive sequence).
- We cannot rule out the existence of symmetric coverings for any more entire parameter sets.
- We rule out the existence of many more symmetric coverings with specified excesses.
- We rule out the existence of some more cyclic symmetric coverings.

Example: $(v, k, \lambda)=(11,4,1)$

Example: $(v, k, \lambda)=(11,4,1)$

Possible excess types:
[C_{11}],
$\left[C_{9} \cup C_{2}\right],\left[C_{8} \cup C_{3}\right],\left[C_{7} \cup C_{4}\right],\left[C_{6} \cup C_{5}\right]$,
$\left[C_{7} \cup C_{2} \cup C_{2}\right],\left[C_{6} \cup C_{3} \cup C_{2}\right],\left[C_{5} \cup C_{4} \cup C_{2}\right],\left[C_{5} \cup C_{3} \cup C_{3}\right],\left[C_{4} \cup C_{4} \cup C_{3}\right]$,
$\left[C_{5} \cup C_{2} \cup C_{2} \cup C_{2}\right],\left[C_{4} \cup C_{3} \cup C_{2} \cup C_{2}\right],\left[C_{3} \cup C_{3} \cup C_{2} \cup C_{2}\right]$,
$\left[C_{5} \cup C_{2} \cup C_{2} \cup C_{2} \cup C_{2}\right]$

Example: $(v, k, \lambda)=(11,4,1)$

Possible excess types:

```
[C C1],
[C9\cupC [2],[C8\cupC C ], [C}\mp@subsup{C}{7}{}\cup\mp@subsup{C}{4}{}],[\mp@subsup{C}{6}{}\cup\mp@subsup{C}{5}{\prime}]
[\mp@subsup{C}{7}{}\cup\mp@subsup{C}{2}{}\cup\mp@subsup{C}{2}{}],[\mp@subsup{C}{6}{}\cup\mp@subsup{C}{3}{}\cup\mp@subsup{C}{2}{}],[}\mp@subsup{C}{5}{}\cup\mp@subsup{C}{4}{}\cup\mp@subsup{C}{2}{}],[\mp@subsup{C}{5}{}\cup\mp@subsup{C}{3}{}\cup\mp@subsup{C}{3}{}],[\mp@subsup{C}{4}{}\cup\mp@subsup{C}{4}{}\cup\mp@subsup{C}{3}{}]
[C5\cupC
[C5\cupC2}\cup\cup\mp@subsup{C}{2}{}\cup\mp@subsup{C}{2}{}\cup\mp@subsup{C}{2}{}
```

ruled out by determinant arguments

Example: $(v, k, \lambda)=(11,4,1)$

Possible excess types:
[C_{11}],
$\left[C_{9} \cup C_{2}\right],\left[C_{8} \cup C_{3}\right],\left[C_{7} \cup C_{4}\right],\left[C_{6} \cup C_{5}\right]$,
$\left[C_{7} \cup C_{2} \cup C_{2}\right],\left[C_{6} \cup C_{3} \cup C_{2}\right],\left[C_{5} \cup C_{4} \cup C_{2}\right],\left[C_{5} \cup C_{3} \cup C_{3}\right],\left[C_{4} \cup C_{4} \cup C_{3}\right]$, $\left[C_{5} \cup C_{2} \cup C_{2} \cup C_{2}\right],\left[C_{4} \cup C_{3} \cup C_{2} \cup C_{2}\right],\left[C_{3} \cup C_{3} \cup C_{2} \cup C_{2}\right]$, $\left[C_{5} \cup C_{2} \cup C_{2} \cup C_{2} \cup C_{2}\right]$
ruled out by determinant arguments
ruled out by rational congruence arguments

Example: $(v, k, \lambda)=(11,4,1)$

Possible excess types:

```
[C C11],
[C9\cupC [2],[C8\cupC C ], [C}\mp@subsup{C}{7}{}\cup\mp@subsup{C}{4}{}],[\mp@subsup{C}{6}{}\cup\mp@subsup{C}{5}{\prime}]
[\mp@subsup{C}{7}{}\cup\mp@subsup{C}{2}{}\cup\mp@subsup{C}{2}{}],[\mp@subsup{C}{6}{}\cup\mp@subsup{C}{3}{}\cup\mp@subsup{C}{2}{}],[\mp@subsup{C}{5}{\prime}\cup\mp@subsup{C}{4}{}\cup\mp@subsup{C}{2}{}],[\mp@subsup{C}{5}{\prime}\cup\mp@subsup{C}{3}{}\cup\mp@subsup{C}{3}{}],[\mp@subsup{C}{4}{}\cup\mp@subsup{C}{4}{}\cup\mp@subsup{C}{3}{}],
[C5\cupC
[C5\cupC2}\cup\cup\mp@subsup{C}{2}{}\cup\mp@subsup{C}{2}{}\cup\mp@subsup{C}{2}{}
```

ruled out by determinant arguments
ruled out by rational congruence arguments
It turns out [C_{11}] and $\left[C_{6} \cup C_{3} \cup C_{2}\right]$ are realisable and $\left[C_{5} \cup C_{3} \cup C_{3}\right.$] is not.

Computational rational congruence results

(v, k, λ)	\# of excess types	\# ruled out by det results	\# ruled out by RC results $\left(p<10^{3}\right)$	\# which may exist
$(11,4,1)$	14	7	4	3
$(19,5,1)$	105	52	43	10
$(29,6,1)$	847	423	393	31
$(41,7,1)$	7245	3621	3376	248
$(55,8,1)$	65121	32555	30746	1820
$(71,9,1)$	609237	304604	292475	12158

Theoretical rational congruence results

Theorem There does not exist a symmetric $\left(\frac{1}{2} p^{\alpha}\left(p^{\alpha}-1\right), p^{\alpha}, 2\right)$-covering with Hamilton cycle excess when $p \equiv 3(\bmod 4)$ is prime, α is odd and $(p, \alpha) \neq(3,1)$.

That's all.

