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The Bruck-Ryser-Chowla theorem
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Symmetric designs

A (v,k, \)-design is a set of v points and a collection of blocks, each with k
points, such that any two points occur together in exactly A blocks.

A (v, k, \)-design is symmetric if it has exactly v blocks.

A symmetric (7,4, 2)-design

: : k(k—1
A symmetric (v, k, \)-design has v = % + 1.
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The BRC theorem

Bruck-Ryser-Chowla theorem (1950) If a symmetric (v, k, \)-design
exists then

» if v is even, then k — )\ is square; and

» if v is 0dd, then x2 = (k — \)y? + (—1)("=")/2)z2 has a solution for
integers x, y, z, not all zero.
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If M is the incidence matrix of a symmetric (13, k, \)-design, then

KX A A 2 A A A A A A A A
A K A A A A A A A A A A A
A XA KA A A A A A A A A A
A A A KA A A A A A A A A
A A A A KA A A A A A A A
A A A A A KA A A A A A A
DD N U N N U G W W W WD W

DD D N N N U U R, W W WD, W
A A A A A A A A kKA A A A
DD N N N WD U U W W G WD W
DD D U N WD WD U W W W G W
A A A A A A A A A A A kA
DD N D N WD U WD W S W W W ¢
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BRC proof

If M is the incidence matrix of a symmetric (13, k, \)-design, then

MMT =

> > > X
> X >
X > >
XN > > >
XN > > >
DA T g
PP D S NI
AP DD R P D S
DD DD R P D S
>N >
> X >
X > > >
> > >

The BRC theorem can be proved by observing that
» det(MMT) = det(M)? is square; and
» MM is rationally congruent to /.

is rationally congruent to B if A = or an invertible rational matrix Q.
A is rationall Bif A= QBQ' f i ibl ional ix Q
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Extending BRC to coverings
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: ; _ k(k=1)
Recall a symmetric (v, k, \)-design has v = % + 1.
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Pair covering designs

When v = W + 1, there may exist a symmetric (v, k, \)-covering with
an d-regular excess.

A symmetric (v, k, \)-covering has v points and v blocks, each containing k
points. Any two points occur together in at least A blocks.

The excess is the multigraph on the point set in which p(xy) = ry — A.
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BRC results for coverings

» The Bruck-Ryser-Chowla theorem establishes the non-existence of
certain symmetric coverings with empty excesses.

» Bose and Connor (1952) used similar methods to establish the
non-existence of certain symmetric coverings with 1-regular excesses.

» My results concern nonexistence of symmetric coverings with 2-regular
excesses.
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Degenerate coverings

There is a (A + 4, A + 2, \)-symmetric covering with excess D for every
A > 1 and every 2-regular graph D on A\ + 4 vertices.

(It has block set {V \ {x,y} : xy € E(D)}.)



What does MM look like now?



What does MM look like now?

If M is the incidence matrix of a (11, k, \)-covering with excess Cy1,

3D VR D WS WD WD WD WD WD WD
PUE 'S WE TS WD WD WD WD WD WD
PUNED VI EE S Wik TS WD VD VD WD WD
SURED WD W I S Wik B U WD WD WD
)URED WD WD Wit B S Wt I WS WD WD
MMT = X X X A A+l Kk A1 X A A
SURED WD WD WD WD Wil Iy SR WL L U
) NS WD WD WD WD WD W (R S Wit B
) NS WD U WD WD WD WD WL B SR Wi
DU WD WD WD WD WD WD WD WAt B <
DU IS WD WD WD WD WD WD WD W Wi
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What does MM look like now?

If M is the incidence matrix of a (11, k, A)-covering with excess C; U Cq,

3D VS TS WS WD WD WD Wik [ WS D WY
DU 'S VE IS U WD WD WD WD WD WD

PUNED VI EE S WIL TS U WD WD WD WD WD Y

PURED WD W B SRS Wk R WS VD WD WD WD

DU WD WD W B S W D Y WD WD WD

MMT =1 X X X X A1 k A1 XA X XA
PUE IS WD WD WD WD Wt B SEND WD WD WD
PN WD WD WD WD WD W S WL BN W Wit

) NS WS WD WD WD WD WD WAL HY SRS Wit B
DD WD WD WD WD WD WD WD WL I S Wit

)N WD WD WD WD WD WD W I W WAL B




What does MM look like now?

If M is the incidence matrix of a (11, k, \)-covering with excess Cs U C3 U Co,

'SP S IS WD WD WD W (S U WD WD WD
DU 'S VE IS U WD WD WD WD WD WD
PUNED VI EE S WIL TS U WD WD WD WD WD Y
PURED WD W B SRS Wk R WS VD WD WD WD
DU WD WD W B S W D Y WD WD WD
MMT = Xx+1 X X X X1 kA X XA XA
)N WD WD WD WD WY SHD WL [ Wt R U
)N WD WD WD WD WD Wt [ S WL LD U
)N WD WD WD WD WD W [ WL I S WY
)N WD WD WD WD WD WD WS WY SR Wi
)N WD WD WD WD WD WD WD WD W - S <
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Determinant results (with BBM&S)

Based around the observation that det(MM) is square.

Lemma For a (v, k, \)-covering with a 2-regular excess,
det(MM') = (k — A +2)'""(k — A\ —2)° (up to a square),
where t is the number of cycles in the excess, and e is the number of even cycles.

Theorem |If there exists a nondegenerate symmetric (v, k, \)-covering with a
2-regular excess, then
> viseven, k — X\ — 2is square, and the excess has an odd number of cycles; or
> viseven, k — )+ 2is square, and the excess has an even number of cycles; or
» v is odd and the excess has an odd number of cycles.

Corollary There does not exist a nondegenerate symmetric (v, k, \)-covering with
a 2-regular excess if v is even and neither k — A — 2 nor k — \ + 2 is square.
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Rational congruence results (with F&H)

Based around the observation that C,(MM') = C,(/) for each prime p.

» Computing Cp(MMT) naively involves calculating the determinant of
every leading principal minor of MMT.

» We give an efficient algorithm for finding C,(MMT) (instead involving
calculating the first v terms of a recursive sequence).

» We cannot rule out the existence of symmetric coverings for any more
entire parameter sets.

» We rule out the existence of many more symmetric coverings with
specified excesses.

» We rule out the existence of some more cyclic symmetric coverings.
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It turns out [Cq1] and [CeUC3UC,] are realisable and [C5UC3UC3] is not.



Computational rational congruence results

(v,k,\) | # of excess | # ruled out # ruled out by RC | # which
types by det results | results (p < 10°) may exist

1,4,1) | 14 7 4 3
9,5,1) | 105 52 43 10
9,6,1) | 847 423 393 31
1,7,1) | 7245 3621 3376 248
5,8,1) | 65121 32555 30746 1820
1,9,1) | 609237 304604 292475 12158




Theoretical rational congruence results

Theorem There does not exist a symmetric (%p“(p“ —1),p%, 2)-covering
with Hamilton cycle excess when p = 3 (mod 4) is prime, « is odd and

(p,a) # (3,1).



That’s all.



