Symmetric coverings and the Bruck-Ryser-Chowla theorem

Daniel Horsley (Monash University, Australia)

Joint work with

Darryn Bryant, Melinda Buchanan, Barbara Maenhaut and Victor Scharaschkin and with

Nevena Francetić and Sarada Herke

Part 1:

The Bruck-Ryser-Chowla theorem

A (v, k, λ) -design is a set of v points and a collection of blocks, each with k points, such that any two points occur together in exactly λ blocks.

A (v, k, λ) -design is a set of v points and a collection of blocks, each with k points, such that any two points occur together in exactly λ blocks.

A (v, k, λ)-design is symmetric if it has exactly v blocks.

A (v, k, λ) -design is a set of v points and a collection of blocks, each with k points, such that any two points occur together in exactly λ blocks.

A (v, k, λ)-design is symmetric if it has exactly v blocks.

A symmetric (7, 4, 2)-design

A (v, k, λ) -design is a set of v points and a collection of blocks, each with k points, such that any two points occur together in exactly λ blocks.

A (v, k, λ)-design is symmetric if it has exactly v blocks.

A symmetric (7, 4, 2)-design

A symmetric (v, k, λ) -design has $v = \frac{k(k-1)}{\lambda} + 1$.

The BRC theorem

The BRC theorem

Bruck-Ryser-Chowla theorem (1950) If a symmetric (v, k, λ) -design exists then

- if v is even, then $k \lambda$ is square; and
- If v is odd, then x² = (k − λ)y² + (−1)^{(v−1)/2}λz² has a solution for integers x, y, z, not all zero.

The incidence matrix *M* of a symmetric (v, k, λ) -design is a $v \times v$ matrix whose (i, j) entry is 1 if point *i* is in block *j* and 0 otherwise.

The incidence matrix *M* of a symmetric (v, k, λ) -design is a $v \times v$ matrix whose (i, j) entry is 1 if point *i* is in block *j* and 0 otherwise.

The incidence matrix *M* of a symmetric (v, k, λ) -design is a $v \times v$ matrix whose (i, j) entry is 1 if point *i* is in block *j* and 0 otherwise.

The incidence matrix *M* of a symmetric (v, k, λ) -design is a $v \times v$ matrix whose (i, j) entry is 1 if point *i* is in block *j* and 0 otherwise.

h

The incidence matrix *M* of a symmetric (v, k, λ) -design is a $v \times v$ matrix whose (i, j) entry is 1 if point *i* is in block *j* and 0 otherwise.

The incidence matrix *M* of a symmetric (v, k, λ) -design is a $v \times v$ matrix whose (i, j) entry is 1 if point *i* is in block *j* and 0 otherwise.

The dot product of two distinct rows is λ .

The incidence matrix *M* of a symmetric (v, k, λ) -design is a $v \times v$ matrix whose (i, j) entry is 1 if point *i* is in block *j* and 0 otherwise.

The dot product of two distinct rows is λ .

The incidence matrix *M* of a symmetric (v, k, λ) -design is a $v \times v$ matrix whose (i, j) entry is 1 if point *i* is in block *j* and 0 otherwise.

The dot product of two distinct rows is λ .

The incidence matrix *M* of a symmetric (v, k, λ) -design is a $v \times v$ matrix whose (i, j) entry is 1 if point *i* is in block *j* and 0 otherwise.

The dot product of two distinct rows is λ .

The dot product of a row with itself is $k = \frac{\lambda(\nu-1)}{k-1}$.

The incidence matrix *M* of a symmetric (v, k, λ) -design is a $v \times v$ matrix whose (i, j) entry is 1 if point *i* is in block *j* and 0 otherwise.

The dot product of two distinct rows is λ .

The dot product of a row with itself is $k = \frac{\lambda(\nu-1)}{k-1}$.

If *M* is the incidence matrix of a symmetric $(13, k, \lambda)$ -design, then

If *M* is the incidence matrix of a symmetric $(13, k, \lambda)$ -design, then

The BRC theorem can be proved by observing that

- $det(MM^T) = det(M)^2$ is square; and
- MM^{T} is rationally congruent to *I*.

(A is rationally congruent to B if $A = QBQ^T$ for an invertible rational matrix Q.)

Part 2:

Extending BRC to coverings

Recall a symmetric (v, k, λ) -design has $v = \frac{k(k-1)}{\lambda} + 1$.

When $v = \frac{k(k-1)-d}{\lambda} + 1$, there may exist a symmetric (v, k, λ) -covering with an *d*-regular excess.

When $v = \frac{k(k-1)-d}{\lambda} + 1$, there may exist a symmetric (v, k, λ) -covering with an *d*-regular excess.

A symmetric (v, k, λ) -covering has v points and v blocks, each containing k points. Any two points occur together in *at least* λ blocks.

When $v = \frac{k(k-1)-d}{\lambda} + 1$, there may exist a symmetric (v, k, λ) -covering with an *d*-regular excess.

A symmetric (v, k, λ) -covering has v points and v blocks, each containing k points. Any two points occur together in *at least* λ blocks.

The excess is the multigraph on the point set in which $\mu(xy) = r_{xy} - \lambda$.

When $v = \frac{k(k-1)-d}{\lambda} + 1$, there may exist a symmetric (v, k, λ) -covering with an *d*-regular excess.

A symmetric (v, k, λ) -covering has v points and v blocks, each containing k points. Any two points occur together in *at least* λ blocks.

The excess is the multigraph on the point set in which $\mu(xy) = r_{xy} - \lambda$.

When $v = \frac{k(k-1)-d}{\lambda} + 1$, there may exist a symmetric (v, k, λ) -covering with an *d*-regular excess.

A symmetric (v, k, λ) -covering has v points and v blocks, each containing k points. Any two points occur together in *at least* λ blocks.

The excess is the multigraph on the point set in which $\mu(xy) = r_{xy} - \lambda$.

When $v = \frac{k(k-1)-d}{\lambda} + 1$, there may exist a symmetric (v, k, λ) -covering with an *d*-regular excess.

A symmetric (v, k, λ) -covering has v points and v blocks, each containing k points. Any two points occur together in *at least* λ blocks.

The excess is the multigraph on the point set in which $\mu(xy) = r_{xy} - \lambda$.

A symmetric (11, 4, 1)-covering with a $C_5 \cup C_4 \cup C_2$ excess.

The Bruck-Ryser-Chowla theorem establishes the non-existence of certain symmetric coverings with empty excesses.

- The Bruck-Ryser-Chowla theorem establishes the non-existence of certain symmetric coverings with empty excesses.
- Bose and Connor (1952) used similar methods to establish the non-existence of certain symmetric coverings with 1-regular excesses.

- The Bruck-Ryser-Chowla theorem establishes the non-existence of certain symmetric coverings with empty excesses.
- Bose and Connor (1952) used similar methods to establish the non-existence of certain symmetric coverings with 1-regular excesses.
- My results concern nonexistence of symmetric coverings with 2-regular excesses.

Degenerate coverings

Degenerate coverings

There is a $(\lambda + 4, \lambda + 2, \lambda)$ -symmetric covering with excess *D* for every $\lambda \ge 1$ and every 2-regular graph *D* on $\lambda + 4$ vertices.

(It has block set $\{V \setminus \{x, y\} : xy \in E(D)\}$.)

If *M* is the incidence matrix of a $(11, k, \lambda)$ -covering with excess C_{11} ,

	(<u>k</u>	$\lambda + 1$	λ	$\lambda + 1$							
	$\lambda + 1$	k	$\lambda + 1$	λ							
	λ	$\lambda + 1$	k	$\lambda + 1$	λ						
	λ	λ	$\lambda + 1$	k	$\lambda + 1$	λ	λ	λ	λ	λ	λ
_	λ	λ	λ	$\lambda + 1$	k	$\lambda + 1$	λ	λ	λ	λ	λ
$MM^T = $	λ	λ	λ	λ	$\lambda + 1$	k	$\lambda + 1$	λ	λ	λ	λ
	λ	λ	λ	λ	λ	$\lambda + 1$	k	$\lambda + 1$	λ	λ	λ
	λ	λ	λ	λ	λ	λ	$\lambda + 1$	k	$\lambda + 1$	λ	λ
	λ	$\lambda + 1$	k	$\lambda + 1$	λ						
	λ	$\lambda + 1$	k	$\lambda + 1$							
	$\lambda + 1$	λ	λ	λ	λ	λ	λ	λ	λ	$\lambda + 1$	<u>k</u> /

If *M* is the incidence matrix of a $(11, k, \lambda)$ -covering with excess $C_7 \cup C_4$,

	(<u>k</u>	$\lambda + 1$	λ	λ	λ	λ	$\lambda + 1$	λ	λ	λ	λ
	$\lambda + 1$	k	$\lambda + 1$	λ							
	λ	$\lambda + 1$	k	$\lambda + 1$	λ						
	λ	λ	$\lambda + 1$	k	$\lambda + 1$	λ	λ	λ	λ	λ	λ
	λ	λ	λ	$\lambda + 1$	k	$\lambda + 1$	λ	λ	λ	λ	λ
$MM^T =$	λ	λ	λ	λ	$\lambda + 1$	k	λ +1	λ	λ	λ	λ
	$\lambda + 1$	λ	λ	λ	λ	λ +1	k	λ	λ	λ	λ
	λ	k	$\lambda + 1$	λ	$\lambda + 1$						
	λ	$\lambda + 1$	k	$\lambda + 1$	λ						
	λ	$\lambda + 1$	k	$\lambda + 1$							
	λ	λ +1	λ	$\lambda + 1$	k /						

If *M* is the incidence matrix of a $(11, k, \lambda)$ -covering with excess $C_6 \cup C_3 \cup C_2$,

Based around the observation that $det(MM^T)$ is square.

Based around the observation that $det(MM^{T})$ is square.

Lemma For a (v, k, λ) -covering with a 2-regular excess, det $(MM^T) = (k - \lambda + 2)^{t-1}(k - \lambda - 2)^e$ (up to a square),

where *t* is the number of cycles in the excess, and *e* is the number of even cycles.

Based around the observation that $det(MM^{T})$ is square.

Lemma For a (v, k, λ) -covering with a 2-regular excess, det $(MM^{T}) = (k - \lambda + 2)^{t-1}(k - \lambda - 2)^{e}$ (up to a square),

where *t* is the number of cycles in the excess, and *e* is the number of even cycles.

Theorem If there exists a nondegenerate symmetric (v, k, λ) -covering with a 2-regular excess, then

- ▶ *v* is even, $k \lambda 2$ is square, and the excess has an odd number of cycles; or
- ▶ *v* is even, $k \lambda + 2$ is square, and the excess has an even number of cycles; or
- v is odd and the excess has an odd number of cycles.

Based around the observation that $det(MM^{T})$ is square.

Lemma For a (v, k, λ) -covering with a 2-regular excess, det $(MM^{T}) = (k - \lambda + 2)^{t-1}(k - \lambda - 2)^{e}$ (up to a square),

where *t* is the number of cycles in the excess, and *e* is the number of even cycles.

Theorem If there exists a nondegenerate symmetric (v, k, λ) -covering with a 2-regular excess, then

- ▶ *v* is even, $k \lambda 2$ is square, and the excess has an odd number of cycles; or
- ▶ *v* is even, $k \lambda + 2$ is square, and the excess has an even number of cycles; or
- v is odd and the excess has an odd number of cycles.

Corollary There does not exist a nondegenerate symmetric (v, k, λ) -covering with a 2-regular excess if *v* is even and neither $k - \lambda - 2$ nor $k - \lambda + 2$ is square.

Rational congruence results (with F&H)

Rational congruence results (with F&H)

Based around the observation that $C_{\rho}(MM^{T}) = C_{\rho}(I)$ for each prime p.

Rational congruence results (with F&H)

Based around the observation that $C_p(MM^T) = C_p(I)$ for each prime *p*.

- ► Computing C_p(MM^T) naively involves calculating the determinant of every leading principal minor of MM^T.
- ► We give an efficient algorithm for finding C_p(MM^T) (instead involving calculating the first v terms of a recursive sequence).
- We cannot rule out the existence of symmetric coverings for any more entire parameter sets.
- We rule out the existence of many more symmetric coverings with specified excesses.
- ► We rule out the existence of some more cyclic symmetric coverings.

Possible excess types:

```
 \begin{array}{l} [C_{11}], \\ [C_9 \cup C_2], \ [C_8 \cup C_3], \ [C_7 \cup C_4], \ [C_6 \cup C_5], \\ [C_7 \cup C_2 \cup C_2], \ [C_6 \cup C_3 \cup C_2], \ [C_5 \cup C_4 \cup C_2], \ [C_5 \cup C_3 \cup C_3], \ [C_4 \cup C_4 \cup C_3], \\ [C_5 \cup C_2 \cup C_2 \cup C_2], \ [C_4 \cup C_3 \cup C_2 \cup C_2], \ [C_3 \cup C_3 \cup C_2 \cup C_2], \\ [C_5 \cup C_2 \cup C_2 \cup C_2 \cup C_2] \end{array}
```

Possible excess types:

```
 \begin{matrix} [C_{11}], \\ [C_9 \cup C_2], & [C_8 \cup C_3], & [C_7 \cup C_4], & [C_6 \cup C_5], \\ [C_7 \cup C_2 \cup C_2], & [C_6 \cup C_3 \cup C_2], & [C_5 \cup C_4 \cup C_2], & [C_5 \cup C_3 \cup C_3], & [C_4 \cup C_4 \cup C_3], \\ [C_5 \cup C_2 \cup C_2 \cup C_2], & [C_4 \cup C_3 \cup C_2 \cup C_2], & [C_3 \cup C_3 \cup C_2 \cup C_2], \\ [C_5 \cup C_2 \cup C_2 \cup C_2 \cup C_2] \end{matrix}
```

ruled out by determinant arguments

Possible excess types:

```
 \begin{array}{l} [C_{11}], \\ [C_9 \cup C_2], \ [C_8 \cup C_3], \ [C_7 \cup C_4], \ [C_6 \cup C_5], \\ [C_7 \cup C_2 \cup C_2], \ [C_6 \cup C_3 \cup C_2], \ [C_5 \cup C_4 \cup C_2], \ [C_5 \cup C_3 \cup C_3], \ [C_4 \cup C_4 \cup C_3], \\ [C_5 \cup C_2 \cup C_2 \cup C_2], \ [C_4 \cup C_3 \cup C_2 \cup C_2], \ [C_3 \cup C_3 \cup C_2 \cup C_2], \\ [C_5 \cup C_2 \cup C_2 \cup C_2 \cup C_2] \end{array}
```

ruled out by determinant arguments

ruled out by rational congruence arguments

Possible excess types:

```
 \begin{array}{l} [C_{11}], \\ [C_9 \cup C_2], \ [C_8 \cup C_3], \ [C_7 \cup C_4], \ [C_6 \cup C_5], \\ [C_7 \cup C_2 \cup C_2], \ [C_6 \cup C_3 \cup C_2], \ [C_5 \cup C_4 \cup C_2], \ [C_5 \cup C_3 \cup C_3], \ [C_4 \cup C_4 \cup C_3], \\ [C_5 \cup C_2 \cup C_2 \cup C_2], \ [C_4 \cup C_3 \cup C_2 \cup C_2], \ [C_3 \cup C_3 \cup C_2 \cup C_2], \\ [C_5 \cup C_2 \cup C_2 \cup C_2 \cup C_2] \end{array}
```

ruled out by determinant arguments

ruled out by rational congruence arguments

It turns out $[C_{11}]$ and $[C_6 \cup C_3 \cup C_2]$ are realisable and $[C_5 \cup C_3 \cup C_3]$ is not.

Computational rational congruence results

$(\mathbf{v}, \mathbf{k}, \lambda)$	# of excess	# ruled out	# ruled out by RC	# which	
	types	by det results	results ($p < 10^3$)	may exist	
(11, 4, 1)	14	7	4	3	
(19, 5, 1)	105	52	43	10	
(29, 6, 1)	847	423	393	31	
(41, 7, 1)	7245	3621	3376	248	
(55, 8, 1)	65121	32555	30746	1820	
(71,9,1)	609237	304604	292475	12158	

Theoretical rational congruence results

Theorem There does not exist a symmetric $(\frac{1}{2}p^{\alpha}(p^{\alpha}-1), p^{\alpha}, 2)$ -covering with Hamilton cycle excess when $p \equiv 3 \pmod{4}$ is prime, α is odd and $(p, \alpha) \neq (3, 1)$.

That's all.