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A (0, 1)-Matrix and Tiling Problem

Let R = (r1, r2, . . . , rm, rm+1 = 0) and S = (s1, s2, . . . , sn) be nonnegative
integral vectors.

Question: Can a (m + 1)× n checkerboard be tiled with vertical dimers
and monomers so that there are ri dimers with the upper half of the
dimer in row i and si dimers in column i?
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Other Ways to Phrase the Question

1. A question about the existence of a (0, 1)-matrix where every
sequence of 1’s in a column has an even number of 1’s.

2. The existence of a (0, 1)-matrix where no consecutive 1’s occur in a
column.

3. Phrase it as a linear programming problem and look for a 0, 1 solution.
(a11 + a12 + · · ·+ a1n = r1, etc.)
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Our Point of View

The existence of a (0, 1)-matrix where no consecutive 1’s occur in a
column.



Definition

Definition

Let A(R,S) be the set of all (0, 1)-matrices with

row sum vector R

column sum vector S .

-Studied by H.J. Ryser, D. Gale, D.R. Fulkerson, R.M Haber, and R.
Brualdi.
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An Observation

Observation: If M ∈ A1(R,S) then we can entry wise sum rows ri and
ri+1 and get a matrix in A((r1, . . . , ri−1, ri + ri+1, ri+2, . . . ),S).

The Gale-Ryser Theorem characterizes when A(R,S) is nonempty.
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Definition

Majorization:

Nonincreasing integral vectors: a = (a1, a2, . . . an) and
b = (b1, b2, ...bm). -append zeros to make them equal length (say
n ≥ m).

a is majorized by b, denoted a � b when

a1 + a2 + · · ·+ ak ≤ b1 + b2 + . . . bk for all k

and
a1 + a2 + · · ·+ an = b1 + b2 + · · ·+ bn
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Example

Example: (3, 2, 1, 0) � (3, 3, 0, 0) since

3 ≤ 3

3 + 2 ≤ 3 + 3

3 + 2 + 1 = 3 + 3 + 0

3 + 2 + 1 + 0 = 3 + 3 + 0 + 0
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Conjugate of a nonnegative integral vector:

R = (3, 2, 3, 1) R∗ = (4, 3, 2, 0, . . . , 0)
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Existence Theorem for A(R , S)

Theorem (Gale-Ryser, 1957)

If R = (r1, r2, . . . , rm) and S = (s1, s2, . . . , sn) are nonnegative integral
vectors such that S is nonincreasing, then there exists an
m × n, (0, 1)-matrix with row sum vector R and column sum vector S if
and only if S � R∗.

For A1(R,S),

S � (r1 + r2, r3 + r4, r5)∗

S � (r1 + r2, r3, r4 + r5)∗

S � (r1, r2 + r3, r4 + r5)∗
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Observation: If A1(R,S) is nonempty then S � q∗ for all q ∈ QR .

Is this condition sufficient to show A1(R,S) is nonempty?
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Existence Theorem for A1(R , S)

Theorem (N., Shader)

If R = (r1, r2, . . . , rm) and S = (s1, s2, . . . , sn) are nonnegative integral
vectors such that S is nonincreasing, then there exists an m × n
(0, 1)-matrix with no two 1’s occurring consecutively in a column and
with row sum vector R and column sum vector S if and only if

S � q∗ ∀q ∈ QR .



Proofs of the Gale-Ryser Theorem

-direct combinatorial arguments
-network flows
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Network Flow for A(R , S)
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For A(R , S)

(0, 1)−matrix

Flow Conditions
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Existence Theorem for A1(R , S)

Proof.
Main idea: Induction

Induct on n (the number of columns).
Induct on sn (the number of 1’s in the last column).

Carefully choose a ri to decrease by 1 and decrease sn by 1.
Argue that the inductive hypotheses hold.

Let M be a (0, 1)-matrix in
A1((r1, r2, . . . , ri − 1, . . . , rm), (s1, . . . , sn − 1)).
If there is a 1 in the (i , n) position, argue that with a switch this can
be changed to a 0.
Put a 1 in the (i , n) position and use switches to remove any
consecutive 1’s.

This completes the induction on the number of 1’s in the last
column and in turn the induction on the number of columns.
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Graph of A1(R , S)

Definition

The graph of A1(R,S) is an undirected graph with:

vertices are the matrices in A1(R,S)

M1 ∼ M2 if and only if the matrix M1 can be changed to M2 with
one basic switch.



Further Work

Let M ∈ A1(R,S). What is the probability that a 1 occurs in
position mij?

Determine statistical information about A1(R,S) by studying a
Markov chain defined on the graph of A1(R,S).

What if every 1 is followed by j zeros: Aj(R,S)?

Further study of the network flow connection.
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