A Tiling and (0,1)-Matrix Existence Problem

Curtis G Nelson

University of Wyoming
Advisor: Dr. Bryan Shader

July 24, 2015

A $(0,1)$-Matrix and Tiling Problem

Let $R=\left(r_{1}, r_{2}, \ldots, r_{m}, r_{m+1}=0\right)$ and $S=\left(s_{1}, s_{2}, \ldots, s_{n}\right)$ be nonnegative integral vectors.

A $(0,1)$-Matrix and Tiling Problem

Let $R=\left(r_{1}, r_{2}, \ldots, r_{m}, r_{m+1}=0\right)$ and $S=\left(s_{1}, s_{2}, \ldots, s_{n}\right)$ be nonnegative integral vectors.

Question: Can a $(m+1) \times n$ checkerboard be tiled with vertical dimers and monomers so that there are r_{i} dimers with the upper half of the dimer in row i and s_{i} dimers in column i?

A $(0,1)$-Matrix and Tiling Problem

Example: $R=(2,2,1,2,0) ; S=(2,1,2,2)$

A $(0,1)$-Matrix and Tiling Problem

Example: $R=(2,2,1,2,0) ; S=(2,1,2,2)$

1

A $(0,1)$-Matrix and Tiling Problem

Example: $R=(2,2,1,2,0) ; S=(2,1,2,2)$

A $(0,1)$-Matrix and Tiling Problem

Example: $R=(2,2,1,2,0) ; S=(2,1,2,2)$

Other Ways to Phrase the Question

1. A question about the existence of a $(0,1)$-matrix where every sequence of 1 's in a column has an even number of 1 's.

Other Ways to Phrase the Question

1. A question about the existence of a $(0,1)$-matrix where every sequence of 1 's in a column has an even number of 1 's.
2. The existence of a $(0,1)$-matrix where no consecutive 1 's occur in a column.

Other Ways to Phrase the Question

1. A question about the existence of a $(0,1)$-matrix where every sequence of 1 's in a column has an even number of 1 's.
2. The existence of a $(0,1)$-matrix where no consecutive 1 's occur in a column.
3. Phrase it as a linear programming problem and look for a 0,1 solution.
$\left(a_{11}+a_{12}+\cdots+a_{1 n}=r_{1}\right.$, etc. $)$

Our Point of View

The existence of a $(0,1)$-matrix where no consecutive 1 's occur in a column.

Definition

Definition
Let $A(R, S)$ be the set of all $(0,1)$-matrices with

- row sum vector R
- column sum vector S.

Definition

Definition

Let $A(R, S)$ be the set of all $(0,1)$-matrices with

- row sum vector R
- column sum vector S.
-Studied by H.J. Ryser, D. Gale, D.R. Fulkerson, R.M Haber, and R. Brualdi.

Definition

Definition
Let $A_{1}(R, S)$ be the set of all $(0,1)$-matrices with

- row sum vector R
- column sum vector S
- no consecutive 1's occur in any column.

Definition

Definition
Let $A_{1}(R, S)$ be the set of all $(0,1)$-matrices with

- row sum vector R
- column sum vector S
- no consecutive 1's occur in any column.

Question
When is $A_{1}(R, S)$ nonempty?

Example

$$
R=(1,1,3,2,2,3) ; S=(3,1,3,1,1,3)
$$

Example

$$
R=(1,1,3,2,2,3) ; S=(3,1,3,1,1,3)
$$

Example

$$
R=(1,1,3,2,2,3) ; S=(3,1,3,1,1,3)
$$

1					
1					
		1			
1					
1					
3					
2					
3	1	3	1	1	3

Example

$$
R=(1,1,3,2,2,3) ; S=(3,1,3,1,1,3)
$$

1					X	1
		1			X	1
						3
						3
3	1	3	1	1	3	

An Observation

Observation: If $M \in A_{1}(R, S)$ then we can entry wise sum rows r_{i} and r_{i+1} and get a matrix in $A\left(\left(r_{1}, \ldots, r_{i-1}, r_{i}+r_{i+1}, r_{i+2}, \ldots\right), S\right)$.

An Observation

Observation: If $M \in A_{1}(R, S)$ then we can entry wise sum rows r_{i} and r_{i+1} and get a matrix in $A\left(\left(r_{1}, \ldots, r_{i-1}, r_{i}+r_{i+1}, r_{i+2}, \ldots\right), S\right)$.

The Gale-Ryser Theorem characterizes when $A(R, S)$ is nonempty.

Definition

Majorization:

- Nonincreasing integral vectors: $a=\left(a_{1}, a_{2}, \ldots a_{n}\right)$ and $b=\left(b_{1}, b_{2}, \ldots b_{m}\right)$. -append zeros to make them equal length (say $n \geq m$).
- a is majorized by b, denoted $a \preceq b$ when

$$
a_{1}+a_{2}+\cdots+a_{k} \leq b_{1}+b_{2}+\ldots b_{k} \text { for all } k
$$

and

$$
a_{1}+a_{2}+\cdots+a_{n}=b_{1}+b_{2}+\cdots+b_{n}
$$

Definition

Majorization:

- Nonincreasing integral vectors: $a=\left(a_{1}, a_{2}, \ldots a_{n}\right)$ and $b=\left(b_{1}, b_{2}, \ldots b_{m}\right)$. -append zeros to make them equal length (say $n \geq m$).
- a is majorized by b, denoted $a \preceq b$ when

$$
a_{1}+a_{2}+\cdots+a_{k} \leq b_{1}+b_{2}+\ldots b_{k} \text { for all } k
$$

and

$$
a_{1}+a_{2}+\cdots+a_{n}=b_{1}+b_{2}+\cdots+b_{n}
$$

Example

Example: $(3,2,1,0) \preceq(3,3,0,0)$ since
$3 \leq 3$
$3+2 \leq 3+3$
$3+2+1=3+3+0$
$3+2+1+0=3+3+0+0$

Definition

Conjugate of a nonnegative integral vector:

$$
R=(3,2,3,1) \quad R^{*}=(4,3,2,0, \ldots, 0)
$$

Definition

Conjugate of a nonnegative integral vector:

$$
R=(3,2,3,1) \quad R^{*}=(4,3,2,0, \ldots, 0)
$$

Existence Theorem for $A(R, S)$

Theorem (Gale-Ryser, 1957)
If $R=\left(r_{1}, r_{2}, \ldots, r_{m}\right)$ and $S=\left(s_{1}, s_{2}, \ldots, s_{n}\right)$ are nonnegative integral vectors such that S is nonincreasing, then there exists an $m \times n,(0,1)$-matrix with row sum vector R and column sum vector S if and only if $S \preceq R^{*}$.

Existence Theorem for $A(R, S)$

> Theorem (Gale-Ryser, 1957)
> If $R=\left(r_{1}, r_{2}, \ldots, r_{m}\right)$ and $S=\left(s_{1}, s_{2}, \ldots, s_{n}\right)$ are nonnegative integral vectors such that S is nonincreasing, then there exists an $m \times n,(0,1)$-matrix with row sum vector R and column sum vector S if and only if $S \preceq R^{*}$.

For $A_{1}(R, S)$,
$S \preceq\left(r_{1}+r_{2}, r_{3}+r_{4}, r_{5}\right)^{*}$
$S \preceq\left(r_{1}+r_{2}, r_{3}, r_{4}+r_{5}\right)^{*}$
$S \preceq\left(r_{1}, r_{2}+r_{3}, r_{4}+r_{5}\right)^{*}$

Definition

$$
\text { Let } Q_{R}=\left\{\left(r_{1}+r_{2}, r_{3}+r_{4}, r_{5}\right),\left(r_{1}+r_{2}, r_{3}, r_{4}+r_{5}\right),\left(r_{1}, r_{2}+r_{3}, r_{4}+r_{5}\right)\right\} \text {. }
$$

Definition

Let $Q_{R}=\left\{\left(r_{1}+r_{2}, r_{3}+r_{4}, r_{5}\right),\left(r_{1}+r_{2}, r_{3}, r_{4}+r_{5}\right),\left(r_{1}, r_{2}+r_{3}, r_{4}+r_{5}\right)\right\}$.
Observation: If $A_{1}(R, S)$ is nonempty then $S \preceq q^{*}$ for all $q \in Q_{R}$.

Definition

Let $Q_{R}=\left\{\left(r_{1}+r_{2}, r_{3}+r_{4}, r_{5}\right),\left(r_{1}+r_{2}, r_{3}, r_{4}+r_{5}\right),\left(r_{1}, r_{2}+r_{3}, r_{4}+r_{5}\right)\right\}$.
Observation: If $A_{1}(R, S)$ is nonempty then $S \preceq q^{*}$ for all $q \in Q_{R}$.
Is this condition sufficient to show $A_{1}(R, S)$ is nonempty?

Existence Theorem for $A_{1}(R, S)$

Theorem (N., Shader)

If $R=\left(r_{1}, r_{2}, \ldots, r_{m}\right)$ and $S=\left(s_{1}, s_{2}, \ldots, s_{n}\right)$ are nonnegative integral vectors such that S is nonincreasing, then there exists an $m \times n$ $(0,1)$-matrix with no two 1 's occurring consecutively in a column and with row sum vector R and column sum vector S if and only if

$$
S \preceq q^{*} \quad \forall q \in Q_{R} .
$$

Proofs of the Gale-Ryser Theorem

-direct combinatorial arguments
-network flows

Proofs of the Gale-Ryser Theorem

-direct combinatorial arguments
-network flows

Network Flow for $A(R, S)$

$$
\left[\begin{array}{lll}
1 & 1 & 0 \\
0 & 0 & 1 \\
1 & 0 & 0
\end{array}\right]
$$

For $A(R, S)$

Existence Theorem for $A_{1}(R, S)$

Proof.
Main idea: Induction

Existence Theorem for $A_{1}(R, S)$

Proof.
Main idea: Induction

- Induct on n (the number of columns).

Existence Theorem for $A_{1}(R, S)$

Proof.
Main idea: Induction

- Induct on n (the number of columns).
- Induct on s_{n} (the number of 1 's in the last column).

Existence Theorem for $A_{1}(R, S)$

Proof.
Main idea: Induction

- Induct on n (the number of columns).
- Induct on s_{n} (the number of 1's in the last column).
- Carefully choose a r_{i} to decrease by 1 and decrease s_{n} by 1 .

Existence Theorem for $A_{1}(R, S)$

Proof.

Main idea: Induction

- Induct on n (the number of columns).
- Induct on s_{n} (the number of 1's in the last column).
- Carefully choose a r_{i} to decrease by 1 and decrease s_{n} by 1 .
- Argue that the inductive hypotheses hold.

Existence Theorem for $A_{1}(R, S)$

Proof.

Main idea: Induction

- Induct on n (the number of columns).
- Induct on s_{n} (the number of 1's in the last column).
- Carefully choose a r_{i} to decrease by 1 and decrease s_{n} by 1 .
- Argue that the inductive hypotheses hold.
- Let M be a $(0,1)$-matrix in

$$
A_{1}\left(\left(r_{1}, r_{2}, \ldots, r_{i}-1, \ldots, r_{m}\right),\left(s_{1}, \ldots, s_{n}-1\right)\right)
$$

Existence Theorem for $A_{1}(R, S)$

Proof.

Main idea: Induction

- Induct on n (the number of columns).
- Induct on s_{n} (the number of 1's in the last column).
- Carefully choose a r_{i} to decrease by 1 and decrease s_{n} by 1 .
- Argue that the inductive hypotheses hold.
- Let M be a $(0,1)$-matrix in $A_{1}\left(\left(r_{1}, r_{2}, \ldots, r_{i}-1, \ldots, r_{m}\right),\left(s_{1}, \ldots, s_{n}-1\right)\right)$.
- If there is a 1 in the (i, n) position, argue that with a switch this can be changed to a 0 .

Existence Theorem for $A_{1}(R, S)$

Proof.

Main idea: Induction

- Induct on n (the number of columns).
- Induct on s_{n} (the number of 1's in the last column).
- Carefully choose a r_{i} to decrease by 1 and decrease s_{n} by 1 .
- Argue that the inductive hypotheses hold.
- Let M be a $(0,1)$-matrix in $A_{1}\left(\left(r_{1}, r_{2}, \ldots, r_{i}-1, \ldots, r_{m}\right),\left(s_{1}, \ldots, s_{n}-1\right)\right)$.
- If there is a 1 in the (i, n) position, argue that with a switch this can be changed to a 0 .
- Put a 1 in the (i, n) position and use switches to remove any consecutive 1's.

Existence Theorem for $A_{1}(R, S)$

Proof.

Main idea: Induction

- Induct on n (the number of columns).
- Induct on s_{n} (the number of 1's in the last column).
- Carefully choose a r_{i} to decrease by 1 and decrease s_{n} by 1 .
- Argue that the inductive hypotheses hold.
- Let M be a $(0,1)$-matrix in $A_{1}\left(\left(r_{1}, r_{2}, \ldots, r_{i}-1, \ldots, r_{m}\right),\left(s_{1}, \ldots, s_{n}-1\right)\right)$.
- If there is a 1 in the (i, n) position, argue that with a switch this can be changed to a 0 .
- Put a 1 in the (i, n) position and use switches to remove any consecutive 1's.
- This completes the induction on the number of 1 's in the last column and in turn the induction on the number of columns.

Graph of $A_{1}(R, S)$

Definition

The graph of $A_{1}(R, S)$ is an undirected graph with:

- vertices are the matrices in $A_{1}(R, S)$
- $M_{1} \sim M_{2}$ if and only if the matrix M_{1} can be changed to M_{2} with one basic switch.

Further Work

- Let $M \in A_{1}(R, S)$. What is the probability that a 1 occurs in position $m_{i j}$?

Further Work

- Let $M \in A_{1}(R, S)$. What is the probability that a 1 occurs in position $m_{i j}$?
- Determine statistical information about $A_{1}(R, S)$ by studying a Markov chain defined on the graph of $A_{1}(R, S)$.

Further Work

- Let $M \in A_{1}(R, S)$. What is the probability that a 1 occurs in position $m_{i j}$?
- Determine statistical information about $A_{1}(R, S)$ by studying a Markov chain defined on the graph of $A_{1}(R, S)$.
- What if every 1 is followed by j zeros: $A_{j}(R, S)$?

Further Work

- Let $M \in A_{1}(R, S)$. What is the probability that a 1 occurs in position $m_{i j}$?
- Determine statistical information about $A_{1}(R, S)$ by studying a Markov chain defined on the graph of $A_{1}(R, S)$.
- What if every 1 is followed by j zeros: $A_{j}(R, S)$?
- Further study of the network flow connection.

Further Work

References

[1] R. Brualdi
Combinatorial Matrix Classes.
Cambridge University Press, New York, 2006.
[2] R. Brualdi and H. Ryser
Combinatorial Matrix Theory.
Cambridge University Press, New York, 1991.
[3] L. Ford and D. Fulkerson
Maximal flow through a network.
Canadian Journal of Mathematics, 8:399, 1956.
[4] J. van Lint and R. Wilson
A Course in Combinatorics.
Cambridge University Press, New York, 1992.

