Gröbner bases methods in affine and projective variety codes

Cícero Carvalho Faculdade de Matemática Universidade Federal de Uberlândia

CoCoA 2015 - Combinatorics and Computer Algebra
Colorado State University, July 19-25, 2015
Partially supported by CNPq (480477/2013-2)

Facts from Gröbner bases theory

Let \mathcal{M} be the set of monomials of $k\left[X_{1}, \ldots, X_{n}\right]=: k[\mathrm{X}]$ and endow \mathcal{M} with a monomial order \prec. Given $f \in k[\mathbf{X}] \backslash\{0\}$ the leading monomial of $f(\operatorname{lm}(f))$ is the greatest monomial appearing in f. Let $I \subset k[\mathbf{X}]$ be an ideal, we say that $\left\{g_{1}, \ldots, g_{s}\right\} \subset I$ is a Gröbner basis for I (w.r.t. $\left.\prec\right)$ if the leading monomial of any nonzero polynomial in I is multiple of $\operatorname{Im}\left(g_{i}\right)$ for some $i=1, \ldots$, s. One can prove that such a set is a basis for I in the usual sense $I=\left(g_{1}, \ldots, g_{s}\right)$ and that any ideal has a Gröbner basis. A related and very important concept is the footprint of I (w.r.t. \prec) defined as
$\Delta(I)=\{M \in M \mid M$ is not the leading monomial of any polynomial in $I\}$ Buchberger (1965) proved that $\{M+I \mid M \in \Delta(I)\}$ is a basis for $k[\mathbf{X}] / /$ (considered as a k-vector space).
If I is homogeneous then $\{M+I \mid M \in \triangle(I), \operatorname{deg}(M)=d\}$ is a basis for $k[\mathbf{X}]_{d} / I(d)$.
We also have that $M \in \Delta(I)$ if and only if M is not a multiple of $\operatorname{lm}\left(g_{i}\right)$ for all $i=1$,

Facts from Gröbner bases theory

Let \mathcal{M} be the set of monomials of $k\left[X_{1}, \ldots, X_{n}\right]=: k[\mathbf{X}]$ and endow \mathcal{M} with a monomial order \prec. Given $f \in k[\mathbf{X}] \backslash\{0\}$ the leading monomial of $f(\operatorname{lm}(f))$ is the greatest monomial appearing in f. Let $I \subset k[\mathbf{X}]$ be an ideal, we say that $\left\{g_{1}, \ldots, g_{s}\right\} \subset I$ is a Gröbner basis for I (w.r.t. \prec) if the leading monomial of any nonzero polynomial in $/$ is multiple of $\operatorname{Im}\left(g_{i}\right)$ for some $i=1, \ldots$, s. One can prove that such a set is a basis for I in the usual sense $I=\left(g_{1}, \ldots, g_{s}\right)$ and that any ideal has a Gröbner basis. A related and very important concept is the footprint of I (w.r.t. \prec) defined as
$\Delta(I)=\{M \in \mathcal{M} \mid M$ is not the leading monomial of any polynomial in $I\}$
Buchberger (1965) proved that $\{M+I \mid M \in \Delta(I)\}$ is a basis for $k[\mathbf{X}] / /$ (considered as a k-vector space).
If I is homogeneous then $\{M+I \mid M \in \triangle(I), \operatorname{deg}(M)=d\}$ is a basis for $k[\mathbf{X}]_{d} / I(d)$.
We also have that $M \in \Delta(I)$ if and only if M is not a multiple of $\operatorname{lm}\left(g_{i}\right)$ for all $i=1$,

Facts from Gröbner bases theory

Let \mathcal{M} be the set of monomials of $k\left[X_{1}, \ldots, X_{n}\right]=: k[\mathbf{X}]$ and endow \mathcal{M} with a monomial order \prec. Given $f \in k[X] \backslash\{0\}$ the leading monomial of $f(\operatorname{lm}(f))$ is the greatest monomial appearing in f. Let $I \subset k[\mathbf{X}]$ be an ideal, we say that $\left\{g_{1}, \ldots, g_{s}\right\} \subset I$ is a Gröbner basis for I (w.r.t. \prec) if the leading monomial of any nonzero polynomial in I is multiple of $\operatorname{Im}\left(g_{i}\right)$ for some $i=1, \ldots$, s. One can prove that such a set is a basis for I in the usual sense $I=\left(g_{1}, \ldots, g_{s}\right)$ and that any ideal has a Gröbner basis. A related and very important concept is the footprint of I (w.r.t. \prec) defined as
$\Delta(I)=\{M \in \mathcal{M} \mid M$ is not the leading monomial of any polynomial in $I\}$
Buchberger (1965) proved that $\{M+I \mid M \in \Delta(I)\}$ is a basis for $k[\mathbf{X}] / /$ (considered as a k-vector space) If I is homogeneous then $\{M+I \mid M \in \Delta(I), \operatorname{deg}(M)=d\}$ is a basis for $k[\mathbf{X}]_{d} / I(d)$ We also have that $M \in \triangle(I)$ if and only if M is not a multiple of $\operatorname{lm}\left(g_{i}\right)$ for all $i=1$

Facts from Gröbner bases theory

Let \mathcal{M} be the set of monomials of $k\left[X_{1}, \ldots, X_{n}\right]=: k[\mathbf{X}]$ and endow \mathcal{M} with a monomial order \prec. Given $f \in k[\mathbf{X}] \backslash\{0\}$ the leading monomial of $f(\operatorname{lm}(f))$ ideal, we say that $\left\{g_{1}, \ldots, g_{s}\right\} \subset I$ is a Gröbner basis for $I($ w.r.t. $\prec)$ if the leading monomial of any nonzero polynomial in I is multiple of $\operatorname{Im}\left(g_{i}\right)$ for some $i=1, \ldots, s$. One can prove that such a set is a basis for I in the usual sense $I=\left(g_{1}, \ldots, g_{s}\right)$ and that any ideal has a Gröbner basis. A related and very important concept is the footprint of I (w.r.t. \prec) defined as
$\Delta(I)=\{M \in \mathcal{M} \mid M$ is not the leading monomial of any polynomial in $I\}$
Buchberger (1965) proved that $\{M+I \| M \in \Delta(I)\}$ is a basis for $k[\mathbf{X}] / I$ (considered as a k-vector space) If I is homogeneous then $\{M+I \mid M \in \triangle(I), \operatorname{deg}(M)=d\}$ is a basis for $k[\mathbf{X}]_{d} / I(d)$ We also have that $M \in \triangle(I)$ if and only if M is not a multiple of $\operatorname{Im}\left(g_{i}\right)$ for all $i=1$,

Facts from Gröbner bases theory

Let \mathcal{M} be the set of monomials of $k\left[X_{1}, \ldots, X_{n}\right]=: k[\mathbf{X}]$ and endow \mathcal{M} with a monomial order \prec. Given $f \in k[\mathbf{X}] \backslash\{0\}$ the leading monomial of $f(\operatorname{lm}(f))$ is the greatest monomial appearing in f.
ideal, we say that $\left\{g_{1}, \ldots, g_{s}\right\} \subset I$ is a Gröbner basis for $I($ w.r.t. $\prec)$ if the
leading monomial of any nonzero polynomial in I is multiple of $\operatorname{Im}\left(g_{i}\right)$ for
some $i=1, \ldots, s$. One can prove that such a set is a basis for I in the
usual sense $I=\left(g_{1}, \ldots, g_{s}\right)$ and that any ideal has a Gröbner basis.
A related and very important concept is the footprint of I (w.r.t. $\prec)$
defined as
$\triangle(I)=\{M \in \mathcal{M} \mid M$ is not the leading monomial of any polynomial in $I\}$

Buchberger (1965) proved that $\{M+I \mid M \in \Delta(I)\}$ is a basis for $k[\mathbf{X}] / I$ (considered as a k-vector space) If I is homogeneous then $\{M+I \mid M \in \triangle(I), \operatorname{deg}(M)=d\}$ is a basis for $k[\mathbf{X}]_{d} / I(d)$ We also have that $M \in \triangle(I)$ if and only if M is not a multiple of $\operatorname{Im}\left(g_{i}\right)$ for all $i=1$.

Facts from Gröbner bases theory

Let \mathcal{M} be the set of monomials of $k\left[X_{1}, \ldots, X_{n}\right]=: k[\mathbf{X}]$ and endow \mathcal{M} with a monomial order \prec. Given $f \in k[\mathbf{X}] \backslash\{0\}$ the leading monomial of $f(\operatorname{lm}(f))$ is the greatest monomial appearing in f. Let $I \subset k[\mathbf{X}]$ be an ideal,
 Buchberger (1965) proved that $\{M+I \mid M \in \Delta(I)\}$ is a basis for $k[\mathbf{X}] / I$ (considered as a k-vector space) If I is homogeneous then $\{M+I \mid M \in \triangle(I), \operatorname{deg}(M)=d\}$ is a basis for $k[\mathbf{X}]_{d} / I(d)$ We also have that $M \in \triangle(I)$ if and only if M is not a multiple of $\operatorname{Im}\left(g_{i}\right)$ for all $i=1$.

Facts from Gröbner bases theory

Let \mathcal{M} be the set of monomials of $k\left[X_{1}, \ldots, X_{n}\right]=: k[\mathbf{X}]$ and endow \mathcal{M} with a monomial order \prec. Given $f \in k[\mathbf{X}] \backslash\{0\}$ the leading monomial of $f(\operatorname{lm}(f))$ is the greatest monomial appearing in f. Let $I \subset k[\mathbf{X}]$ be an ideal, we say that $\left\{g_{1}, \ldots, g_{s}\right\} \subset I$ is a Gröbner basis for I (w.r.t. $\left.\prec\right)$ leading monomial of any nonzero polynomial in I is multiple of $\operatorname{Im}\left(g_{i}\right)$ for
some $i=1, \ldots, s$. One can prove that such a set is a basis for I in the
usual sense $I=\left(g_{1}, \ldots, g_{s}\right)$ and that any ideal has a Gröbner basis.
A related and very important concept is the footprint of I (w.r.t. $\prec)$
defined as
$\Delta(I)=\{M \in \mathcal{M} \mid M$ is not the leading monomial of any polynomial in $I\}$ Buchberger (1965) proved that $\{M+I \mid M \in \Delta(I)\}$ is a basis for $k[\mathbf{X}] / I$ (considered as a k-vector space) If I is homogeneous then $\{M+I \mid M \in \triangle(I), \operatorname{deg}(M)=d\}$ is a basis for $k[\mathbf{X}]_{d} / I(d)$ We also have that $M \in \triangle(I)$ if and only if M is not a multiple of $\operatorname{Im}\left(g_{i}\right)$

Facts from Gröbner bases theory

Let \mathcal{M} be the set of monomials of $k\left[X_{1}, \ldots, X_{n}\right]=: k[\mathbf{X}]$ and endow \mathcal{M} with a monomial order \prec. Given $f \in k[\mathbf{X}] \backslash\{0\}$ the leading monomial of $f(\operatorname{lm}(f))$ is the greatest monomial appearing in f. Let $l \subset k[\mathbf{X}]$ be an ideal, we say that $\left\{g_{1}, \ldots, g_{s}\right\} \subset I$ is a Gröbner basis for I (w.r.t. \prec) if the leading monomial of any nonzero polynomial in I is multiple of $\operatorname{Im}\left(g_{i}\right)$ for some $i=1, \ldots$, s.
usual sense $I=\left(g_{1}\right.$
g_{s}) and that any ideal has a Gröbner basis.
A related and very important concept is the footprint of I (w.r.t. \prec)
defined as
$\Delta(I)=\{M \in M \mid M$ is not the leading monomial of any polynomial in $I\}$
Buchberger (1965) proved that $\{M+I \mid M \in \Delta(I)\}$ is a basis for $k[X] / I$ (considered as a k-vector space)
If I is homogeneous then $\{M+I \mid M \in \triangle(I), \operatorname{deg}(M)=d\}$ is a basis for We also have that $M \in \Delta(I)$ if and only if M is not a multiple of $\operatorname{Im}\left(g_{i}\right)$

Facts from Gröbner bases theory

Let \mathcal{M} be the set of monomials of $k\left[X_{1}, \ldots, X_{n}\right]=: k[\mathbf{X}]$ and endow \mathcal{M} with a monomial order \prec. Given $f \in k[\mathbf{X}] \backslash\{0\}$ the leading monomial of $f(\operatorname{lm}(f))$ is the greatest monomial appearing in f. Let $I \subset k[\mathbf{X}]$ be an ideal, we say that $\left\{g_{1}, \ldots, g_{s}\right\} \subset I$ is a Gröbner basis for I (w.r.t. \prec) if the leading monomial of any nonzero polynomial in I is multiple of $\operatorname{Im}\left(g_{i}\right)$ for some $i=1, \ldots, s$. One can prove that such a set is a basis for I in the usual sense $I=\left(g_{1}, \ldots, g_{s}\right)$

Facts from Gröbner bases theory

Let \mathcal{M} be the set of monomials of $k\left[X_{1}, \ldots, X_{n}\right]=: k[\mathbf{X}]$ and endow \mathcal{M} with a monomial order \prec. Given $f \in k[\mathbf{X}] \backslash\{0\}$ the leading monomial of $f(\operatorname{lm}(f))$ is the greatest monomial appearing in f. Let $I \subset k[\mathbf{X}]$ be an ideal, we say that $\left\{g_{1}, \ldots, g_{s}\right\} \subset I$ is a Gröbner basis for I (w.r.t. \prec) if the leading monomial of any nonzero polynomial in I is multiple of $\operatorname{Im}\left(g_{i}\right)$ for some $i=1, \ldots, s$. One can prove that such a set is a basis for I in the usual sense $I=\left(g_{1}, \ldots, g_{s}\right)$ and that any ideal has a Gröbner basis.

Facts from Gröbner bases theory

Let \mathcal{M} be the set of monomials of $k\left[X_{1}, \ldots, X_{n}\right]=: k[\mathbf{X}]$ and endow \mathcal{M} with a monomial order \prec. Given $f \in k[\mathbf{X}] \backslash\{0\}$ the leading monomial of $f(\operatorname{lm}(f))$ is the greatest monomial appearing in f. Let $I \subset k[\mathbf{X}]$ be an ideal, we say that $\left\{g_{1}, \ldots, g_{s}\right\} \subset I$ is a Gröbner basis for I (w.r.t. \prec) if the leading monomial of any nonzero polynomial in I is multiple of $\operatorname{Im}\left(g_{i}\right)$ for some $i=1, \ldots$, s. One can prove that such a set is a basis for I in the usual sense $I=\left(g_{1}, \ldots, g_{s}\right)$ and that any ideal has a Gröbner basis. A related and very important concept is the footprint of I (w.r.t. \prec) defined as $\Delta(I)=\{M \in \mathcal{M} \mid M$ is not the leading monomial of any polynomial in $I\}$ Buchberger (1965) proved that $\{M+I \mid M \in \Delta(I)\}$ is a basis for $k[\mathbf{X}] / I$ (considered as a k-vector space) If I is homogeneous then $\{M+I \mid M \in \triangle(I), \operatorname{deg}(M)=d\}$ is a basis for We also have that $M \in \Delta(I)$ if and only if M is not a multiple of $\operatorname{Im}\left(g_{i}\right)$

Facts from Gröbner bases theory

Let \mathcal{M} be the set of monomials of $k\left[X_{1}, \ldots, X_{n}\right]=: k[\mathbf{X}]$ and endow \mathcal{M} with a monomial order \prec. Given $f \in k[\mathbf{X}] \backslash\{0\}$ the leading monomial of $f(\operatorname{lm}(f))$ is the greatest monomial appearing in f. Let $I \subset k[\mathbf{X}]$ be an ideal, we say that $\left\{g_{1}, \ldots, g_{s}\right\} \subset I$ is a Gröbner basis for I (w.r.t. \prec) if the leading monomial of any nonzero polynomial in I is multiple of $\operatorname{Im}\left(g_{i}\right)$ for some $i=1, \ldots$, s. One can prove that such a set is a basis for I in the usual sense $I=\left(g_{1}, \ldots, g_{s}\right)$ and that any ideal has a Gröbner basis.
A related and very important concept is the footprint of I (w.r.t. \prec) defined as
$\Delta(I)=\{M \in \mathcal{M} \mid M$ is not the leading monomial of any polynomial in $I\}$

We also have that $M \in \Delta(I)$ if and only if M is not a multiple of $\operatorname{Im}\left(g_{i}\right)$

Facts from Gröbner bases theory

Let \mathcal{M} be the set of monomials of $k\left[X_{1}, \ldots, X_{n}\right]=: k[\mathbf{X}]$ and endow \mathcal{M} with a monomial order \prec. Given $f \in k[\mathbf{X}] \backslash\{0\}$ the leading monomial of $f(\operatorname{lm}(f))$ is the greatest monomial appearing in f. Let $I \subset k[\mathbf{X}]$ be an ideal, we say that $\left\{g_{1}, \ldots, g_{s}\right\} \subset I$ is a Gröbner basis for I (w.r.t. \prec) if the leading monomial of any nonzero polynomial in I is multiple of $\operatorname{Im}\left(g_{i}\right)$ for some $i=1, \ldots, s$. One can prove that such a set is a basis for I in the usual sense $I=\left(g_{1}, \ldots, g_{s}\right)$ and that any ideal has a Gröbner basis.
A related and very important concept is the footprint of I (w.r.t. \prec) defined as
$\Delta(I)=\{M \in \mathcal{M} \mid M$ is not the leading monomial of any polynomial in $I\}$ Buchberger (1965) proved that $\{M+I \mid M \in \Delta(I)\}$ is a basis for $k[\mathbf{X}] / I$ (considered as a k-vector space).

We also have that $M \in \Delta(I)$ if and only if M is not a multiple of $\operatorname{lm}\left(g_{i}\right)$

Facts from Gröbner bases theory

Let \mathcal{M} be the set of monomials of $k\left[X_{1}, \ldots, X_{n}\right]=: k[\mathbf{X}]$ and endow \mathcal{M} with a monomial order \prec. Given $f \in k[\mathbf{X}] \backslash\{0\}$ the leading monomial of $f(\operatorname{lm}(f))$ is the greatest monomial appearing in f. Let $I \subset k[\mathbf{X}]$ be an ideal, we say that $\left\{g_{1}, \ldots, g_{s}\right\} \subset I$ is a Gröbner basis for I (w.r.t. \prec) if the leading monomial of any nonzero polynomial in I is multiple of $\operatorname{Im}\left(g_{i}\right)$ for some $i=1, \ldots, s$. One can prove that such a set is a basis for I in the usual sense $I=\left(g_{1}, \ldots, g_{s}\right)$ and that any ideal has a Gröbner basis.
A related and very important concept is the footprint of I (w.r.t. \prec) defined as
$\Delta(I)=\{M \in \mathcal{M} \mid M$ is not the leading monomial of any polynomial in $I\}$ Buchberger (1965) proved that $\{M+I \mid M \in \Delta(I)\}$ is a basis for $k[\mathbf{X}] / I$ (considered as a k-vector space). If I is homogeneous then $\{M+I \mid M \in \triangle(I), \operatorname{deg}(M)=d\}$ is a basis for We also have that $M \in \Delta(I)$ if and only if M is not a multiple of $\operatorname{Im}\left(g_{i}\right)$

Facts from Gröbner bases theory

Let \mathcal{M} be the set of monomials of $k\left[X_{1}, \ldots, X_{n}\right]=: k[\mathbf{X}]$ and endow \mathcal{M} with a monomial order \prec. Given $f \in k[\mathbf{X}] \backslash\{0\}$ the leading monomial of $f(\operatorname{lm}(f))$ is the greatest monomial appearing in f. Let $I \subset k[\mathbf{X}]$ be an ideal, we say that $\left\{g_{1}, \ldots, g_{s}\right\} \subset I$ is a Gröbner basis for I (w.r.t. \prec) if the leading monomial of any nonzero polynomial in I is multiple of $\operatorname{Im}\left(g_{i}\right)$ for some $i=1, \ldots, s$. One can prove that such a set is a basis for I in the usual sense $I=\left(g_{1}, \ldots, g_{s}\right)$ and that any ideal has a Gröbner basis.
A related and very important concept is the footprint of I (w.r.t. \prec) defined as
$\Delta(I)=\{M \in \mathcal{M} \mid M$ is not the leading monomial of any polynomial in $I\}$ Buchberger (1965) proved that $\{M+I \mid M \in \Delta(I)\}$ is a basis for $k[\mathbf{X}] / I$ (considered as a k-vector space).
If l is homogeneous

$$
k[\mathbf{X}] / I=\bigoplus_{d=0}^{\infty} k[\mathbf{X}]_{d} / I(d)
$$

Facts from Gröbner bases theory

Let \mathcal{M} be the set of monomials of $k\left[X_{1}, \ldots, X_{n}\right]=: k[\mathbf{X}]$ and endow \mathcal{M} with a monomial order \prec. Given $f \in k[\mathbf{X}] \backslash\{0\}$ the leading monomial of $f(\operatorname{lm}(f))$ is the greatest monomial appearing in f. Let $I \subset k[\mathbf{X}]$ be an ideal, we say that $\left\{g_{1}, \ldots, g_{s}\right\} \subset I$ is a Gröbner basis for I (w.r.t. \prec) if the leading monomial of any nonzero polynomial in I is multiple of $\operatorname{Im}\left(g_{i}\right)$ for some $i=1, \ldots, s$. One can prove that such a set is a basis for I in the usual sense $I=\left(g_{1}, \ldots, g_{s}\right)$ and that any ideal has a Gröbner basis.
A related and very important concept is the footprint of I (w.r.t. \prec) defined as
$\Delta(I)=\{M \in \mathcal{M} \mid M$ is not the leading monomial of any polynomial in $I\}$ Buchberger (1965) proved that $\{M+I \mid M \in \Delta(I)\}$ is a basis for $k[\mathbf{X}] / I$ (considered as a k-vector space).
If I is homogeneous then $\{M+I \mid M \in \Delta(I), \operatorname{deg}(M)=d\}$ is a basis for $k[\mathbf{X}]_{d} / I(d)$.
We also have that $M \in \Delta(I)$ if and only if M is not a multiple of $\operatorname{Im}\left(g_{i}\right)$

Facts from Gröbner bases theory

Let \mathcal{M} be the set of monomials of $k\left[X_{1}, \ldots, X_{n}\right]=: k[\mathbf{X}]$ and endow \mathcal{M} with a monomial order \prec. Given $f \in k[\mathbf{X}] \backslash\{0\}$ the leading monomial of $f(\operatorname{lm}(f))$ is the greatest monomial appearing in f. Let $I \subset k[\mathbf{X}]$ be an ideal, we say that $\left\{g_{1}, \ldots, g_{s}\right\} \subset I$ is a Gröbner basis for I (w.r.t. \prec) if the leading monomial of any nonzero polynomial in I is multiple of $\operatorname{Im}\left(g_{i}\right)$ for some $i=1, \ldots, s$. One can prove that such a set is a basis for I in the usual sense $I=\left(g_{1}, \ldots, g_{s}\right)$ and that any ideal has a Gröbner basis.
A related and very important concept is the footprint of I (w.r.t. \prec) defined as
$\Delta(I)=\{M \in \mathcal{M} \mid M$ is not the leading monomial of any polynomial in $I\}$ Buchberger (1965) proved that $\{M+I \mid M \in \Delta(I)\}$ is a basis for $k[\mathbf{X}] / I$ (considered as a k-vector space).
If I is homogeneous then $\{M+I \mid M \in \Delta(I), \operatorname{deg}(M)=d\}$ is a basis for $k[\mathbf{X}]_{d} / I(d)$.
We also have that $M \in \Delta(I)$ if and only if M is not a multiple of $\operatorname{Im}\left(g_{i}\right)$ for all $i=1, \ldots, s$.

Gröbner bases and coding theory

A (linear error correcting) code of length N defined over \mathbb{F}_{q} is an \mathbb{F}_{q}-vector subspace $C \subset \mathbb{F}_{q}^{N}$.

Gröbner bases and coding theory

A (linear error correcting) code of length N defined over \mathbb{F}_{q} is an $\mathbb{F}_{q^{-}}$-vector subspace $C \subset \mathbb{F}_{q}^{N}$. Given an N-tuple $\boldsymbol{\alpha}=\left(\alpha_{1}, \ldots, \alpha_{N}\right) \in \mathbb{F}_{q}^{N}$ the weight of $\boldsymbol{\alpha}$ is $w(\boldsymbol{\alpha})=\#\left\{i \mid \alpha_{i} \neq 0\right\}$
 the following way. Let $I_{X} \subset \mathbb{F}_{q}\left[X_{0}, \ldots, X_{N}\right]=\mathbb{F}_{q}[\mathbf{X}]$ be the ideal of X and let $\varphi: \mathbb{F}_{q}[\mathbf{X}] / I_{X} \rightarrow \mathbb{F}_{q}^{N}$ be given by $\varphi\left(f+I_{X}\right)=\left(f\left(P_{1}\right), \ldots, f\left(P_{N}\right)\right)$ It is not difficult to show that φ is an isomorphism of \mathbb{F}_{q}-vector spaces. Thus, for any subspace $L \subset \mathbb{F}_{q}[\mathrm{X}] / I_{X}$ we have a code $C_{L}:=\varphi(L)$ Let d be a nonnegative integer and let $L_{d}:=\left\{f+I_{X} \mid f=0\right.$ or $\left.\operatorname{deg}(f) \leq d\right\}$ In this case we say that $C_{L_{d}}$ is "of Reed-Muller type" and has order d. From Buchberger's result we know that the classes of the monomials in $\Delta\left(I_{X}\right)$) form a basis for $\mathbb{F}_{q}[\mathbf{X}] / I_{X}$ (in particular $\#\left(\Delta\left(I_{X}\right)\right)=N$) and one may prove that the set $\triangle\left(I_{X}\right)_{d}:=\left\{M+I_{X} \mid M \in \triangle\left(I_{X}\right), \operatorname{deg}(M) \leq d\right\}$ is a basis for L_{d}, so that $\operatorname{dim}\left(C_{L_{d}}\right)=\#\left(\Delta\left(I_{X}\right)_{d}\right)$.

Gröbner bases and coding theory

A (linear error correcting) code of length N defined over \mathbb{F}_{q} is an \mathbb{F}_{q}-vector subspace $C \subset \mathbb{F}_{q}^{N}$. Given an N-tuple $\boldsymbol{\alpha}=\left(\alpha_{1}, \ldots, \alpha_{N}\right) \in \mathbb{F}_{q}^{N}$ the weight of $\boldsymbol{\alpha}$ is $w(\boldsymbol{\alpha})=\#\left\{i \mid \alpha_{i} \neq 0\right\}$ and the minimum distance of C is $d_{\text {min }}(C):=\min \{w(\boldsymbol{\alpha}) \mid \boldsymbol{\alpha} \in C \backslash\{\mathbf{0}\}\}$.

Gröbner bases and coding theory

A (linear error correcting) code of length N defined over \mathbb{F}_{q} is an \mathbb{F}_{q}-vector subspace $C \subset \mathbb{F}_{q}^{N}$. Given an N-tuple $\boldsymbol{\alpha}=\left(\alpha_{1}, \ldots, \alpha_{N}\right) \in \mathbb{F}_{q}^{N}$ the weight of $\boldsymbol{\alpha}$ is $w(\boldsymbol{\alpha})=\#\left\{i \mid \alpha_{i} \neq 0\right\}$ and the minimum distance of C is $d_{\text {min }}(C):=\min \{w(\boldsymbol{\alpha}) \mid \boldsymbol{\alpha} \in C \backslash\{\mathbf{0}\}\}$.
One may use a set $X=\left\{P_{1}, \ldots, P_{N}\right\} \subset \mathbb{A}^{N}\left(\mathbb{F}_{q}\right)$ to construct a code in the following way.

Gröbner bases and coding theory

A (linear error correcting) code of length N defined over \mathbb{F}_{q} is an \mathbb{F}_{q}-vector subspace $C \subset \mathbb{F}_{q}^{N}$. Given an N-tuple $\boldsymbol{\alpha}=\left(\alpha_{1}, \ldots, \alpha_{N}\right) \in \mathbb{F}_{q}^{N}$ the weight of $\boldsymbol{\alpha}$ is $w(\boldsymbol{\alpha})=\#\left\{i \mid \alpha_{i} \neq 0\right\}$ and the minimum distance of C is $d_{\text {min }}(C):=\min \{w(\boldsymbol{\alpha}) \mid \boldsymbol{\alpha} \in C \backslash\{\mathbf{0}\}\}$.
One may use a set $X=\left\{P_{1}, \ldots, P_{N}\right\} \subset \mathbb{A}^{N}\left(\mathbb{F}_{q}\right)$ to construct a code in the following way. Let $I_{X} \subset \mathbb{F}_{q}\left[X_{0}, \ldots, X_{N}\right]=\mathbb{F}_{q}[\mathbf{X}]$ be the ideal of X

Gröbner bases and coding theory

A (linear error correcting) code of length N defined over \mathbb{F}_{q} is an \mathbb{F}_{q}-vector subspace $C \subset \mathbb{F}_{q}^{N}$. Given an N-tuple $\boldsymbol{\alpha}=\left(\alpha_{1}, \ldots, \alpha_{N}\right) \in \mathbb{F}_{q}^{N}$ the weight of $\boldsymbol{\alpha}$ is $w(\boldsymbol{\alpha})=\#\left\{i \mid \alpha_{i} \neq 0\right\}$ and the minimum distance of C is $d_{\text {min }}(C):=\min \{w(\boldsymbol{\alpha}) \mid \boldsymbol{\alpha} \in C \backslash\{\mathbf{0}\}\}$.
One may use a set $X=\left\{P_{1}, \ldots, P_{N}\right\} \subset \mathbb{A}^{N}\left(\mathbb{F}_{q}\right)$ to construct a code in the following way. Let $I_{X} \subset \mathbb{F}_{q}\left[X_{0}, \ldots, X_{N}\right]=\mathbb{F}_{q}[\mathbf{X}]$ be the ideal of X and let $\varphi: \mathbb{F}_{q}[\mathbf{X}] / I_{X} \rightarrow \mathbb{F}_{q}^{N}$ be given by $\varphi\left(f+I_{X}\right)=\left(f\left(P_{1}\right), \ldots, f\left(P_{N}\right)\right)$.
 basis for L_{d}, so that $\operatorname{dim}\left(C_{L_{d}}\right)=\#\left(\Delta\left(I_{X}\right)_{d}\right)$.

Gröbner bases and coding theory

A (linear error correcting) code of length N defined over \mathbb{F}_{q} is an \mathbb{F}_{q}-vector subspace $C \subset \mathbb{F}_{q}^{N}$. Given an N-tuple $\boldsymbol{\alpha}=\left(\alpha_{1}, \ldots, \alpha_{N}\right) \in \mathbb{F}_{q}^{N}$ the weight of $\boldsymbol{\alpha}$ is $w(\boldsymbol{\alpha})=\#\left\{i \mid \alpha_{i} \neq 0\right\}$ and the minimum distance of C is $d_{\text {min }}(C):=\min \{w(\boldsymbol{\alpha}) \mid \boldsymbol{\alpha} \in C \backslash\{\mathbf{0}\}\}$.
One may use a set $X=\left\{P_{1}, \ldots, P_{N}\right\} \subset \mathbb{A}^{N}\left(\mathbb{F}_{q}\right)$ to construct a code in the following way. Let $I_{X} \subset \mathbb{F}_{q}\left[X_{0}, \ldots, X_{N}\right]=\mathbb{F}_{q}[\mathbf{X}]$ be the ideal of X and let $\varphi: \mathbb{F}_{q}[\mathbf{X}] / I_{X} \rightarrow \mathbb{F}_{q}^{N}$ be given by $\varphi\left(f+I_{X}\right)=\left(f\left(P_{1}\right), \ldots, f\left(P_{N}\right)\right)$. It is not difficult to show that φ is an isomorphism of \mathbb{F}_{q}-vector spaces.

Gröbner bases and coding theory

A (linear error correcting) code of length N defined over \mathbb{F}_{q} is an \mathbb{F}_{q}-vector subspace $C \subset \mathbb{F}_{q}^{N}$. Given an N-tuple $\boldsymbol{\alpha}=\left(\alpha_{1}, \ldots, \alpha_{N}\right) \in \mathbb{F}_{q}^{N}$ the weight of $\boldsymbol{\alpha}$ is $w(\boldsymbol{\alpha})=\#\left\{i \mid \alpha_{i} \neq 0\right\}$ and the minimum distance of C is $d_{\text {min }}(C):=\min \{w(\boldsymbol{\alpha}) \mid \boldsymbol{\alpha} \in C \backslash\{\mathbf{0}\}\}$.
One may use a set $X=\left\{P_{1}, \ldots, P_{N}\right\} \subset \mathbb{A}^{N}\left(\mathbb{F}_{q}\right)$ to construct a code in the following way. Let $I_{X} \subset \mathbb{F}_{q}\left[X_{0}, \ldots, X_{N}\right]=\mathbb{F}_{q}[\mathbf{X}]$ be the ideal of X and let $\varphi: \mathbb{F}_{q}[\mathbf{X}] / I_{X} \rightarrow \mathbb{F}_{q}^{N}$ be given by $\varphi\left(f+I_{X}\right)=\left(f\left(P_{1}\right), \ldots, f\left(P_{N}\right)\right)$. It is not difficult to show that φ is an isomorphism of \mathbb{F}_{q}-vector spaces. Thus, for any subspace $L \subset \mathbb{F}_{q}[\mathbf{X}] / I_{X}$ we have a code $C_{L}:=\varphi(L)$.

\square

Gröbner bases and coding theory

A (linear error correcting) code of length N defined over \mathbb{F}_{q} is an \mathbb{F}_{q}-vector subspace $C \subset \mathbb{F}_{q}^{N}$. Given an N-tuple $\boldsymbol{\alpha}=\left(\alpha_{1}, \ldots, \alpha_{N}\right) \in \mathbb{F}_{q}^{N}$ the weight of $\boldsymbol{\alpha}$ is $w(\boldsymbol{\alpha})=\#\left\{i \mid \alpha_{i} \neq 0\right\}$ and the minimum distance of C is $d_{\text {min }}(C):=\min \{w(\boldsymbol{\alpha}) \mid \boldsymbol{\alpha} \in C \backslash\{\mathbf{0}\}\}$.
One may use a set $X=\left\{P_{1}, \ldots, P_{N}\right\} \subset \mathbb{A}^{N}\left(\mathbb{F}_{q}\right)$ to construct a code in the following way. Let $I_{X} \subset \mathbb{F}_{q}\left[X_{0}, \ldots, X_{N}\right]=\mathbb{F}_{q}[\mathbf{X}]$ be the ideal of X and let $\varphi: \mathbb{F}_{q}[\mathbf{X}] / I_{X} \rightarrow \mathbb{F}_{q}^{N}$ be given by $\varphi\left(f+I_{X}\right)=\left(f\left(P_{1}\right), \ldots, f\left(P_{N}\right)\right)$. It is not difficult to show that φ is an isomorphism of \mathbb{F}_{q}-vector spaces. Thus, for any subspace $L \subset \mathbb{F}_{q}[\mathbf{X}] / I_{X}$ we have a code $C_{L}:=\varphi(L)$. Let d be a nonnegative integer and let $L_{d}:=\left\{f+I_{X} \mid f=0\right.$ or $\left.\operatorname{deg}(f) \leq d\right\}$.
In this case we say that $C_{L_{d}}$ is "of Reed-Muller type" and has order d.
From Buchberger's result we know that the classes of the monomials in $\left.\wedge\left(I_{V}\right)\right)$ form a hasis for $\mathbb{F}_{q}[X] / I_{V}\left(\right.$ in narticular $\left.\#\left(\Lambda\left(I_{V}\right)\right)=M\right)$ and one may prove that the set $\Delta(I X)_{d}:=\{M+I X \mid M \in \Delta(I X), \operatorname{deg}(M) \leq d\}$ is a basis for L_{d}, so that $\operatorname{dim}\left(C_{L_{d}}\right)=\#\left(\Delta\left(I_{X}\right)_{d}\right)$.

Gröbner bases and coding theory

A (linear error correcting) code of length N defined over \mathbb{F}_{q} is an \mathbb{F}_{q}-vector subspace $C \subset \mathbb{F}_{q}^{N}$. Given an N-tuple $\boldsymbol{\alpha}=\left(\alpha_{1}, \ldots, \alpha_{N}\right) \in \mathbb{F}_{q}^{N}$ the weight of $\boldsymbol{\alpha}$ is $w(\boldsymbol{\alpha})=\#\left\{i \mid \alpha_{i} \neq 0\right\}$ and the minimum distance of C is $d_{\text {min }}(C):=\min \{w(\boldsymbol{\alpha}) \mid \boldsymbol{\alpha} \in C \backslash\{\mathbf{0}\}\}$.
One may use a set $X=\left\{P_{1}, \ldots, P_{N}\right\} \subset \mathbb{A}^{N}\left(\mathbb{F}_{q}\right)$ to construct a code in the following way. Let $I_{X} \subset \mathbb{F}_{q}\left[X_{0}, \ldots, X_{N}\right]=\mathbb{F}_{q}[\mathbf{X}]$ be the ideal of X and let $\varphi: \mathbb{F}_{q}[\mathbf{X}] / I_{X} \rightarrow \mathbb{F}_{q}^{N}$ be given by $\varphi\left(f+I_{X}\right)=\left(f\left(P_{1}\right), \ldots, f\left(P_{N}\right)\right)$. It is not difficult to show that φ is an isomorphism of \mathbb{F}_{q}-vector spaces. Thus, for any subspace $L \subset \mathbb{F}_{q}[\mathbf{X}] / I_{X}$ we have a code $C_{L}:=\varphi(L)$.
Let d be a nonnegative integer and let
$L_{d}:=\left\{f+I_{X} \mid f=0\right.$ or $\left.\operatorname{deg}(f) \leq d\right\}$.
In this case we say that $C_{L_{d}}$ is "of Reed-Muller type" and has order d.

Gröbner bases and coding theory

A (linear error correcting) code of length N defined over \mathbb{F}_{q} is an \mathbb{F}_{q}-vector subspace $C \subset \mathbb{F}_{q}^{N}$. Given an N-tuple $\boldsymbol{\alpha}=\left(\alpha_{1}, \ldots, \alpha_{N}\right) \in \mathbb{F}_{q}^{N}$ the weight of $\boldsymbol{\alpha}$ is $w(\boldsymbol{\alpha})=\#\left\{i \mid \alpha_{i} \neq 0\right\}$ and the minimum distance of C is $d_{\text {min }}(C):=\min \{w(\boldsymbol{\alpha}) \mid \boldsymbol{\alpha} \in C \backslash\{\mathbf{0}\}\}$.
One may use a set $X=\left\{P_{1}, \ldots, P_{N}\right\} \subset \mathbb{A}^{N}\left(\mathbb{F}_{q}\right)$ to construct a code in the following way. Let $I_{X} \subset \mathbb{F}_{q}\left[X_{0}, \ldots, X_{N}\right]=\mathbb{F}_{q}[\mathbf{X}]$ be the ideal of X and let $\varphi: \mathbb{F}_{q}[\mathbf{X}] / I_{X} \rightarrow \mathbb{F}_{q}^{N}$ be given by $\varphi\left(f+I_{X}\right)=\left(f\left(P_{1}\right), \ldots, f\left(P_{N}\right)\right)$. It is not difficult to show that φ is an isomorphism of \mathbb{F}_{q}-vector spaces. Thus, for any subspace $L \subset \mathbb{F}_{q}[\mathbf{X}] / I_{X}$ we have a code $C_{L}:=\varphi(L)$.
Let d be a nonnegative integer and let
$L_{d}:=\left\{f+I_{X} \mid f=0\right.$ or $\left.\operatorname{deg}(f) \leq d\right\}$.
In this case we say that $C_{L_{d}}$ is "of Reed-Muller type" and has order d. From Buchberger's result we know that the classes of the monomials in $\left.\Delta\left(I_{X}\right)\right)$ form a basis for $\mathbb{F}_{q}[\mathbf{X}] / I_{X}$ may prove that the set $\Delta(I X)_{d}:=$ basis for L_{d}, so that $\operatorname{dim}\left(C_{L_{d}}\right)=\#\left(\Delta\left(I_{X}\right)_{d}\right)$.

Gröbner bases and coding theory

A (linear error correcting) code of length N defined over \mathbb{F}_{q} is an \mathbb{F}_{q}-vector subspace $C \subset \mathbb{F}_{q}^{N}$. Given an N-tuple $\boldsymbol{\alpha}=\left(\alpha_{1}, \ldots, \alpha_{N}\right) \in \mathbb{F}_{q}^{N}$ the weight of $\boldsymbol{\alpha}$ is $w(\boldsymbol{\alpha})=\#\left\{i \mid \alpha_{i} \neq 0\right\}$ and the minimum distance of C is $d_{\text {min }}(C):=\min \{w(\boldsymbol{\alpha}) \mid \boldsymbol{\alpha} \in C \backslash\{\mathbf{0}\}\}$.
One may use a set $X=\left\{P_{1}, \ldots, P_{N}\right\} \subset \mathbb{A}^{N}\left(\mathbb{F}_{q}\right)$ to construct a code in the following way. Let $I_{X} \subset \mathbb{F}_{q}\left[X_{0}, \ldots, X_{N}\right]=\mathbb{F}_{q}[\mathbf{X}]$ be the ideal of X and let $\varphi: \mathbb{F}_{q}[\mathbf{X}] / I_{X} \rightarrow \mathbb{F}_{q}^{N}$ be given by $\varphi\left(f+I_{X}\right)=\left(f\left(P_{1}\right), \ldots, f\left(P_{N}\right)\right)$. It is not difficult to show that φ is an isomorphism of \mathbb{F}_{q}-vector spaces. Thus, for any subspace $L \subset \mathbb{F}_{q}[\mathbf{X}] / I_{X}$ we have a code $C_{L}:=\varphi(L)$.
Let d be a nonnegative integer and let
$L_{d}:=\left\{f+I_{X} \mid f=0\right.$ or $\left.\operatorname{deg}(f) \leq d\right\}$.
In this case we say that $C_{L_{d}}$ is "of Reed-Muller type" and has order d. From Buchberger's result we know that the classes of the monomials in $\Delta\left(I_{X}\right)$) form a basis for $\mathbb{F}_{q}[\mathbf{X}] / I_{X}$ (in particular $\#\left(\Delta\left(I_{X}\right)\right)=N$)

Gröbner bases and coding theory

A (linear error correcting) code of length N defined over \mathbb{F}_{q} is an \mathbb{F}_{q}-vector subspace $C \subset \mathbb{F}_{q}^{N}$. Given an N-tuple $\boldsymbol{\alpha}=\left(\alpha_{1}, \ldots, \alpha_{N}\right) \in \mathbb{F}_{q}^{N}$ the weight of $\boldsymbol{\alpha}$ is $w(\boldsymbol{\alpha})=\#\left\{i \mid \alpha_{i} \neq 0\right\}$ and the minimum distance of C is $d_{\text {min }}(C):=\min \{w(\boldsymbol{\alpha}) \mid \boldsymbol{\alpha} \in C \backslash\{\mathbf{0}\}\}$.
One may use a set $X=\left\{P_{1}, \ldots, P_{N}\right\} \subset \mathbb{A}^{N}\left(\mathbb{F}_{q}\right)$ to construct a code in the following way. Let $I_{X} \subset \mathbb{F}_{q}\left[X_{0}, \ldots, X_{N}\right]=\mathbb{F}_{q}[\mathbf{X}]$ be the ideal of X and let $\varphi: \mathbb{F}_{q}[\mathbf{X}] / I_{X} \rightarrow \mathbb{F}_{q}^{N}$ be given by $\varphi\left(f+I_{X}\right)=\left(f\left(P_{1}\right), \ldots, f\left(P_{N}\right)\right)$. It is not difficult to show that φ is an isomorphism of \mathbb{F}_{q}-vector spaces. Thus, for any subspace $L \subset \mathbb{F}_{q}[\mathbf{X}] / I_{X}$ we have a code $C_{L}:=\varphi(L)$.
Let d be a nonnegative integer and let
$L_{d}:=\left\{f+I_{X} \mid f=0\right.$ or $\left.\operatorname{deg}(f) \leq d\right\}$.
In this case we say that $C_{L_{d}}$ is "of Reed-Muller type" and has order d.
From Buchberger's result we know that the classes of the monomials in $\Delta\left(I_{X}\right)$) form a basis for $\mathbb{F}_{q}[\mathbf{X}] / I_{X}$ (in particular $\#\left(\Delta\left(I_{X}\right)\right)=N$) and one may prove that the set $\Delta\left(I_{X}\right)_{d}:=\left\{M+I_{X} \mid M \in \Delta\left(I_{X}\right), \operatorname{deg}(M) \leq d\right\}$ is a basis for L_{d},

Gröbner bases and coding theory

A (linear error correcting) code of length N defined over \mathbb{F}_{q} is an \mathbb{F}_{q}-vector subspace $C \subset \mathbb{F}_{q}^{N}$. Given an N-tuple $\boldsymbol{\alpha}=\left(\alpha_{1}, \ldots, \alpha_{N}\right) \in \mathbb{F}_{q}^{N}$ the weight of $\boldsymbol{\alpha}$ is $w(\boldsymbol{\alpha})=\#\left\{i \mid \alpha_{i} \neq 0\right\}$ and the minimum distance of C is $d_{\text {min }}(C):=\min \{w(\boldsymbol{\alpha}) \mid \boldsymbol{\alpha} \in C \backslash\{\mathbf{0}\}\}$.
One may use a set $X=\left\{P_{1}, \ldots, P_{N}\right\} \subset \mathbb{A}^{N}\left(\mathbb{F}_{q}\right)$ to construct a code in the following way. Let $I_{X} \subset \mathbb{F}_{q}\left[X_{0}, \ldots, X_{N}\right]=\mathbb{F}_{q}[\mathbf{X}]$ be the ideal of X and let $\varphi: \mathbb{F}_{q}[\mathbf{X}] / I_{X} \rightarrow \mathbb{F}_{q}^{N}$ be given by $\varphi\left(f+I_{X}\right)=\left(f\left(P_{1}\right), \ldots, f\left(P_{N}\right)\right)$. It is not difficult to show that φ is an isomorphism of \mathbb{F}_{q}-vector spaces. Thus, for any subspace $L \subset \mathbb{F}_{q}[\mathbf{X}] / I_{X}$ we have a code $C_{L}:=\varphi(L)$.
Let d be a nonnegative integer and let
$L_{d}:=\left\{f+I_{X} \mid f=0\right.$ or $\left.\operatorname{deg}(f) \leq d\right\}$.
In this case we say that $C_{L_{d}}$ is "of Reed-Muller type" and has order d.
From Buchberger's result we know that the classes of the monomials in $\Delta\left(I_{X}\right)$) form a basis for $\mathbb{F}_{q}[\mathbf{X}] / I_{X}$ (in particular $\#\left(\Delta\left(I_{X}\right)\right)=N$) and one may prove that the set $\Delta\left(I_{X}\right)_{d}:=\left\{M+I_{X} \mid M \in \Delta\left(I_{X}\right), \operatorname{deg}(M) \leq d\right\}$ is a basis for L_{d}, so that $\operatorname{dim}\left(C_{L_{d}}\right)=\#\left(\Delta\left(I_{X}\right)_{d}\right)$.

Gröbner basis methods and the parameters of C_{L}

As for the minimum distance $d_{\min }\left(C_{L}\right)$, we would like to estimate the number of zero entries in $\varphi\left(f+I_{X}\right)=\left(f\left(P_{1}\right), \ldots, f\left(P_{N}\right)\right)$. Let $I_{X, f}:=I_{X}+(f)$, we want to estimate $N-\#\left(V\left(I_{X, f}\right)\right)$. From $I_{X} \subset I_{X, f}$ we get $\Delta\left(I_{X, f}\right) \subset \Delta\left(I_{X}\right)$, in particular $\Delta\left(I_{X, f}\right)$ is finite which implies $\#\left(V\left(I_{X, f}\right)\right) \leq \#\left(\Delta\left(I_{X, f}\right)\right)$ and we get $N-\#\left(V\left(I_{X, f}\right)\right) \geq N-\#\left(\Delta\left(I_{X, f}\right)\right)$. From Buchberger's result we can assume that f is a linear combination of monomials in $\Delta\left(I_{X}\right)$ so that $\operatorname{Im}(f) \in \Delta\left(I_{X}\right)$. It is not difficult to prove that $N-\#\left(\Delta\left(I_{X, f}\right)\right) \geq\left\{M \in \Delta\left(I_{X}\right)|\operatorname{Im}(f)| M\right\}$, so the idea now is to determine for each monomial $M^{\prime} \in \Delta\left(I_{X}\right)$ the cardinality of the set $\left\{M \in \Delta\left(I_{X}\right)\left|M^{\prime}\right| M\right\}$, and from this determine a lower bound for $d_{\min }\left(C_{L}\right)$. Moreover, it is true that if $\left\{g_{1}, \ldots, g_{s}\right\}$ is a Gröbner basis for I_{X} and $\left\{f, g_{1}, \ldots, g_{s}\right\}$ is a Gröbner basis for $I_{X, f}$ then this bound (with $\left.M^{\prime}=\operatorname{Im}(f)\right)$ is the true value of the minimum distance.
These techniques have been used to determine the parameters of codes $C_{L_{d}}$ when $X=A_{1} \times \cdots \times A_{N} \in \mathbb{A}^{N}\left(\mathbb{F}_{q}\right)$, as well as some higher Hamming weights for these codes.

Gröbner basis methods and the parameters of C_{L}

As for the minimum distance $d_{\min }\left(C_{L}\right)$, we would like to estimate the number of zero entries in $\varphi\left(f+I_{X}\right)=\left(f\left(P_{1}\right), \ldots, f\left(P_{N}\right)\right)$.
$I_{X, f}:=I_{X}+(f)$, we want to estimate $N-\#\left(V\left(I_{X, f}\right)\right)$. From $I_{X} \subset I_{X, f}$ we
get $\Delta\left(I_{X, f}\right) \subset \Delta\left(I_{X}\right)$, in particular $\Delta\left(I_{X, f}\right)$ is finite which implies
$\#\left(V\left(I_{X, f}\right)\right) \leq \#\left(\Delta\left(I_{X, f}\right)\right)$ and we get $N-\#\left(V\left(I_{X, f}\right)\right) \geq N-\#\left(\Delta\left(I_{X, f}\right)\right)$.

From Buchberger's result we can assume that f is a linear combination of monomials in $\Delta\left(I_{X}\right)$ so that $\operatorname{Im}(f) \in \Delta\left(I_{X}\right)$. It is not difficult to prove that $N-\#(\Delta(I X, f)) \geq\left\{M \in \Delta\left(I_{X}\right)|\operatorname{Im}(f)| M\right\}$, so the idea now is to determine for each monomial $M^{\prime} \in \Delta(I X)$ the cardinality of the set $\left\{M \in \Delta\left(I_{X}\right)\left|M^{\prime}\right| M\right\}$, and from this determine a lower bound for $d_{\min }\left(C_{L}\right)$. Moreover, it is true that if $\left\{g_{1}, \ldots, g_{s}\right\}$ is a Gröbner basis for I_{X} and $\left\{f, g_{1}, \ldots, g_{s}\right\}$ is a Gröbner basis for $I_{X, f}$ then this bound (with $\left.M^{\prime}=\operatorname{Im}(f)\right)$ is the true value of the minimum distance.
These techniques have been used to determine the parameters of codes $C_{L_{d}}$ when $X=A_{1} \times \cdots \times A_{N} \in \mathbb{A}^{N}\left(\mathbb{F}_{q}\right)$, as well as some higher Hamming weights for these codes.

Gröbner basis methods and the parameters of C_{L}

As for the minimum distance $d_{\min }\left(C_{L}\right)$, we would like to estimate the number of zero entries in $\varphi\left(f+I_{X}\right)=\left(f\left(P_{1}\right), \ldots, f\left(P_{N}\right)\right)$. Let $I_{X, f}:=I_{X}+(f)$,

From Buchberger's result we can assume that f is a linear combination of monomials in $\Delta\left(I_{X}\right)$ so that $\operatorname{Im}(f) \in \Delta\left(I_{X}\right)$. It is not difficult to prove that $N-\#\left(\Delta\left(I_{X, f}\right)\right) \geq\left\{M \in \Delta\left(I_{X}\right)| | m(f) \mid M\right\}$, so the idea now is to determine for each monomial $M^{\prime} \in \Delta\left(I_{X}\right)$ the cardinality of the set $\left\{M \in \Delta\left(I_{X}\right)\left|M^{\prime}\right| M\right\}$, and from this determine a lower bound for $d_{\min }\left(C_{L}\right)$. Moreover, it is true that if $\left\{g_{1}, \ldots, g_{s}\right\}$ is a Gröbner basis for I_{X} and $\left\{f, g_{1}, \ldots, g_{s}\right\}$ is a Gröbner basis for $I_{X, f}$ then this bound (with $\left.M^{\prime}=\operatorname{lm}(f)\right)$ is the true value of the minimum distance.

These techniques have been used to determine the parameters of codes $C_{L_{d}}$ when $X=A_{1} \times \cdots \times A_{N} \in \mathbb{A}^{N}\left(\mathbb{F}_{q}\right)$, as well as some higher Hamming weights for these codes.

Gröbner basis methods and the parameters of C_{L}

As for the minimum distance $d_{\text {min }}\left(C_{L}\right)$, we would like to estimate the number of zero entries in $\varphi\left(f+I_{X}\right)=\left(f\left(P_{1}\right), \ldots, f\left(P_{N}\right)\right)$. Let $I_{X, f}:=I_{X}+(f)$, we want to estimate $N-\#\left(V\left(I_{X, f}\right)\right)$.

From Buchberger's result we can assume that f is a linear combination of

 monomials in $\Delta\left(I_{X}\right)$ so that $\operatorname{Im}(f) \in \Delta\left(I_{X}\right)$. It is not difficult to prove that $N-\#(\triangle(I X, f)) \geq\{M \in \Delta(\mid X)|\operatorname{Im}(f)| M\}$, so the idea now is to determine for each monomial $M^{\prime} \in \Delta\left(I_{X}\right)$ the cardinality of the set $\left\{M \in \Delta\left(I_{X}\right)\left|M^{\prime}\right| M\right\}$, and from this determine a lower bound for $d_{\min }\left(C_{L}\right)$. Moreover, it is true that if $\left\{g_{1}, \ldots, g_{s}\right\}$ is a Gröbner basis for I_{X} and $\left\{f, g_{1}, \ldots, g_{s}\right\}$ is a Gröbner basis for $I_{X, f}$ then this bound (with $\left.M^{\prime}=\operatorname{Im}(f)\right)$ is the true value of the minimum distance. These techniques have been used to determine the parameters of codes $C_{L_{d}}$ when $X=A_{1} \times \cdots \times A_{N} \in \mathbb{A}^{N}\left(\mathbb{F}_{q}\right)$, as well as some higher Hamming weights for these codes.
Gröbner basis methods and the parameters of C_{L}

As for the minimum distance $d_{\min }\left(C_{L}\right)$, we would like to estimate the number of zero entries in $\varphi\left(f+I_{X}\right)=\left(f\left(P_{1}\right), \ldots, f\left(P_{N}\right)\right)$. Let $I_{X, f}:=I_{X}+(f)$, we want to estimate $N-\#\left(V\left(I_{X, f}\right)\right)$. From $I_{X} \subset I_{X, f}$ we get $\Delta\left(I_{X, f}\right) \subset \Delta\left(I_{X}\right)$,

From Buchberger's result we can assume that f is a linear combination of monomials in $\Delta\left(I_{X}\right)$ so that $\operatorname{Im}(f) \in \Delta\left(I_{X}\right)$. It is not difficult to prove that $N-\#(\Delta(\mid X, f)) \geq\{M \in \Delta(\mid X)|\operatorname{Im}(f)| M\}$, so the idea now is to determine for each monomial $M^{\prime} \in \Delta\left(I_{X}\right)$ the cardinality of the set $\left\{M \in \Delta\left(I_{X}\right)\left|M^{\prime}\right| M\right\}$, and from this determine a lower bound for
$d_{\min }\left(C_{L}\right)$. Moreover, it is true that if $\left\{g_{1}, \ldots, g_{s}\right\}$ is a Gröbner basis for I_{X} and $\left\{f, g_{1}, \ldots, g_{s}\right\}$ is a Gröbner basis for $I_{X, f}$ then this bound (with $\left.M^{\prime}=\operatorname{Im}(f)\right)$ is the true value of the minimum distance. These techniques have been used to determine the parameters of codes $C_{L_{d}}$ when $X=A_{1} \times \cdots \times A_{N} \in \mathbb{A}^{N}\left(\mathbb{F}_{q}\right)$, as well as some higher Hamming weights for these codes.

Gröbner basis methods and the parameters of C_{L}

As for the minimum distance $d_{\min }\left(C_{L}\right)$, we would like to estimate the number of zero entries in $\varphi\left(f+I_{X}\right)=\left(f\left(P_{1}\right), \ldots, f\left(P_{N}\right)\right)$. Let $I_{X, f}:=I_{X}+(f)$, we want to estimate $N-\#\left(V\left(I_{X, f}\right)\right)$. From $I_{X} \subset I_{X, f}$ we get $\Delta\left(I_{X, f}\right) \subset \Delta\left(I_{X}\right)$, in particular $\Delta\left(I_{X, f}\right)$ is finite

From Buchberger's result we can assume that f is a linear combination of monomials in $\Delta\left(I_{X}\right)$ so that $\operatorname{Im}(f) \in \Delta\left(I_{X}\right)$. It is not difficult to prove that $N-\#\left(\Delta\left(I_{X, f}\right)\right) \geq\left\{M \in \Delta\left(I_{X}\right)|\operatorname{Im}(f)| M\right\}$, so the idea now is to determine for each monomial $M^{\prime} \in \Delta(I X)$ the cardinality of the set $\left\{M \in \Delta\left(I_{X}\right)\left|M^{\prime}\right| M\right\}$, and from this determine a lower bound for and $\left\{f, g_{1}, \ldots, g_{s}\right\}$ is a Gröbner basis for $I_{X, f}$ then this bound (with $\left.M^{\prime}=\operatorname{Im}(f)\right)$ is the true value of the minimum distance. These techniques have been used to determine the parameters of codes $C_{L_{d}}$ when $X=A_{1} \times \cdots \times A_{N} \in \mathbb{A}^{N}\left(\mathbb{F}_{q}\right)$, as well as some higher Hamming weights for these codes.

Gröbner basis methods and the parameters of C_{L}

As for the minimum distance $d_{\min }\left(C_{L}\right)$, we would like to estimate the number of zero entries in $\varphi\left(f+I_{X}\right)=\left(f\left(P_{1}\right), \ldots, f\left(P_{N}\right)\right)$. Let $I_{X, f}:=I_{X}+(f)$, we want to estimate $N-\#\left(V\left(I_{X, f}\right)\right)$. From $I_{X} \subset I_{X, f}$ we get $\Delta\left(I_{X, f}\right) \subset \Delta\left(I_{X}\right)$, in particular $\Delta\left(I_{X, f}\right)$ is finite which implies $\#\left(V\left(I_{X, f}\right)\right) \leq \#\left(\Delta\left(I_{X, f}\right)\right)$

determine for each monomial $M^{\prime} \in \Delta\left(I_{X}\right)$ the cardinality of the set

and $\left\{f, g_{1}, \ldots, g_{s}\right\}$ is a Gröbner basis for $I_{X, f}$ then this bound (with $\left.M^{\prime}=\operatorname{Im}(f)\right)$ is the true value of the minimum distance.
These techniques have been used to determine the parameters of codes $C_{L_{d}}$ when $X=A_{1} \times \cdots \times A_{N} \in \mathbb{A}^{N}\left(\mathbb{F}_{q}\right)$, as well as some higher Hamming weights for these codes.

Gröbner basis methods and the parameters of C_{L}

As for the minimum distance $d_{\min }\left(C_{L}\right)$, we would like to estimate the number of zero entries in $\varphi\left(f+I_{X}\right)=\left(f\left(P_{1}\right), \ldots, f\left(P_{N}\right)\right)$. Let $I_{X, f}:=I_{X}+(f)$, we want to estimate $N-\#\left(V\left(I_{X, f}\right)\right)$. From $I_{X} \subset I_{X, f}$ we get $\Delta\left(I_{X, f}\right) \subset \Delta\left(I_{X}\right)$, in particular $\Delta\left(I_{X, f}\right)$ is finite which implies $\#\left(V\left(I_{X, f}\right)\right) \leq \#\left(\Delta\left(I_{X, f}\right)\right)$ and we get $N-\#\left(V\left(I_{X, f}\right)\right) \geq N-\#\left(\Delta\left(I_{X, f}\right)\right)$. From Buchberger's result we can assume that f is a linear combination of
monomials in $\Delta\left(I_{X}\right)$ so that $\operatorname{Im}(f) \in \Delta\left(I_{X}\right)$. It is not difficult to prove
that $N-\#\left(\Delta\left(I_{X, f}\right)\right) \geq\{M \in \Delta(I X)|\operatorname{Im}(f)| M\}$, so the idea now is to
determine for each monomial $M^{\prime} \in \Delta\left(I_{X}\right)$ the cardinality of the set
$\left\{M \in \Delta(I X)\left|M^{\prime}\right| M\right\}$, and from this determine a lower bound for
$d_{\min }\left(C_{L}\right)$. Moreover, it is true that if $\left\{g_{1}, \ldots, g_{s}\right\}$ is a Gröbner basis for I_{X}
and $\left\{f, g_{1}, \ldots, g_{s}\right\}$ is a Gröbner basis for $I_{X, f}$ then this bound (with
$\left.M^{\prime}=\operatorname{Im}(f)\right)$ is the true value of the minimum distance.
These techniques have been used to determine the parameters of codes
$C_{L_{d}}$ when $X=A_{1} \times \cdots \times A_{N} \in \mathbb{A}^{N}\left(\mathbb{F}_{q}\right)$, as well as some higher Hamming weights for these codes.

Gröbner basis methods and the parameters of C_{L}

As for the minimum distance $d_{\text {min }}\left(C_{L}\right)$, we would like to estimate the number of zero entries in $\varphi\left(f+I_{X}\right)=\left(f\left(P_{1}\right), \ldots, f\left(P_{N}\right)\right)$. Let $I_{X, f}:=I_{X}+(f)$, we want to estimate $N-\#\left(V\left(I_{X, f}\right)\right)$. From $I_{X} \subset I_{X, f}$ we get $\Delta\left(I_{X, f}\right) \subset \Delta\left(I_{X}\right)$, in particular $\Delta\left(I_{X, f}\right)$ is finite which implies $\#\left(V\left(I_{X, f}\right)\right) \leq \#\left(\Delta\left(I_{X, f}\right)\right)$ and we get $N-\#\left(V\left(I_{X, f}\right)\right) \geq N-\#\left(\Delta\left(I_{X, f}\right)\right)$. From Buchberger's result we can assume that f is a linear combination of monomials in $\Delta\left(I_{X}\right)$ so that $\operatorname{Im}(f) \in \Delta\left(I_{X}\right)$.
 weights for these codes.

Gröbner basis methods and the parameters of C_{L}

As for the minimum distance $d_{\text {min }}\left(C_{L}\right)$, we would like to estimate the number of zero entries in $\varphi\left(f+I_{X}\right)=\left(f\left(P_{1}\right), \ldots, f\left(P_{N}\right)\right)$. Let $I_{X, f}:=I_{X}+(f)$, we want to estimate $N-\#\left(V\left(I_{X, f}\right)\right)$. From $I_{X} \subset I_{X, f}$ we get $\Delta\left(I_{X, f}\right) \subset \Delta\left(I_{X}\right)$, in particular $\Delta\left(I_{X, f}\right)$ is finite which implies $\#\left(V\left(I_{X, f}\right)\right) \leq \#\left(\Delta\left(I_{X, f}\right)\right)$ and we get $N-\#\left(V\left(I_{X, f}\right)\right) \geq N-\#\left(\Delta\left(I_{X, f}\right)\right)$. From Buchberger's result we can assume that f is a linear combination of monomials in $\Delta\left(I_{X}\right)$ so that $\operatorname{Im}(f) \in \Delta\left(I_{X}\right)$. It is not difficult to prove that $N-\#\left(\Delta\left(I_{X, f}\right)\right) \geq\left\{M \in \Delta\left(I_{X}\right)|\operatorname{Im}(f)| M\right\}$,

weights for these codes.

Gröbner basis methods and the parameters of C_{L}

As for the minimum distance $d_{\min }\left(C_{L}\right)$, we would like to estimate the number of zero entries in $\varphi\left(f+I_{X}\right)=\left(f\left(P_{1}\right), \ldots, f\left(P_{N}\right)\right)$. Let $I_{X, f}:=I_{X}+(f)$, we want to estimate $N-\#\left(V\left(I_{X, f}\right)\right)$. From $I_{X} \subset I_{X, f}$ we get $\Delta\left(I_{X, f}\right) \subset \Delta\left(I_{X}\right)$, in particular $\Delta\left(I_{X, f}\right)$ is finite which implies $\#\left(V\left(I_{X, f}\right)\right) \leq \#\left(\Delta\left(I_{X, f}\right)\right)$ and we get $N-\#\left(V\left(I_{X, f}\right)\right) \geq N-\#\left(\Delta\left(I_{X, f}\right)\right)$. From Buchberger's result we can assume that f is a linear combination of monomials in $\Delta\left(I_{X}\right)$ so that $\operatorname{Im}(f) \in \Delta\left(I_{X}\right)$. It is not difficult to prove that $N-\#\left(\Delta\left(I_{X, f}\right)\right) \geq\left\{M \in \Delta\left(I_{X}\right)|\operatorname{Im}(f)| M\right\}$, so the idea now is to determine for each monomial $M^{\prime} \in \Delta\left(I_{X}\right)$ the cardinality of the set $\left\{M \in \Delta\left(I_{X}\right)\left|M^{\prime}\right| M\right\}$,

and $\left\{f, g_{1}, \ldots, g_{s}\right\}$ is a Gröbner basis for $I_{X, f}$ then this bound (with $\left.M^{\prime}=\operatorname{lm}(f)\right)$ is the true value of the minimum distance.

These techniques have been used to determine the parameters of codes $C_{L_{d}}$ when $X=A_{1} \times \cdots \times A_{N} \in \mathbb{A}^{N}\left(\mathbb{F}_{q}\right)$, as well as some higher Hamming weights for these codes.

Gröbner basis methods and the parameters of C_{L}

As for the minimum distance $d_{\text {min }}\left(C_{L}\right)$, we would like to estimate the number of zero entries in $\varphi\left(f+I_{X}\right)=\left(f\left(P_{1}\right), \ldots, f\left(P_{N}\right)\right)$. Let $I_{X, f}:=I_{X}+(f)$, we want to estimate $N-\#\left(V\left(I_{X, f}\right)\right)$. From $I_{X} \subset I_{X, f}$ we get $\Delta\left(I_{X, f}\right) \subset \Delta\left(I_{X}\right)$, in particular $\Delta\left(I_{X, f}\right)$ is finite which implies $\#\left(V\left(I_{X, f}\right)\right) \leq \#\left(\Delta\left(I_{X, f}\right)\right)$ and we get $N-\#\left(V\left(I_{X, f}\right)\right) \geq N-\#\left(\Delta\left(I_{X, f}\right)\right)$. From Buchberger's result we can assume that f is a linear combination of monomials in $\Delta\left(I_{X}\right)$ so that $\operatorname{Im}(f) \in \Delta\left(I_{X}\right)$. It is not difficult to prove that $N-\#\left(\Delta\left(I_{X, f}\right)\right) \geq\left\{M \in \Delta\left(I_{X}\right)|\operatorname{Im}(f)| M\right\}$, so the idea now is to determine for each monomial $M^{\prime} \in \Delta\left(I_{X}\right)$ the cardinality of the set $\left\{M \in \Delta\left(I_{X}\right)\left|M^{\prime}\right| M\right\}$, and from this determine a lower bound for $d_{\text {min }}\left(C_{L}\right)$.
and $\left\{f, g_{1}, \ldots, g_{s}\right\}$ is a Gröbner basis for $I_{X, f}$ then this bound (with $\left.M^{\prime}=\operatorname{Im}(f)\right)$ is the true value of the minimum distance. These techniques have been used to determine the parameters of codes $C_{L_{d}}$ when $X=A_{1} \times \cdots \times A_{N} \in \mathbb{A}^{N}\left(\mathbb{F}_{q}\right)$, as well as some higher Hamming weights for these codes.

Gröbner basis methods and the parameters of C_{L}

As for the minimum distance $d_{\text {min }}\left(C_{L}\right)$, we would like to estimate the number of zero entries in $\varphi\left(f+I_{X}\right)=\left(f\left(P_{1}\right), \ldots, f\left(P_{N}\right)\right)$. Let $I_{X, f}:=I_{X}+(f)$, we want to estimate $N-\#\left(V\left(I_{X, f}\right)\right)$. From $I_{X} \subset I_{X, f}$ we get $\Delta\left(I_{X, f}\right) \subset \Delta\left(I_{X}\right)$, in particular $\Delta\left(I_{X, f}\right)$ is finite which implies $\#\left(V\left(I_{X, f}\right)\right) \leq \#\left(\Delta\left(I_{X, f}\right)\right)$ and we get $N-\#\left(V\left(I_{X, f}\right)\right) \geq N-\#\left(\Delta\left(I_{X, f}\right)\right)$. From Buchberger's result we can assume that f is a linear combination of monomials in $\Delta\left(I_{X}\right)$ so that $\operatorname{Im}(f) \in \Delta\left(I_{X}\right)$. It is not difficult to prove that $N-\#\left(\Delta\left(I_{X, f}\right)\right) \geq\left\{M \in \Delta\left(I_{X}\right)|\operatorname{Im}(f)| M\right\}$, so the idea now is to determine for each monomial $M^{\prime} \in \Delta\left(I_{X}\right)$ the cardinality of the set $\left\{M \in \Delta\left(I_{X}\right)\left|M^{\prime}\right| M\right\}$, and from this determine a lower bound for $d_{\min }\left(C_{L}\right)$. Moreover, it is true that if $\left\{g_{1}, \ldots, g_{s}\right\}$ is a Gröbner basis for I_{X} and $\left\{f, g_{1}, \ldots, g_{s}\right\}$ is a Gröbner basis for $I_{X, f}$ then this bound (with
$\left.M^{\prime}=\operatorname{Im}(f)\right)$ is the true value of the minimum distance.
These techniques have been used to determine the parameters of codes
$C_{L_{d}}$ when $X=A_{1} \times \cdots \times A_{N} \in \mathbb{A}^{N}\left(\mathbb{F}_{q}\right)$, as well as some higher Hamming weights for these codes.

Gröbner basis methods and the parameters of C_{L}

As for the minimum distance $d_{\text {min }}\left(C_{L}\right)$, we would like to estimate the number of zero entries in $\varphi\left(f+I_{X}\right)=\left(f\left(P_{1}\right), \ldots, f\left(P_{N}\right)\right)$. Let $I_{X, f}:=I_{X}+(f)$, we want to estimate $N-\#\left(V\left(I_{X, f}\right)\right)$. From $I_{X} \subset I_{X, f}$ we get $\Delta\left(I_{X, f}\right) \subset \Delta\left(I_{X}\right)$, in particular $\Delta\left(I_{X, f}\right)$ is finite which implies $\#\left(V\left(I_{X, f}\right)\right) \leq \#\left(\Delta\left(I_{X, f}\right)\right)$ and we get $N-\#\left(V\left(I_{X, f}\right)\right) \geq N-\#\left(\Delta\left(I_{X, f}\right)\right)$. From Buchberger's result we can assume that f is a linear combination of monomials in $\Delta\left(I_{X}\right)$ so that $\operatorname{Im}(f) \in \Delta\left(I_{X}\right)$. It is not difficult to prove that $N-\#\left(\Delta\left(I_{X, f}\right)\right) \geq\left\{M \in \Delta\left(I_{X}\right)|\operatorname{Im}(f)| M\right\}$, so the idea now is to determine for each monomial $M^{\prime} \in \Delta\left(I_{X}\right)$ the cardinality of the set $\left\{M \in \Delta\left(I_{X}\right)\left|M^{\prime}\right| M\right\}$, and from this determine a lower bound for $d_{\text {min }}\left(C_{L}\right)$. Moreover, it is true that if $\left\{g_{1}, \ldots, g_{s}\right\}$ is a Gröbner basis for I_{X} and $\left\{f, g_{1}, \ldots, g_{s}\right\}$ is a Gröbner basis for $I_{X, f}$ then this bound (with $\left.M^{\prime}=\operatorname{lm}(f)\right)$ is the true value of the minimum distance.

These techniques have been used to determine the parameters of codes $C_{\text {L when }} X-\Delta_{1} \times \ldots \times \Delta_{N} \in \mathbb{A}_{(\mathbb{A})}$, as well as some higher Hamming weights for these codes.

Gröbner basis methods and the parameters of C_{L}

As for the minimum distance $d_{\text {min }}\left(C_{L}\right)$, we would like to estimate the number of zero entries in $\varphi\left(f+I_{X}\right)=\left(f\left(P_{1}\right), \ldots, f\left(P_{N}\right)\right)$. Let $I_{X, f}:=I_{X}+(f)$, we want to estimate $N-\#\left(V\left(I_{X, f}\right)\right)$. From $I_{X} \subset I_{X, f}$ we get $\Delta\left(I_{X, f}\right) \subset \Delta\left(I_{X}\right)$, in particular $\Delta\left(I_{X, f}\right)$ is finite which implies $\#\left(V\left(I_{X, f}\right)\right) \leq \#\left(\Delta\left(I_{X, f}\right)\right)$ and we get $N-\#\left(V\left(I_{X, f}\right)\right) \geq N-\#\left(\Delta\left(I_{X, f}\right)\right)$. From Buchberger's result we can assume that f is a linear combination of monomials in $\Delta\left(I_{X}\right)$ so that $\operatorname{Im}(f) \in \Delta\left(I_{X}\right)$. It is not difficult to prove that $N-\#\left(\Delta\left(I_{X, f}\right)\right) \geq\left\{M \in \Delta\left(I_{X}\right)|\operatorname{Im}(f)| M\right\}$, so the idea now is to determine for each monomial $M^{\prime} \in \Delta\left(I_{X}\right)$ the cardinality of the set $\left\{M \in \Delta\left(I_{X}\right)\left|M^{\prime}\right| M\right\}$, and from this determine a lower bound for $d_{\min }\left(C_{L}\right)$. Moreover, it is true that if $\left\{g_{1}, \ldots, g_{s}\right\}$ is a Gröbner basis for I_{X} and $\left\{f, g_{1}, \ldots, g_{s}\right\}$ is a Gröbner basis for $I_{X, f}$ then this bound (with $\left.M^{\prime}=\operatorname{lm}(f)\right)$ is the true value of the minimum distance.
These techniques have been used to determine the parameters of codes
$C_{L_{d}}$ when $X=A_{1} \times \cdots \times A_{N} \in \mathbb{A}^{N}\left(\mathbb{F}_{q}\right)$, as well as some higher Hamming
weights for these codes.

Gröbner basis methods and the parameters of C_{L}

As for the minimum distance $d_{\text {min }}\left(C_{L}\right)$, we would like to estimate the number of zero entries in $\varphi\left(f+I_{X}\right)=\left(f\left(P_{1}\right), \ldots, f\left(P_{N}\right)\right)$. Let $I_{X, f}:=I_{X}+(f)$, we want to estimate $N-\#\left(V\left(I_{X, f}\right)\right)$. From $I_{X} \subset I_{X, f}$ we get $\Delta\left(I_{X, f}\right) \subset \Delta\left(I_{X}\right)$, in particular $\Delta\left(I_{X, f}\right)$ is finite which implies $\#\left(V\left(I_{X, f}\right)\right) \leq \#\left(\Delta\left(I_{X, f}\right)\right)$ and we get $N-\#\left(V\left(I_{X, f}\right)\right) \geq N-\#\left(\Delta\left(I_{X, f}\right)\right)$. From Buchberger's result we can assume that f is a linear combination of monomials in $\Delta\left(I_{X}\right)$ so that $\operatorname{Im}(f) \in \Delta\left(I_{X}\right)$. It is not difficult to prove that $N-\#\left(\Delta\left(I_{X, f}\right)\right) \geq\left\{M \in \Delta\left(I_{X}\right)|\operatorname{Im}(f)| M\right\}$, so the idea now is to determine for each monomial $M^{\prime} \in \Delta\left(I_{X}\right)$ the cardinality of the set $\left\{M \in \Delta\left(I_{X}\right)\left|M^{\prime}\right| M\right\}$, and from this determine a lower bound for $d_{\min }\left(C_{L}\right)$. Moreover, it is true that if $\left\{g_{1}, \ldots, g_{s}\right\}$ is a Gröbner basis for I_{X} and $\left\{f, g_{1}, \ldots, g_{s}\right\}$ is a Gröbner basis for $I_{X, f}$ then this bound (with $\left.M^{\prime}=\operatorname{lm}(f)\right)$ is the true value of the minimum distance.
These techniques have been used to determine the parameters of codes $C_{L_{d}}$ when $X=A_{1} \times \cdots \times A_{N} \in \mathbb{A}^{N}\left(\mathbb{F}_{q}\right)$,

[^0]
Gröbner basis methods and the parameters of C_{L}

As for the minimum distance $d_{\text {min }}\left(C_{L}\right)$, we would like to estimate the number of zero entries in $\varphi\left(f+I_{X}\right)=\left(f\left(P_{1}\right), \ldots, f\left(P_{N}\right)\right)$. Let $I_{X, f}:=I_{X}+(f)$, we want to estimate $N-\#\left(V\left(I_{X, f}\right)\right)$. From $I_{X} \subset I_{X, f}$ we get $\Delta\left(I_{X, f}\right) \subset \Delta\left(I_{X}\right)$, in particular $\Delta\left(I_{X, f}\right)$ is finite which implies $\#\left(V\left(I_{X, f}\right)\right) \leq \#\left(\Delta\left(I_{X, f}\right)\right)$ and we get $N-\#\left(V\left(I_{X, f}\right)\right) \geq N-\#\left(\Delta\left(I_{X, f}\right)\right)$.
From Buchberger's result we can assume that f is a linear combination of monomials in $\Delta\left(I_{X}\right)$ so that $\operatorname{Im}(f) \in \Delta\left(I_{X}\right)$. It is not difficult to prove that $N-\#\left(\Delta\left(I_{X, f}\right)\right) \geq\left\{M \in \Delta\left(I_{X}\right)|\operatorname{Im}(f)| M\right\}$, so the idea now is to determine for each monomial $M^{\prime} \in \Delta\left(I_{X}\right)$ the cardinality of the set $\left\{M \in \Delta\left(I_{X}\right)\left|M^{\prime}\right| M\right\}$, and from this determine a lower bound for $d_{\min }\left(C_{L}\right)$. Moreover, it is true that if $\left\{g_{1}, \ldots, g_{s}\right\}$ is a Gröbner basis for I_{X} and $\left\{f, g_{1}, \ldots, g_{s}\right\}$ is a Gröbner basis for $I_{X, f}$ then this bound (with $\left.M^{\prime}=\operatorname{Im}(f)\right)$ is the true value of the minimum distance.
These techniques have been used to determine the parameters of codes $C_{L_{d}}$ when $X=A_{1} \times \cdots \times A_{N} \in \mathbb{A}^{N}\left(\mathbb{F}_{q}\right)$, as well as some higher Hamming weights for these codes.

Codes defined over projective varieties

One may also use a set $S=\left\{P_{1}, \ldots, P_{N}\right\} \subset \mathbb{P}^{\ell}\left(\mathbb{F}_{q}\right)$ to construct a code in the following way. Let $I_{S} \subset \mathbb{F}_{q}\left[X_{0}, \ldots, X_{\ell}\right]=\mathbb{F}_{q}[\mathbf{X}]$ be the (homogeneous) ideal of S. We know that $\mathbb{F}_{q}[\mathbf{X}] / I_{S}=\bigoplus_{d=0}^{\infty} \mathbb{F}_{q}[\mathbf{X}]_{d} / I_{S}(d)$, then fix a d consider the evaluation morphism $\varphi: \mathbb{F}_{q}[X]_{d} / I_{S}(d) \rightarrow \mathbb{F}_{q}^{N}$ where $\varphi\left(f+I_{X}\right)=\left(f\left(P_{1}\right), \ldots, f\left(P_{N}\right)\right)$ (with the points written in "standard notation"). Observe that φ is injective, so defining $C_{d}=\operatorname{Im}(\varphi)$ we have $\operatorname{dim}\left(C_{d}\right)=\operatorname{dim}_{\mathbb{F}_{q}} \mathbb{F}_{q}[\mathbf{X}]_{d} / I_{S}(d)$.
In a joint work with Victor G.L. Neumann we chose S to be the set of points on a rational normal scroll and used some ideas from the affine case to calculate the parameters of C_{d}
Let m and n be integers such that $1 \leq m \leq n$ and let $\ell=n+m+1$. A rational normal scroll is the algebraic surface defined by
$S=\left\{\left(x_{0}: \cdots: x_{\ell}\right) \in \mathbb{P}^{\ell}\left(\mathbb{F}_{q}\right) \left\lvert\, \operatorname{rank}\left(\begin{array}{cccccc}x_{0} & \cdots & x_{n-1} & x_{n+1} & \cdots & x_{\ell-1} \\ x_{1} & \cdots & x_{n} & x_{n+2} & \cdots & x_{\ell}\end{array}\right)=1\right.\right\}$

Codes defined over projective varieties

One may also use a set $S=\left\{P_{1}, \ldots, P_{N}\right\} \subset \mathbb{P}^{\ell}\left(\mathbb{F}_{q}\right)$ to construct a code in the following way.
ideal of S. We know that $\mathbb{F}_{q}[\mathbf{X}] / I_{S}=\bigoplus_{d=0}^{\infty} \mathbb{F}_{q}[\mathbf{X}]_{d} / I_{S}(d)$, then fix a d consider the evaluation morphism $\varphi: \mathbb{F}_{q}[\mathbf{X}]_{d} / I_{S}(d) \rightarrow \mathbb{F}_{q}^{N}$ where $\varphi\left(f+I_{X}\right)=\left(f\left(P_{1}\right), \ldots, f\left(P_{N}\right)\right)$ (with the points written in "standard notation"). Observe that φ is injective, so defining $C_{d}=\operatorname{Im}(\varphi)$ we have $\operatorname{dim}\left(C_{d}\right)=\operatorname{dim}_{\mathbb{F}_{q}} \mathbb{F}_{q}[\mathbf{X}]_{d} / I_{S}(d)$

In a joint work with Victor GI Neumann we chose S to be the set of points on a rational normal scroll and used some ideas from the affine case to calculate the parameters of C_{d}
Let m and n be integers such that $1 \leq m \leq n$ and let $\ell=n+m+1$. A rational normal scroll is the algebraic surface defined by

Codes defined over projective varieties

One may also use a set $S=\left\{P_{1}, \ldots, P_{N}\right\} \subset \mathbb{P}^{\ell}\left(\mathbb{F}_{q}\right)$ to construct a code in the following way. Let $I_{S} \subset \mathbb{F}_{q}\left[X_{0}, \ldots, X_{\ell}\right]=\mathbb{F}_{q}[\mathbf{X}]$ be the (homogeneous) ideal of S.
consider the evaluation morphism $\varphi: \mathbb{F}_{q}[\mathrm{X}]_{d} / I_{S}(d) \rightarrow \mathbb{F}_{q}^{N}$ where $\varphi\left(f+I_{X}\right)=\left(f\left(P_{1}\right), \ldots, f\left(P_{N}\right)\right)$ (with the points written in "standard notation"). Observe that φ is injective, so defining $C_{d}=\operatorname{Im}(\varphi)$ we have $\operatorname{dim}\left(C_{d}\right)=\operatorname{dim}_{\mathbb{F}_{q}} \mathbb{F}_{q}[\mathbf{X}]_{d} / I_{S}(d)$

In a joint work with Victor G.L. Neumann we chose S to be the set of points on a rational normal scroll and used some ideas from the affine case to calculate the parameters of C_{d}
Let m and n be integers such that $1 \leq m \leq n$ and let $\ell=n+m+1$. A rational normal scroll is the algebraic surface defined by

Codes defined over projective varieties

One may also use a set $S=\left\{P_{1}, \ldots, P_{N}\right\} \subset \mathbb{P}^{\ell}\left(\mathbb{F}_{q}\right)$ to construct a code in the following way. Let $I_{S} \subset \mathbb{F}_{q}\left[X_{0}, \ldots, X_{\ell}\right]=\mathbb{F}_{q}[\mathbf{X}]$ be the (homogeneous) ideal of S. We know that $\mathbb{F}_{q}[\mathbf{X}] / I_{S}=\bigoplus_{d=0}^{\infty} \mathbb{F}_{q}[\mathbf{X}]_{d} / I_{S}(d)$,
$\varphi\left(f+I_{X}\right)=\left(f\left(P_{1}\right)\right.$ $f\left(P_{N}\right)$) (with the points written in "standard
notation" $)$. Observe that φ is injective, so defining $C_{d}=\operatorname{Im}(\varphi)$ we have$\operatorname{dim}\left(C_{d}\right)=\operatorname{dim}_{\mathbb{F}_{q}} \mathbb{F}_{q}[\mathbf{X}]_{d} / I_{S}(d)$.In a joint work with Victor G.L. Neumann we chose S to be the set ofpoints on a rational normal scroll and used some ideas from the affine caseto calculate the parameters of C_{d}rational normal scroll is the algebraic surface defined by
\square

Codes defined over projective varieties

One may also use a set $S=\left\{P_{1}, \ldots, P_{N}\right\} \subset \mathbb{P}^{\ell}\left(\mathbb{F}_{q}\right)$ to construct a code in the following way. Let $I_{S} \subset \mathbb{F}_{q}\left[X_{0}, \ldots, X_{\ell}\right]=\mathbb{F}_{q}[\mathbf{X}]$ be the (homogeneous) ideal of S. We know that $\mathbb{F}_{q}[\mathbf{X}] / I_{S}=\bigoplus_{d=0}^{\infty} \mathbb{F}_{q}[\mathbf{X}]_{d} / I_{S}(d)$, then fix a d consider the evaluation morphism $\varphi: \mathbb{F}_{q}[\mathbf{X}]_{d} / I_{S}(d) \rightarrow \mathbb{F}_{q}^{N}$ \qquad
notation" $)$. Observe that φ is injective, so defining $C_{d}=\operatorname{Im}(\varphi)$ we have $\operatorname{dim}\left(C_{d}\right)=\operatorname{dim}_{\mathbb{F}_{a}} \mathbb{F}_{a}[\mathbf{X}]_{d} / I_{S}(d)$

In a joint work with Victor G.L. Neumann we chose S to be the set of points on a rational normal scroll and used some ideas from the affine case to calculate the parameters of C_{d}
Let m and n be integers such that $1 \leq m \leq n$ and let $\ell=n+m+1$. A rational normal scroll is the algebraic surface defined by

Codes defined over projective varieties

One may also use a set $S=\left\{P_{1}, \ldots, P_{N}\right\} \subset \mathbb{P}^{\ell}\left(\mathbb{F}_{q}\right)$ to construct a code in the following way. Let $I_{S} \subset \mathbb{F}_{q}\left[X_{0}, \ldots, X_{\ell}\right]=\mathbb{F}_{q}[\mathbf{X}]$ be the (homogeneous) ideal of S. We know that $\mathbb{F}_{q}[\mathbf{X}] / I_{S}=\bigoplus_{d=0}^{\infty} \mathbb{F}_{q}[\mathbf{X}]_{d} / I_{S}(d)$, then fix a d consider the evaluation morphism $\varphi: \mathbb{F}_{q}[\mathbf{X}]_{d} / l_{S}(d) \rightarrow \mathbb{F}_{q}^{N}$ where $\varphi\left(f+I_{X}\right)=\left(f\left(P_{1}\right), \ldots, f\left(P_{N}\right)\right)$ (with the points written in standard
notation"). Observe that φ is injective, so defining $C_{d}=\operatorname{Im}(\varphi)$ we have $\operatorname{dim}\left(C_{d}\right)=\operatorname{dim}_{\mathbb{F}_{q}} \mathbb{F}_{q}[\mathbf{X}]_{d} / I_{S}(d)$.
In a joint work with Victor G.L. Neumann we chose S to be the set of points on a rational normal scroll and used some ideas from the affine case to calculate the parameters of C_{d}
Let m and n be integers such that $1 \leq m \leq n$ and let $\ell=n+m+1$. A rational normal scroll is the algebraic surface defined by $S=\left\{\left(x_{0}: \cdots: x_{\ell}\right) \in \mathbb{P}^{\ell}\left(\mathbb{F}_{q}\right) \mid \operatorname{rank}(\right.$
x_{n-1}

Codes defined over projective varieties

One may also use a set $S=\left\{P_{1}, \ldots, P_{N}\right\} \subset \mathbb{P}^{\ell}\left(\mathbb{F}_{q}\right)$ to construct a code in the following way. Let $I_{S} \subset \mathbb{F}_{q}\left[X_{0}, \ldots, X_{\ell}\right]=\mathbb{F}_{q}[\mathbf{X}]$ be the (homogeneous) ideal of S. We know that $\mathbb{F}_{q}[\mathbf{X}] / I_{S}=\bigoplus_{d=0}^{\infty} \mathbb{F}_{q}[\mathbf{X}]_{d} / I_{S}(d)$, then fix a d consider the evaluation morphism $\varphi: \mathbb{F}_{q}[\mathbf{X}]_{d} / I_{S}(d) \rightarrow \mathbb{F}_{q}^{N}$ where $\varphi\left(f+I_{X}\right)=\left(f\left(P_{1}\right), \ldots, f\left(P_{N}\right)\right)$ (with the points written in "standard notation").
$\operatorname{dim}\left(C_{d}\right)=\operatorname{dim}_{\mathbb{F}_{q}} \mathbb{F}_{q}[\mathbf{X}]_{d} / I_{S}(d)$.
In a joint work with Victor G.L. Neumann we chose S to be the set of
points on a rational normal scroll and used some ideas from the affine case
to calculate the parameters of C_{d}
Let m and n be integers such that $1 \leq m \leq n$ and let $\ell=n+m+1$. A rational normal scroll is the algebraic surface defined by

x_{n-1} $\left.x_{\ell}\right) \in \mathbb{D}^{\ell}\left(\mathbb{F}_{q}\right) \mid \operatorname{rank}$

Codes defined over projective varieties

One may also use a set $S=\left\{P_{1}, \ldots, P_{N}\right\} \subset \mathbb{P}^{\ell}\left(\mathbb{F}_{q}\right)$ to construct a code in the following way. Let $I_{S} \subset \mathbb{F}_{q}\left[X_{0}, \ldots, X_{\ell}\right]=\mathbb{F}_{q}[\mathbf{X}]$ be the (homogeneous) ideal of S. We know that $\mathbb{F}_{q}[\mathbf{X}] / I_{S}=\bigoplus_{d=0}^{\infty} \mathbb{F}_{q}[\mathbf{X}]_{d} / I_{S}(d)$, then fix a d consider the evaluation morphism $\varphi: \mathbb{F}_{q}[\mathbf{X}]_{d} / I_{S}(d) \rightarrow \mathbb{F}_{q}^{N}$ where $\varphi\left(f+I_{X}\right)=\left(f\left(P_{1}\right), \ldots, f\left(P_{N}\right)\right)$ (with the points written in "standard notation"). Observe that φ is injective, so defining $C_{d}=\operatorname{Im}(\varphi)$ we have $\operatorname{dim}\left(C_{d}\right)=\operatorname{dim}_{\mathbb{F}_{q}} \mathbb{F}_{q}[\mathbf{X}]_{d} / I_{S}(d)$.
In a joint work with Victor G.L. Neumann we chose S to be the set of points on a rational normal scroll and used some ideas from the affine case to calculate the parameters of C_{d} Let m and n be integers such that $1 \leq m \leq n$ and let $\ell=n+m+1$. A rational normal scroll is the algebraic surface defined by $S=\left\{\left(x_{0}\right.\right.$ rank

Codes defined over projective varieties

One may also use a set $S=\left\{P_{1}, \ldots, P_{N}\right\} \subset \mathbb{P}^{\ell}\left(\mathbb{F}_{q}\right)$ to construct a code in the following way. Let $I_{S} \subset \mathbb{F}_{q}\left[X_{0}, \ldots, X_{\ell}\right]=\mathbb{F}_{q}[\mathbf{X}]$ be the (homogeneous) ideal of S. We know that $\mathbb{F}_{q}[\mathbf{X}] / I_{S}=\bigoplus_{d=0}^{\infty} \mathbb{F}_{q}[\mathbf{X}]_{d} / I_{S}(d)$, then fix a d consider the evaluation morphism $\varphi: \mathbb{F}_{q}[\mathbf{X}]_{d} / I_{S}(d) \rightarrow \mathbb{F}_{q}^{N}$ where $\varphi\left(f+I_{X}\right)=\left(f\left(P_{1}\right), \ldots, f\left(P_{N}\right)\right)$ (with the points written in "standard notation"). Observe that φ is injective, so defining $C_{d}=\operatorname{Im}(\varphi)$ we have $\operatorname{dim}\left(C_{d}\right)=\operatorname{dim}_{\mathbb{F}_{q}} \mathbb{F}_{q}[\mathbf{X}]_{d} / I_{S}(d)$.

In a joint work with Victor G.L. Neumann we chose S to be the set of points on a rational normal scroll and used some ideas from the affine case to calculate the parameters of C_{d}

Let m and n be integers such that $1 \leq m \leq n$ and let $\ell=n+m+1$. A rational normal scroll is the algebraic surface defined by
\square rank

Codes defined over projective varieties

One may also use a set $S=\left\{P_{1}, \ldots, P_{N}\right\} \subset \mathbb{P}^{\ell}\left(\mathbb{F}_{q}\right)$ to construct a code in the following way. Let $I_{S} \subset \mathbb{F}_{q}\left[X_{0}, \ldots, X_{\ell}\right]=\mathbb{F}_{q}[\mathbf{X}]$ be the (homogeneous) ideal of S. We know that $\mathbb{F}_{q}[\mathbf{X}] / I_{S}=\bigoplus_{d=0}^{\infty} \mathbb{F}_{q}[\mathbf{X}]_{d} / I_{S}(d)$, then fix a d consider the evaluation morphism $\varphi: \mathbb{F}_{q}[\mathbf{X}]_{d} / I_{S}(d) \rightarrow \mathbb{F}_{q}^{N}$ where $\varphi\left(f+I_{X}\right)=\left(f\left(P_{1}\right), \ldots, f\left(P_{N}\right)\right)$ (with the points written in "standard notation"). Observe that φ is injective, so defining $C_{d}=\operatorname{Im}(\varphi)$ we have $\operatorname{dim}\left(C_{d}\right)=\operatorname{dim}_{\mathbb{F}_{q}} \mathbb{F}_{q}[\mathbf{X}]_{d} / I_{S}(d)$.

In a joint work with Victor G.L. Neumann we chose S to be the set of points on a rational normal scroll and used some ideas from the affine case to calculate the parameters of C_{d}

Let m and n be integers such that $1 \leq m \leq n$ and let $\ell=n+m+1$. A
rational normal scroll is the algebraic surface defined by
$S=\left\{\left(x_{0}: \cdots: x_{\ell}\right) \in \mathbb{P}^{\ell}\left(\mathbb{F}_{q}\right) \left\lvert\, \operatorname{rank}\left(\begin{array}{cccccc}x_{0} & \cdots & x_{n-1} & x_{n+1} & \cdots & x_{\ell-1} \\ x_{1} & \cdots & x_{n} & x_{n+2} & \cdots & x_{\ell}\end{array}\right)=1\right.\right\}$

Codes defined over projective varieties

One may also use a set $S=\left\{P_{1}, \ldots, P_{N}\right\} \subset \mathbb{P}^{\ell}\left(\mathbb{F}_{q}\right)$ to construct a code in the following way. Let $I_{S} \subset \mathbb{F}_{q}\left[X_{0}, \ldots, X_{\ell}\right]=\mathbb{F}_{q}[\mathbf{X}]$ be the (homogeneous) ideal of S. We know that $\mathbb{F}_{q}[\mathbf{X}] / I_{S}=\bigoplus_{d=0}^{\infty} \mathbb{F}_{q}[\mathbf{X}]_{d} / I_{S}(d)$, then fix a d consider the evaluation morphism $\varphi: \mathbb{F}_{q}[\mathbf{X}]_{d} / I_{S}(d) \rightarrow \mathbb{F}_{q}^{N}$ where $\varphi\left(f+I_{X}\right)=\left(f\left(P_{1}\right), \ldots, f\left(P_{N}\right)\right)$ (with the points written in "standard notation"). Observe that φ is injective, so defining $C_{d}=\operatorname{Im}(\varphi)$ we have $\operatorname{dim}\left(C_{d}\right)=\operatorname{dim}_{\mathbb{F}_{q}} \mathbb{F}_{q}[\mathbf{X}]_{d} / I_{S}(d)$.
In a joint work with Victor G.L. Neumann we chose S to be the set of points on a rational normal scroll and used some ideas from the affine case to calculate the parameters of C_{d}
Let m and n be integers such that $1 \leq m \leq n$ and let $\ell=n+m+1$.
rational normal scroll is the algebraic surface defined by
$S=\left\{\left(x_{0}: \cdots: x_{\ell}\right) \in \mathbb{P}^{\ell}\left(\mathbb{F}_{q}\right) \mid \operatorname{rank}\right.$

Codes defined over projective varieties

One may also use a set $S=\left\{P_{1}, \ldots, P_{N}\right\} \subset \mathbb{P}^{\ell}\left(\mathbb{F}_{q}\right)$ to construct a code in the following way. Let $I_{S} \subset \mathbb{F}_{q}\left[X_{0}, \ldots, X_{\ell}\right]=\mathbb{F}_{q}[\mathbf{X}]$ be the (homogeneous) ideal of S. We know that $\mathbb{F}_{q}[\mathbf{X}] / I_{S}=\bigoplus_{d=0}^{\infty} \mathbb{F}_{q}[\mathbf{X}]_{d} / I_{S}(d)$, then fix a d consider the evaluation morphism $\varphi: \mathbb{F}_{q}[\mathbf{X}]_{d} / I_{S}(d) \rightarrow \mathbb{F}_{q}^{N}$ where $\varphi\left(f+I_{X}\right)=\left(f\left(P_{1}\right), \ldots, f\left(P_{N}\right)\right)$ (with the points written in "standard notation"). Observe that φ is injective, so defining $C_{d}=\operatorname{Im}(\varphi)$ we have $\operatorname{dim}\left(C_{d}\right)=\operatorname{dim}_{\mathbb{F}_{q}} \mathbb{F}_{q}[\mathbf{X}]_{d} / I_{S}(d)$.

In a joint work with Victor G.L. Neumann we chose S to be the set of points on a rational normal scroll and used some ideas from the affine case to calculate the parameters of C_{d}
Let m and n be integers such that $1 \leq m \leq n$ and let $\ell=n+m+1$. A rational normal scroll is the algebraic surface defined by

Codes defined over projective varieties

One may also use a set $S=\left\{P_{1}, \ldots, P_{N}\right\} \subset \mathbb{P}^{\ell}\left(\mathbb{F}_{q}\right)$ to construct a code in the following way. Let $I_{S} \subset \mathbb{F}_{q}\left[X_{0}, \ldots, X_{\ell}\right]=\mathbb{F}_{q}[\mathbf{X}]$ be the (homogeneous) ideal of S. We know that $\mathbb{F}_{q}[\mathbf{X}] / I_{S}=\bigoplus_{d=0}^{\infty} \mathbb{F}_{q}[\mathbf{X}]_{d} / I_{S}(d)$, then fix a d consider the evaluation morphism $\varphi: \mathbb{F}_{q}[\mathbf{X}]_{d} / I_{S}(d) \rightarrow \mathbb{F}_{q}^{N}$ where $\varphi\left(f+I_{X}\right)=\left(f\left(P_{1}\right), \ldots, f\left(P_{N}\right)\right)$ (with the points written in "standard notation"). Observe that φ is injective, so defining $C_{d}=\operatorname{Im}(\varphi)$ we have $\operatorname{dim}\left(C_{d}\right)=\operatorname{dim}_{\mathbb{F}_{q}} \mathbb{F}_{q}[\mathbf{X}]_{d} / I_{S}(d)$.
In a joint work with Victor G.L. Neumann we chose S to be the set of points on a rational normal scroll and used some ideas from the affine case to calculate the parameters of C_{d}
Let m and n be integers such that $1 \leq m \leq n$ and let $\ell=n+m+1$. A rational normal scroll is the algebraic surface defined by
$S=\left\{\left(x_{0}: \cdots: x_{\ell}\right) \in \mathbb{P}^{\ell}\left(\mathbb{F}_{q}\right) \left\lvert\, \operatorname{rank}\left(\begin{array}{cccccc}x_{0} & \cdots & x_{n-1} & x_{n+1} & \cdots & x_{\ell-1} \\ x_{1} & \cdots & x_{n} & x_{n+2} & \cdots & x_{\ell}\end{array}\right)=1\right.\right\}$.

Codes defined on rational normal scrolls

It is not difficult to prove that $S=S_{0} \cup C_{\infty} \cup L_{0}$, where $S_{0}=\left\{\left(1: a: \cdots: a^{n}: b: a b: \cdots: a^{m} b\right) \mid(a, b) \in \mathbb{A}^{2}\left(\mathbb{F}_{q}\right)\right\}$,
$C_{\infty}=\left\{\left(0: \cdots: 0: a^{m}: a^{m-1} b: \cdots: b^{m}\right) \in S \mid(a: b) \in \mathbb{P}^{1}\left(\mathbb{F}_{q}\right)\right\}$, and
$L_{0}=\left\{(0: \cdots: 0: a: 0: \cdots 0: b) \in S \mid(a: b) \in \mathbb{P}^{1}\left(\mathbb{F}_{q}\right)\right\}$. $L_{0}=\left\{(0: \cdots: 0: a: 0: \cdots 0: b) \in S \mid(a: b) \in \mathbb{P}^{1}\left(\mathbb{F}_{q}\right)\right\}$
The union is disjoint, except for the point $(0: \ldots: 0: 1)=L_{0} \cap C_{\infty}$, thus S has $N:=q^{2}+2(q+1)-1=(q+1)^{2}$ points hence C_{d} is a code of length $(q+1)^{2}$. Since $\operatorname{dim} C_{d}=\operatorname{dim}_{\mathbb{F}_{q}} \mathbb{F}_{q}[\mathbf{X}]_{d} / I_{S}(d)$ to calculate $\operatorname{dim} C_{d}$ we could count the number of monomials of degree d in some footprint of I_{S}, so we look for a description of I_{S}.
A good place to start is to examine the ideal / generated by the set G of binomials "suggested" by the definition of S, namely
$G=\left\{X_{i} X_{j}-X_{i+1} X_{j-1} \mid 0 \leq i \leq \ell-2, i \neq n, i+1<j \leq \ell, j \neq n+1\right\}$
It turns out that G is a Gröbner basis for I w.r.t. the graded lexicographic order \prec where $X_{\ell} \prec \cdots \prec X_{0}$, but then $I \nsubseteq I_{S}$. Take for example $1=m<n=2$ and $q=5$. We have $X_{0} X_{2}-X_{1}^{2} \in G$ and if $I=I_{S}$ then we should have $X_{0}^{5} X_{2}-X_{1}^{6} \in I$, but in this case $X_{0}^{5} X_{2}-X_{1}^{6}-X_{0}^{4}\left(X_{0} X_{2}-X_{1}^{2}\right)=X_{0}^{4} X_{1}^{2}-X_{1}^{6} \in I$ but this is not true (since $X_{0}^{4} X_{1}^{2}$ is not a multiple of $X_{0} X_{2}, X_{0} X_{4}$ or $X_{1} X_{4}$).

Codes defined on rational normal scrolls

It is not difficult to prove that $S=S_{0} \cup C_{\infty} \cup L_{0}$, where

The union is disjoint, except for the point $(0: \ldots: 0: 1)=L_{0} \cap C_{\infty}$, thus S has $N:=q^{2}+2(q+1)-1=(q+1)^{2}$ points hence C_{d} is a code of length $(q+1)^{2}$. Since $\operatorname{dim} C_{d}=\operatorname{dim}_{\mathbb{F}_{q}} \mathbb{F}_{q}[X]_{d} / I_{S}(d)$ to calculate $\operatorname{dim} C_{d}$ we could count the number of monomials of degree d in some footprint of I_{S}, so we look for a description of I_{S}.
A good place to start is to examine the ideal / generated by the set G of binomials "suggested" by the definition of S, namely
$G=\left\{X_{i} X_{j}-X_{i+1} X_{j-1} \mid 0 \leq i \leq \ell-2, i \neq n, i+1<j \leq \ell, j \neq n+1\right\}$
It turns out that G is a Gröbner basis for I w.r.t. the graded lexicographic order \prec where $X_{\ell} \prec \cdots \prec X_{0}$, but then $I \nsubseteq I_{S}$. Take for example $1=m<n=2$ and $q=5$. We have $X_{0} X_{2}-X_{1}^{2} \in G$ and if $l=I_{S}$ then we should have $X_{0}^{5} X_{2}-X_{1}^{6} \in I$, but in this case $X_{0}^{5} X_{2}-X_{1}^{6}-X_{0}^{4}\left(X_{0} X_{2}-X_{1}^{2}\right)=X_{0}^{4} X_{1}^{2}-X_{1}^{6} \in I$ but this is not true (since

Codes defined on rational normal scrolls

It is not difficult to prove that $S=S_{0} \cup C_{\infty} \cup L_{0}$, where $S_{0}=\left\{\left(1: a: \cdots: a^{n}: b: a b: \cdots: a^{m} b\right) \mid(a, b) \in \mathbb{A}^{2}\left(\mathbb{F}_{q}\right)\right\}$,

The union is disjoint, except for the point $(0: \ldots: 0: 1)=L_{0} \cap C_{\infty}$, thus S has $N:=q^{2}+2(q+1)-1=(q+1)^{2}$ points hence C_{d} is a code of length $(q+1)^{2}$. Since $\operatorname{dim} C_{d}=\operatorname{dim}_{F_{q}} \mathbb{F}_{q}[\mathbf{X}]_{d} / l_{S}(d)$ to calculate dim C_{d} we could count the number of monomials of degree d in some footprint of I_{S}, so we look for a description of I_{S}
A good place to start is to examine the ideal / generated by the set G of binomials "suggested" by the definition of S, namely
$G=\left\{X_{i} X_{j}-X_{i+1} X_{j-1} \mid 0 \leq i \leq \ell-2, i \neq n, i+1<j \leq \ell, j \neq n+1\right\}$
It turns out that G is a Gröbner basis for I w.r.t. the graded lexicographic order \prec where $X_{\ell} \prec \cdots \prec X_{0}$, but then $I \varsubsetneqq I_{S}$. Take for example
$1=m<n=2$ and $q=5$. We have $X_{0} X_{2}-X_{1}^{2} \in G$ and if $I=I_{S}$ then we should have $X_{0}^{5} X_{2}-X_{1}^{6} \in I$, but in this case

Codes defined on rational normal scrolls

It is not difficult to prove that $S=S_{0} \cup C_{\infty} \cup L_{0}$, where $S_{0}=\left\{\left(1: a: \cdots: a^{n}: b: a b: \cdots: a^{m} b\right) \mid(a, b) \in \mathbb{A}^{2}\left(\mathbb{F}_{q}\right)\right\}$, $C_{\infty}=\left\{\left(0: \cdots: 0: a^{m}: a^{m-1} b: \cdots: b^{m}\right) \in S \mid(a: b) \in \mathbb{P}^{1}\left(\mathbb{F}_{q}\right)\right\}$, and The union is disjoint, except for the point $(0: \ldots: 0: 1)=L_{0} \cap C_{\infty}$, thus S has $N:=q^{2}+2(q+1)-1=(q+1)^{2}$ points hence C_{d} is a code of length $(q+1)^{2}$. Since $\operatorname{dim} C_{d}=\operatorname{dim}_{q} \mathbb{F}_{q}[X]_{d} / I_{S}(d)$ to calculate dim C_{d} we could count the number of monomials of degree d in some footprint of I_{S}, so we look for a description of I_{S}.
A good place to start is to examine the ideal / generated by the set G of binomials "suggested" by the definition of S, namely
$G=\left\{X_{i} X_{j}-X_{i+1} X_{j-1} \mid 0 \leq i \leq \ell-2, i \neq n, i+1<j \leq \ell, j \neq n+1\right\}$
It turns out that G is a Gröbner basis for I w.r.t. the graded lexicographic order \prec where $X_{\ell} \prec \cdots \prec X_{0}$, but then $I \nsubseteq I_{S}$. Take for example $1=m<n=2$ and $q=5$. We have $X_{0} X_{2}-X_{1}^{2} \in G$ and if $I=I_{S}$ then we should have $X_{0}^{5} X_{2}-X_{1}^{6} \in I$, but in this case $X_{0}^{5} X_{2}-X_{1}^{6}-X_{0}^{4}\left(X_{0} X_{2}-X_{1}^{2}\right)=X_{0}^{4} X_{1}^{2}-X_{1}^{6} \in I$ but this is not true (since

Codes defined on rational normal scrolls

It is not difficult to prove that $S=S_{0} \cup C_{\infty} \cup L_{0}$, where $S_{0}=\left\{\left(1: a: \cdots: a^{n}: b: a b: \cdots: a^{m} b\right) \mid(a, b) \in \mathbb{A}^{2}\left(\mathbb{F}_{q}\right)\right\}$, $C_{\infty}=\left\{\left(0: \cdots: 0: a^{m}: a^{m-1} b: \cdots: b^{m}\right) \in S \mid(a: b) \in \mathbb{P}^{1}\left(\mathbb{F}_{q}\right)\right\}$, and $L_{0}=\left\{(0: \cdots: 0: a: 0: \cdots 0: b) \in S \mid(a: b) \in \mathbb{P}^{1}\left(\mathbb{F}_{q}\right)\right\}$.
The union is disjoint, except for the point $(0: \ldots: 0: 1)=L_{0} \cap C_{\infty}$, thus S has $N:=q^{2}+2(q+1)-1=(q+1)^{2}$ points hence C_{d} is a code of length $(q+1)^{2}$. Since $\operatorname{dim} C_{d}=\operatorname{dim}_{\mathbb{F}_{q}} \mathbb{F}_{q}[\mathbf{X}]_{d} / I_{S}(d)$ to calculate $\operatorname{dim} C_{d}$ we could count the number of monomials of degree d in some footprint of I_{S}, so we look for a description of I_{S}
A good place to start is to examine the ideal / generated by the set G of binomials "suggested" by the definition of S, namely
$G=\left\{X_{i} X_{j}-X_{i+1} X_{j-1} \mid 0 \leq i \leq \ell-2, i \neq n, i+1<j \leq \ell, j \neq n+1\right\}$
It turns out that G is a Gröbner basis for I w.r.t. the graded lexicographic order \prec where $X_{\ell} \prec \cdots \prec X_{0}$, but then $I \nsubseteq I_{S}$. Take for example $1=m<n=2$ and $q=5$. We have $X_{0} X_{2}-X_{1}^{2} \in G$ and if $I=I_{S}$ then we should have $X_{0}^{5} X_{2}-X_{1}^{6} \in I$, but in this case $X_{0}^{5} X_{2}-X_{1}^{6}-X_{0}^{4}\left(X_{0} X_{2}-X_{1}^{2}\right)=X_{0}^{4} X_{1}^{2}-X_{1}^{6} \in I$ but this is not true (since

Codes defined on rational normal scrolls

It is not difficult to prove that $S=S_{0} \cup C_{\infty} \cup L_{0}$, where $S_{0}=\left\{\left(1: a: \cdots: a^{n}: b: a b: \cdots: a^{m} b\right) \mid(a, b) \in \mathbb{A}^{2}\left(\mathbb{F}_{q}\right)\right\}$, $C_{\infty}=\left\{\left(0: \cdots: 0: a^{m}: a^{m-1} b: \cdots: b^{m}\right) \in S \mid(a: b) \in \mathbb{P}^{1}\left(\mathbb{F}_{q}\right)\right\}$, and $L_{0}=\left\{(0: \cdots: 0: a: 0: \cdots 0: b) \in S \mid(a: b) \in \mathbb{P}^{1}\left(\mathbb{F}_{q}\right)\right\}$.
The union is disjoint, except for the point $(0: \ldots: 0: 1)=L_{0} \cap C_{\infty}$, thus

Codes defined on rational normal scrolls

It is not difficult to prove that $S=S_{0} \cup C_{\infty} \cup L_{0}$, where $S_{0}=\left\{\left(1: a: \cdots: a^{n}: b: a b: \cdots: a^{m} b\right) \mid(a, b) \in \mathbb{A}^{2}\left(\mathbb{F}_{q}\right)\right\}$, $C_{\infty}=\left\{\left(0: \cdots: 0: a^{m}: a^{m-1} b: \cdots: b^{m}\right) \in S \mid(a: b) \in \mathbb{P}^{1}\left(\mathbb{F}_{q}\right)\right\}$, and $L_{0}=\left\{(0: \cdots: 0: a: 0: \cdots 0: b) \in S \mid(a: b) \in \mathbb{P}^{1}\left(\mathbb{F}_{q}\right)\right\}$.
The union is disjoint, except for the point $(0: \ldots: 0: 1)=L_{0} \cap C_{\infty}$, thus S has $N:=q^{2}+2(q+1)-1=(q+1)^{2}$ points
we could count the number of monomials of degree d in some footprint of I_{S}, so we look for a description of I_{S}.
A good place to start is to examine the ideal / generated by the set G of binomials "suggested" by the definition of S, namely

It turns out that G is a Gröbner basis for I w.r.t. the graded lexicographic order \prec where $X_{\ell} \prec \cdots \prec X_{0}$, but then $I \nsubseteq I_{S}$. Take for example $1=m<n=2$ and $q=5$. We have $X_{0} X_{2}-X_{1}^{2} \in G$ and if $I=I s$ then we should have $X_{0}^{5} X_{2}-X_{1}^{6} \in I$, but in this case
\qquad

Codes defined on rational normal scrolls

It is not difficult to prove that $S=S_{0} \cup C_{\infty} \cup L_{0}$, where $S_{0}=\left\{\left(1: a: \cdots: a^{n}: b: a b: \cdots: a^{m} b\right) \mid(a, b) \in \mathbb{A}^{2}\left(\mathbb{F}_{q}\right)\right\}$, $C_{\infty}=\left\{\left(0: \cdots: 0: a^{m}: a^{m-1} b: \cdots: b^{m}\right) \in S \mid(a: b) \in \mathbb{P}^{1}\left(\mathbb{F}_{q}\right)\right\}$, and $L_{0}=\left\{(0: \cdots: 0: a: 0: \cdots 0: b) \in S \mid(a: b) \in \mathbb{P}^{1}\left(\mathbb{F}_{q}\right)\right\}$.
The union is disjoint, except for the point $(0: \ldots: 0: 1)=L_{0} \cap C_{\infty}$, thus S has $N:=q^{2}+2(q+1)-1=(q+1)^{2}$ points hence C_{d} is a code of length $(q+1)^{2}$.
we could count the number of monomials of degree d in some footprint of I_{S}, so we look for a description of I_{S}.
A good place to start is to examine the ideal / generated by the set G of binomials "suggested" by the definition of S, namely

It turns out that G is a Gröbner basis for $/$ w.r.t. the graded lexicographic order \prec where $X_{\ell} \prec \cdots \prec X_{0}$, but then $I \varsubsetneqq I_{S}$. Take for example $1=m<n=2$ and $q=5$. We have $X_{0} X_{2}-X_{1}^{2} \in G$ and if $I=I_{S}$ then

Codes defined on rational normal scrolls

It is not difficult to prove that $S=S_{0} \cup C_{\infty} \cup L_{0}$, where $S_{0}=\left\{\left(1: a: \cdots: a^{n}: b: a b: \cdots: a^{m} b\right) \mid(a, b) \in \mathbb{A}^{2}\left(\mathbb{F}_{q}\right)\right\}$, $C_{\infty}=\left\{\left(0: \cdots: 0: a^{m}: a^{m-1} b: \cdots: b^{m}\right) \in S \mid(a: b) \in \mathbb{P}^{1}\left(\mathbb{F}_{q}\right)\right\}$, and $L_{0}=\left\{(0: \cdots: 0: a: 0: \cdots 0: b) \in S \mid(a: b) \in \mathbb{P}^{1}\left(\mathbb{F}_{q}\right)\right\}$.
The union is disjoint, except for the point $(0: \ldots: 0: 1)=L_{0} \cap C_{\infty}$, thus S has $N:=q^{2}+2(q+1)-1=(q+1)^{2}$ points hence C_{d} is a code of length $(q+1)^{2}$. Since $\operatorname{dim} C_{d}=\operatorname{dim}_{\mathbb{F}_{q}} \mathbb{F}_{q}[\mathbf{X}]_{d} / I_{S}(d)$
> I_{S}, so we look for a description of I_{S}.
A good place to start is to examine the ideal / generated by the set G of binomials "suggested" by the definition of S, namely

> It turns out that G is a Gröbner basis for $/$ w.r.t. the graded lexicographic order \prec where $X_{\ell} \prec \cdots \prec X_{0}$, but then $I \subsetneq I_{S}$. Take for example $1=m<n=2$ and $q=5$. We have $X_{0} X_{2}-X_{1}^{2} \in G$ and if $I=I s$ then

Codes defined on rational normal scrolls

It is not difficult to prove that $S=S_{0} \cup C_{\infty} \cup L_{0}$, where $S_{0}=\left\{\left(1: a: \cdots: a^{n}: b: a b: \cdots: a^{m} b\right) \mid(a, b) \in \mathbb{A}^{2}\left(\mathbb{F}_{q}\right)\right\}$, $C_{\infty}=\left\{\left(0: \cdots: 0: a^{m}: a^{m-1} b: \cdots: b^{m}\right) \in S \mid(a: b) \in \mathbb{P}^{1}\left(\mathbb{F}_{q}\right)\right\}$, and $L_{0}=\left\{(0: \cdots: 0: a: 0: \cdots 0: b) \in S \mid(a: b) \in \mathbb{P}^{1}\left(\mathbb{F}_{q}\right)\right\}$.
The union is disjoint, except for the point $(0: \ldots: 0: 1)=L_{0} \cap C_{\infty}$, thus S has $N:=q^{2}+2(q+1)-1=(q+1)^{2}$ points hence C_{d} is a code of length $(q+1)^{2}$. Since $\operatorname{dim} C_{d}=\operatorname{dim}_{\mathbb{F}_{q}} \mathbb{F}_{q}[\mathbf{X}]_{d} / I_{S}(d)$ to calculate $\operatorname{dim} C_{d}$ we could count the number of monomials of degree d in some footprint of Is,
A good place to start is to examine the ideal / generated by the set G of binomials "suggested" by the definition of S, namely It turns out that G is a Gröbner basis for I w.r.t. the graded lexicographic order \prec where $X_{\ell} \prec \cdots \prec X_{0}$, but then $I \varsubsetneqq I_{S}$. Take for example $1=m<n=2$ and $q=5$. We have $X_{0} X_{2}-X_{1}^{2} \in G$ and if $I=I_{S}$ then

Codes defined on rational normal scrolls

It is not difficult to prove that $S=S_{0} \cup C_{\infty} \cup L_{0}$, where $S_{0}=\left\{\left(1: a: \cdots: a^{n}: b: a b: \cdots: a^{m} b\right) \mid(a, b) \in \mathbb{A}^{2}\left(\mathbb{F}_{q}\right)\right\}$, $C_{\infty}=\left\{\left(0: \cdots: 0: a^{m}: a^{m-1} b: \cdots: b^{m}\right) \in S \mid(a: b) \in \mathbb{P}^{1}\left(\mathbb{F}_{q}\right)\right\}$, and $L_{0}=\left\{(0: \cdots: 0: a: 0: \cdots 0: b) \in S \mid(a: b) \in \mathbb{P}^{1}\left(\mathbb{F}_{q}\right)\right\}$.
The union is disjoint, except for the point $(0: \ldots: 0: 1)=L_{0} \cap C_{\infty}$, thus S has $N:=q^{2}+2(q+1)-1=(q+1)^{2}$ points hence C_{d} is a code of length $(q+1)^{2}$. Since $\operatorname{dim} C_{d}=\operatorname{dim}_{\mathbb{F}_{q}} \mathbb{F}_{q}[\mathbf{X}]_{d} / I_{S}(d)$ to calculate $\operatorname{dim} C_{d}$ we could count the number of monomials of degree d in some footprint of I_{S}, so we look for a description of I_{S}.

Codes defined on rational normal scrolls

It is not difficult to prove that $S=S_{0} \cup C_{\infty} \cup L_{0}$, where $S_{0}=\left\{\left(1: a: \cdots: a^{n}: b: a b: \cdots: a^{m} b\right) \mid(a, b) \in \mathbb{A}^{2}\left(\mathbb{F}_{q}\right)\right\}$, $C_{\infty}=\left\{\left(0: \cdots: 0: a^{m}: a^{m-1} b: \cdots: b^{m}\right) \in S \mid(a: b) \in \mathbb{P}^{1}\left(\mathbb{F}_{q}\right)\right\}$, and $L_{0}=\left\{(0: \cdots: 0: a: 0: \cdots 0: b) \in S \mid(a: b) \in \mathbb{P}^{1}\left(\mathbb{F}_{q}\right)\right\}$.
The union is disjoint, except for the point $(0: \ldots: 0: 1)=L_{0} \cap C_{\infty}$, thus S has $N:=q^{2}+2(q+1)-1=(q+1)^{2}$ points hence C_{d} is a code of length $(q+1)^{2}$. Since $\operatorname{dim} C_{d}=\operatorname{dim}_{\mathbb{F}_{q}} \mathbb{F}_{q}[\mathbf{X}]_{d} / I_{S}(d)$ to calculate $\operatorname{dim} C_{d}$ we could count the number of monomials of degree d in some footprint of I_{S}, so we look for a description of I_{S}.
A good place to start is to examine the ideal / generated by the set G of binomials "suggested" by the definition of S, namely

It turns out that G is a Gröbner basis for $/$ w.r.t. the graded lexicographic order \prec where $X_{\ell} \prec \cdots \prec X_{0}$, but then $I \varsubsetneqq I_{S}$. Take for example $1=m<n=2$ and $q=5$. We have $X_{0} X_{2}-X_{1}^{2} \in G$ and if $I=I s$ then we should have $X_{0}^{5} X_{2}-X_{1}^{6} \in I$, but in this case

Codes defined on rational normal scrolls

It is not difficult to prove that $S=S_{0} \cup C_{\infty} \cup L_{0}$, where $S_{0}=\left\{\left(1: a: \cdots: a^{n}: b: a b: \cdots: a^{m} b\right) \mid(a, b) \in \mathbb{A}^{2}\left(\mathbb{F}_{q}\right)\right\}$, $C_{\infty}=\left\{\left(0: \cdots: 0: a^{m}: a^{m-1} b: \cdots: b^{m}\right) \in S \mid(a: b) \in \mathbb{P}^{1}\left(\mathbb{F}_{q}\right)\right\}$, and $L_{0}=\left\{(0: \cdots: 0: a: 0: \cdots 0: b) \in S \mid(a: b) \in \mathbb{P}^{1}\left(\mathbb{F}_{q}\right)\right\}$.
The union is disjoint, except for the point $(0: \ldots: 0: 1)=L_{0} \cap C_{\infty}$, thus S has $N:=q^{2}+2(q+1)-1=(q+1)^{2}$ points hence C_{d} is a code of length $(q+1)^{2}$. Since $\operatorname{dim} C_{d}=\operatorname{dim}_{\mathbb{F}_{q}} \mathbb{F}_{q}[\mathbf{X}]_{d} / I_{S}(d)$ to calculate $\operatorname{dim} C_{d}$ we could count the number of monomials of degree d in some footprint of I_{S}, so we look for a description of I_{S}.
A good place to start is to examine the ideal / generated by the set G of binomials "suggested" by the definition of S, namely $G=\left\{X_{i} X_{j}-X_{i+1} X_{j-1} \mid 0 \leq i \leq \ell-2, i \neq n, i+1<j \leq \ell, j \neq n+1\right\}$

Codes defined on rational normal scrolls

It is not difficult to prove that $S=S_{0} \cup C_{\infty} \cup L_{0}$, where $S_{0}=\left\{\left(1: a: \cdots: a^{n}: b: a b: \cdots: a^{m} b\right) \mid(a, b) \in \mathbb{A}^{2}\left(\mathbb{F}_{q}\right)\right\}$,
$C_{\infty}=\left\{\left(0: \cdots: 0: a^{m}: a^{m-1} b: \cdots: b^{m}\right) \in S \mid(a: b) \in \mathbb{P}^{1}\left(\mathbb{F}_{q}\right)\right\}$, and $L_{0}=\left\{(0: \cdots: 0: a: 0: \cdots 0: b) \in S \mid(a: b) \in \mathbb{P}^{1}\left(\mathbb{F}_{q}\right)\right\}$.
The union is disjoint, except for the point $(0: \ldots: 0: 1)=L_{0} \cap C_{\infty}$, thus S has $N:=q^{2}+2(q+1)-1=(q+1)^{2}$ points hence C_{d} is a code of length $(q+1)^{2}$. Since $\operatorname{dim} C_{d}=\operatorname{dim}_{\mathbb{F}_{q}} \mathbb{F}_{q}[\mathbf{X}]_{d} / I_{S}(d)$ to calculate $\operatorname{dim} C_{d}$ we could count the number of monomials of degree d in some footprint of I_{S}, so we look for a description of I_{S}.
A good place to start is to examine the ideal / generated by the set G of binomials "suggested" by the definition of S, namely $G=\left\{X_{i} X_{j}-X_{i+1} X_{j-1} \mid 0 \leq i \leq \ell-2, i \neq n, i+1<j \leq \ell, j \neq n+1\right\}$ It turns out that G is a Gröbner basis for I w.r.t. the graded lexicographic order \prec where $X_{\ell} \prec \cdots \prec X_{0}$,
we should have $X_{0}^{5} X_{2}-X_{1}^{6} \in I$, but in this case

but this is not true (since

Codes defined on rational normal scrolls

It is not difficult to prove that $S=S_{0} \cup C_{\infty} \cup L_{0}$, where $S_{0}=\left\{\left(1: a: \cdots: a^{n}: b: a b: \cdots: a^{m} b\right) \mid(a, b) \in \mathbb{A}^{2}\left(\mathbb{F}_{q}\right)\right\}$,
$C_{\infty}=\left\{\left(0: \cdots: 0: a^{m}: a^{m-1} b: \cdots: b^{m}\right) \in S \mid(a: b) \in \mathbb{P}^{1}\left(\mathbb{F}_{q}\right)\right\}$, and $L_{0}=\left\{(0: \cdots: 0: a: 0: \cdots 0: b) \in S \mid(a: b) \in \mathbb{P}^{1}\left(\mathbb{F}_{q}\right)\right\}$.
The union is disjoint, except for the point $(0: \ldots: 0: 1)=L_{0} \cap C_{\infty}$, thus S has $N:=q^{2}+2(q+1)-1=(q+1)^{2}$ points hence C_{d} is a code of length $(q+1)^{2}$. Since $\operatorname{dim} C_{d}=\operatorname{dim}_{\mathbb{F}_{q}} \mathbb{F}_{q}[\mathbf{X}]_{d} / I_{S}(d)$ to calculate $\operatorname{dim} C_{d}$ we could count the number of monomials of degree d in some footprint of I_{S}, so we look for a description of I_{S}.
A good place to start is to examine the ideal / generated by the set G of binomials "suggested" by the definition of S, namely $G=\left\{X_{i} X_{j}-X_{i+1} X_{j-1} \mid 0 \leq i \leq \ell-2, i \neq n, i+1<j \leq \ell, j \neq n+1\right\}$ It turns out that G is a Gröbner basis for I w.r.t. the graded lexicographic order \prec where $X_{\ell} \prec \cdots \prec X_{0}$, but then $I \varsubsetneqq I_{S}$.

Codes defined on rational normal scrolls

It is not difficult to prove that $S=S_{0} \cup C_{\infty} \cup L_{0}$, where $S_{0}=\left\{\left(1: a: \cdots: a^{n}: b: a b: \cdots: a^{m} b\right) \mid(a, b) \in \mathbb{A}^{2}\left(\mathbb{F}_{q}\right)\right\}$,
$C_{\infty}=\left\{\left(0: \cdots: 0: a^{m}: a^{m-1} b: \cdots: b^{m}\right) \in S \mid(a: b) \in \mathbb{P}^{1}\left(\mathbb{F}_{q}\right)\right\}$, and $L_{0}=\left\{(0: \cdots: 0: a: 0: \cdots 0: b) \in S \mid(a: b) \in \mathbb{P}^{1}\left(\mathbb{F}_{q}\right)\right\}$.
The union is disjoint, except for the point $(0: \ldots: 0: 1)=L_{0} \cap C_{\infty}$, thus S has $N:=q^{2}+2(q+1)-1=(q+1)^{2}$ points hence C_{d} is a code of length $(q+1)^{2}$. Since $\operatorname{dim} C_{d}=\operatorname{dim}_{\mathbb{F}_{q}} \mathbb{F}_{q}[\mathbf{X}]_{d} / I_{S}(d)$ to calculate $\operatorname{dim} C_{d}$ we could count the number of monomials of degree d in some footprint of I_{S}, so we look for a description of I_{S}.
A good place to start is to examine the ideal / generated by the set G of binomials "suggested" by the definition of S, namely $G=\left\{X_{i} X_{j}-X_{i+1} X_{j-1} \mid 0 \leq i \leq \ell-2, i \neq n, i+1<j \leq \ell, j \neq n+1\right\}$ It turns out that G is a Gröbner basis for I w.r.t. the graded lexicographic order \prec where $X_{\ell} \prec \cdots \prec X_{0}$, but then $I \varsubsetneqq I_{S}$. Take for example $1=m<n=2$ and $q=5$.

```
then
```

we should have $X_{0}^{5} X_{2}-X_{1}^{0} \in I$, but in this case

Codes defined on rational normal scrolls

It is not difficult to prove that $S=S_{0} \cup C_{\infty} \cup L_{0}$, where $S_{0}=\left\{\left(1: a: \cdots: a^{n}: b: a b: \cdots: a^{m} b\right) \mid(a, b) \in \mathbb{A}^{2}\left(\mathbb{F}_{q}\right)\right\}$,
$C_{\infty}=\left\{\left(0: \cdots: 0: a^{m}: a^{m-1} b: \cdots: b^{m}\right) \in S \mid(a: b) \in \mathbb{P}^{1}\left(\mathbb{F}_{q}\right)\right\}$, and $L_{0}=\left\{(0: \cdots: 0: a: 0: \cdots 0: b) \in S \mid(a: b) \in \mathbb{P}^{1}\left(\mathbb{F}_{q}\right)\right\}$.
The union is disjoint, except for the point $(0: \ldots: 0: 1)=L_{0} \cap C_{\infty}$, thus S has $N:=q^{2}+2(q+1)-1=(q+1)^{2}$ points hence C_{d} is a code of length $(q+1)^{2}$. Since $\operatorname{dim} C_{d}=\operatorname{dim}_{\mathbb{F}_{q}} \mathbb{F}_{q}[\mathbf{X}]_{d} / I_{S}(d)$ to calculate $\operatorname{dim} C_{d}$ we could count the number of monomials of degres d in onme fontnrint of I_{S}, so we look for a description of I_{S}.
A good place to start is to examine the ideal $I \xi \operatorname{rank}\left(\begin{array}{lll}x_{0} & x_{1} & x_{3} \\ x_{1} & x_{2} & x_{4}\end{array}\right)=1$ binomials "suggested" by the definition of S, na $G=\left\{X_{i} X_{j}-X_{i+1} X_{j-1} \mid 0 \leq i \leq \ell-2, i \neq n, i+1<j \leq \ell, j \neq n+1\right\}$ It turns out that G is a Gröbner basis for I w.r.t. the graded lexicographic order \prec where $X_{\ell} \prec \cdots \prec X_{0}$, but then $I \varsubsetneqq I_{S}$. Take for example $1=m<n=2$ and $q=5$.
then
we should have $X_{0}^{5} X_{2}-X_{1}^{0} \in I$, but in this case

Codes defined on rational normal scrolls

It is not difficult to prove that $S=S_{0} \cup C_{\infty} \cup L_{0}$, where $S_{0}=\left\{\left(1: a: \cdots: a^{n}: b: a b: \cdots: a^{m} b\right) \mid(a, b) \in \mathbb{A}^{2}\left(\mathbb{F}_{q}\right)\right\}$,
$C_{\infty}=\left\{\left(0: \cdots: 0: a^{m}: a^{m-1} b: \cdots: b^{m}\right) \in S \mid(a: b) \in \mathbb{P}^{1}\left(\mathbb{F}_{q}\right)\right\}$, and $L_{0}=\left\{(0: \cdots: 0: a: 0: \cdots 0: b) \in S \mid(a: b) \in \mathbb{P}^{1}\left(\mathbb{F}_{q}\right)\right\}$.
The union is disjoint, except for the point $(0: \ldots: 0: 1)=L_{0} \cap C_{\infty}$, thus S has $N:=q^{2}+2(q+1)-1=(q+1)^{2}$ points hence C_{d} is a code of length $(q+1)^{2}$. Since $\operatorname{dim} C_{d}=\operatorname{dim}_{\mathbb{F}_{q}} \mathbb{F}_{q}[\mathbf{X}]_{d} / I_{S}(d)$ to calculate $\operatorname{dim} C_{d}$ we could count the number of monomials of degres d in onme fnotnrint of I_{S}, so we look for a description of I_{S}.
A good place to start is to examine the ideal $I \xi \quad \operatorname{rank}\left(\begin{array}{lll}x_{0} & x_{1} & x_{3} \\ x_{1} & x_{2} & x_{4}\end{array}\right)=1$ binomials "suggested" by the definition of S, na $G=\left\{X_{i} X_{j}-X_{i+1} X_{j-1} \mid 0 \leq i \leq \ell-2, i \neq n, i+1<j \leq \ell, j \neq n+1\right\}$ It turns out that G is a Gröbner basis for I w.r.t. the graded lexicographic order \prec where $X_{\ell} \prec \cdots \prec X_{0}$, but then $I \varsubsetneqq I_{S}$. Take for example $1=m<n=2$ and $q=5$. We have $X_{0} X_{2}-X_{1}^{2} \in G$ and if $I=I_{S}$ then we should have $X_{0}^{5} X_{2}-X_{1}^{6} \in I$,

Codes defined on rational normal scrolls

It is not difficult to prove that $S=S_{0} \cup C_{\infty} \cup L_{0}$, where $S_{0}=\left\{\left(1: a: \cdots: a^{n}: b: a b: \cdots: a^{m} b\right) \mid(a, b) \in \mathbb{A}^{2}\left(\mathbb{F}_{q}\right)\right\}$,
$C_{\infty}=\left\{\left(0: \cdots: 0: a^{m}: a^{m-1} b: \cdots: b^{m}\right) \in S \mid(a: b) \in \mathbb{P}^{1}\left(\mathbb{F}_{q}\right)\right\}$, and $L_{0}=\left\{(0: \cdots: 0: a: 0: \cdots 0: b) \in S \mid(a: b) \in \mathbb{P}^{1}\left(\mathbb{F}_{q}\right)\right\}$.
The union is disjoint, except for the point $(0: \ldots: 0: 1)=L_{0} \cap C_{\infty}$, thus S has $N:=q^{2}+2(q+1)-1=(q+1)^{2}$ points hence C_{d} is a code of length $(q+1)^{2}$. Since $\operatorname{dim} C_{d}=\operatorname{dim}_{\mathbb{F}_{q}} \mathbb{F}_{q}[\mathbf{X}]_{d} / I_{S}(d)$ to calculate $\operatorname{dim} C_{d}$ we could count the number of monomials of degres d in onme fontnrint of I_{S}, so we look for a description of I_{S}.
A good place to start is to examine the ideal $I \xi \operatorname{rank}\left(\begin{array}{lll}x_{0} & x_{1} & x_{3} \\ x_{1} & x_{2} & x_{4}\end{array}\right)=1$ binomials "suggested" by the definition of S, na
$G=\left\{X_{i} X_{j}-X_{i+1} X_{j-1} \mid 0 \leq i \leq \ell-2, i \neq n, i+1<j \leq \ell, j \neq n+1\right\}$
It turns out that G is a Gröbner basis for I w.r.t. the graded lexicographic order \prec where $X_{\ell} \prec \cdots \prec X_{0}$, but then $I \varsubsetneqq I_{S}$. Take for example $1=m<n=2$ and $q=5$. We have $X_{0} X_{2}-X_{1}^{2} \in G$ and if $I=I_{S}$ then we should have $X_{0}^{5} X_{2}-X_{1}^{6} \in I$, but in this case
$X_{0}^{5} X_{2}-X_{1}^{6}-X_{0}^{4}\left(X_{0} X_{2}-X_{1}^{2}\right)=X_{0}^{4} X_{1}^{2}-X_{1}^{6} \in I$

Codes defined on rational normal scrolls

It is not difficult to prove that $S=S_{0} \cup C_{\infty} \cup L_{0}$, where $S_{0}=\left\{\left(1: a: \cdots: a^{n}: b: a b: \cdots: a^{m} b\right) \mid(a, b) \in \mathbb{A}^{2}\left(\mathbb{F}_{q}\right)\right\}$,
$C_{\infty}=\left\{\left(0: \cdots: 0: a^{m}: a^{m-1} b: \cdots: b^{m}\right) \in S \mid(a: b) \in \mathbb{P}^{1}\left(\mathbb{F}_{q}\right)\right\}$, and $L_{0}=\left\{(0: \cdots: 0: a: 0: \cdots 0: b) \in S \mid(a: b) \in \mathbb{P}^{1}\left(\mathbb{F}_{q}\right)\right\}$.
The union is disjoint, except for the point $(0: \ldots: 0: 1)=L_{0} \cap C_{\infty}$, thus S has $N:=q^{2}+2(q+1)-1=(q+1)^{2}$ points hence C_{d} is a code of length $(q+1)^{2}$. Since $\operatorname{dim} C_{d}=\operatorname{dim}_{\mathbb{F}_{q}} \mathbb{F}_{q}[\mathbf{X}]_{d} / I_{S}(d)$ to calculate $\operatorname{dim} C_{d}$ we could count the number of monomials of degres d in onme fontnrint of I_{S}, so we look for a description of I_{S}.
A good place to start is to examine the ideal $I \xi \operatorname{rank}\left(\begin{array}{lll}x_{0} & x_{1} & x_{3} \\ x_{1} & x_{2} & x_{4}\end{array}\right)=1$ binomials "suggested" by the definition of S, na
$G=\left\{X_{i} X_{j}-X_{i+1} X_{j-1} \mid 0 \leq i \leq \ell-2, i \neq n, i+1<j \leq \ell, j \neq n+1\right\}$
It turns out that G is a Gröbner basis for I w.r.t. the graded lexicographic order \prec where $X_{\ell} \prec \cdots \prec X_{0}$, but then $I \varsubsetneqq I_{S}$. Take for example $1=m<n=2$ and $q=5$. We have $X_{0} X_{2}-X_{1}^{2} \in G$ and if $I=I_{S}$ then we should have $X_{0}^{5} X_{2}-X_{1}^{6} \in I$, but in this case $X_{0}^{5} X_{2}-X_{1}^{6}-X_{0}^{4}\left(X_{0} X_{2}-X_{1}^{2}\right)=X_{0}^{4} X_{1}^{2}-X_{1}^{6} \in I$ but this is not true (since $X_{0}^{4} X_{1}^{2}$ is not a multiple of $X_{0} X_{2}, X_{0} X_{4}$ or $X_{1} X_{4}$).

Codes defined on rational normal scrolls

We found a parametrization for S using four parameters $\alpha, \beta, \gamma, \delta \in \mathbb{F}_{q}$ in the following way:
$\operatorname{rank}\left(\begin{array}{ccccccc}a_{0} & a_{1} & \cdots & a_{n-1} & a_{n+1} & \cdots & a_{\ell-1} \\ a_{1} & a_{2} & \cdots & a_{n} & a_{n+2} & \cdots & a_{\ell}\end{array}\right)=1$

This lead us to consider the homomorphism of \mathbb{F}_{q}-algebras $\Psi: \mathbb{F}_{a}[\mathbf{X}] \longrightarrow \mathbb{F}_{a}[Y, Z, V, W]$ given by $\Psi\left(X_{i}\right)=Y V^{i} W^{n-i}$ for $i=0, \ldots, n$ and $\Psi\left(X_{j}\right)=Z V^{j-n-1} W^{\ell-j}$ for $j=n+1, \ldots, \ell=n+m+1$. Let \mathcal{B} be the image of Ψ and let's consider $\Psi: \mathbb{F}_{q}[\mathbf{X}] \longrightarrow \mathcal{B}$. We can make is a graded mornhism of algehras by defining $\operatorname{deg}\left(Y^{y} Z^{z} V^{v} W^{w}\right)=y+z$, and then $\mathcal{B}=\bigoplus_{d \geq 0} \mathcal{B}_{d}$, where \mathcal{B}_{d} is generated as an \mathbb{F}_{q}-module by $Y^{y} Z^{z} V^{v} W^{w}$ with $y+z=d$ and $v+w=n y+m z$.

Codes defined on rational normal scrolls

We found a parametrization for S using four parameters $\alpha, \beta, \gamma, \delta \in \mathbb{F}_{q}$ in the following way:

Codes defined on rational normal scrolls

We found a parametrization for S using four parameters $\alpha, \beta, \gamma, \delta \in \mathbb{F}_{q}$ in the following way:

$$
\begin{array}{r}
\left(\begin{array}{ccccccccc}
a_{0} & : \cdots & a_{n} & : & a_{n+1} & : \cdots & a_{\ell}
\end{array}\right) \in S \text { if and only if } \\
\operatorname{rank}\left(\begin{array}{ccccccc}
a_{0} & a_{1} & \cdots & a_{n-1} & a_{n+1} & \cdots & a_{\ell-1} \\
a_{1} & a_{2} & \cdots & a_{n} & a_{n+2} & \cdots & a_{\ell}
\end{array}\right)=1
\end{array}
$$

\square We can make ψ a graded morphism of algebras by defining $\operatorname{deg}\left(Y^{y} Z^{z} V^{v} W^{w}\right)=y+z$, and then $\mathcal{B}=\bigoplus_{d>0} \mathcal{B}_{d}$, where \mathcal{B}_{d} is generated as an \mathbb{F}_{q}-module by $Y^{y} Z^{z} V^{v} W^{w}$ with $y+z=d$ and $v+w=n y+m z$.

Codes defined on rational normal scrolls

We found a parametrization for S using four parameters $\alpha, \beta, \gamma, \delta \in \mathbb{F}_{q}$ in the following way:

$$
\begin{array}{r}
\left(\begin{array}{ccccccccc}
\alpha \delta^{n} & : \cdots: & a_{n} & : & a_{n+1} & : \cdots & a_{\ell} &) \\
\operatorname{rank}\left(\begin{array}{ccccccc}
\alpha \delta^{n} & a_{1} & \cdots & a_{n-1} & a_{n+1} & \cdots & a_{\ell-1} \\
a_{1} & a_{2} & \cdots & a_{n} & a_{n+2} & \cdots & a_{\ell}
\end{array}\right)=1
\end{array} .=\begin{array}{l}
\text { and only if }
\end{array}\right.
\end{array}
$$

\square We can make ψ a graded morphism of algebras by defining $\operatorname{deg}\left(Y^{y} Z^{z} V^{v} W^{w}\right)=y+z$, and then $\mathcal{B}=\bigoplus_{d>0} \mathcal{B}_{d}$, where \mathcal{B}_{d} is generated as an \mathbb{F}_{q}-module by $Y^{y} Z^{z} V^{v} W^{w}$ with $y+z=d$ and $v+w=n y+m z$.

Codes defined on rational normal scrolls

We found a parametrization for S using four parameters $\alpha, \beta, \gamma, \delta \in \mathbb{F}_{q}$ in the following way:

$$
\begin{array}{r}
\left(\begin{array}{cccccccc}
\alpha \delta^{n} & : \cdots: & a_{n} & : & a_{n+1} & : \cdots & a_{\ell}
\end{array}\right) \in S \text { if and only if } \\
\operatorname{rank}\left(\begin{array}{ccccccc}
\alpha \delta^{n} & \alpha \gamma \delta^{n-1} & \ldots & a_{n-1} & a_{n+1} & \cdots & a_{\ell-1} \\
\alpha \gamma \delta^{n-1} & a_{2} & \cdots & a_{n} & a_{n+2} & \cdots & a_{\ell}
\end{array}\right)=1
\end{array}
$$

\square We can make Ψ a graded morphism of algebras by defining $\operatorname{deg}\left(Y^{y} Z^{z} V^{v} W^{w}\right)=y+z$, and then $\mathcal{B}=\bigoplus_{d>0} \mathcal{B}_{d}$, where \mathcal{B}_{d} is generated as an \mathbb{F}_{q}-module by $Y^{y} Z^{z} V^{v} W^{w}$ with $y+z=d$ and $v+w=n y+m z$.

Codes defined on rational normal scrolls

We found a parametrization for S using four parameters $\alpha, \beta, \gamma, \delta \in \mathbb{F}_{q}$ in the following way:

$$
\begin{array}{r}
\left(\begin{array}{ccccccccc}
\alpha \delta^{n} & : \cdots: & a_{n} & : & a_{n+1} & : \cdots & a_{\ell}
\end{array}\right) \in S \text { if and only if } \\
\operatorname{rank}\left(\begin{array}{ccccccc}
\alpha \delta^{n} & \alpha \gamma \delta^{n-1} & \ldots & a_{n-1} & a_{n+1} & \cdots & a_{\ell-1} \\
\alpha \gamma \delta^{n-1} & \alpha \gamma^{2} \delta^{n-2} & \ldots & a_{n} & a_{n+2} & \cdots & a_{\ell}
\end{array}\right)=1
\end{array}
$$

\square We can make Ψ a graded morphism of algebras by defining $\operatorname{deg}\left(Y^{y} Z^{z} V^{v} W^{w}\right)=y+z$, and then $\mathcal{B}=\bigoplus_{d>0} \mathcal{B}_{d}$, where \mathcal{B}_{d} is generated as an \mathbb{F}_{q}-module by $Y^{y} Z^{z} V^{v} W^{w}$ with $y+z=d$ and $v+w=n y+m z$.

Codes defined on rational normal scrolls

We found a parametrization for S using four parameters $\alpha, \beta, \gamma, \delta \in \mathbb{F}_{q}$ in the following way:

$$
\begin{array}{r}
\left(\begin{array}{ccccccccc}
\alpha \delta^{n} & : \cdots: & a_{n} & : & a_{n+1} & : \cdots & a_{\ell}
\end{array}\right) \in S \text { if and only if } \\
\operatorname{rank}\left(\begin{array}{ccccccc}
\alpha \delta^{n} & \alpha \gamma \delta^{n-1} & \cdots & \alpha \gamma^{n-1} \delta & a_{n+1} & \cdots & a_{\ell-1} \\
\alpha \gamma \delta^{n-1} & \alpha \gamma^{2} \delta^{n-2} & \cdots & a_{n} & a_{n+2} & \cdots & a_{\ell}
\end{array}\right)=1
\end{array}
$$

\square We can make Ψ a graded morphism of algebras by defining $\operatorname{deg}\left(Y^{y} Z^{z} V^{v} W^{w}\right)=y+z$, and then $\mathcal{B}=\bigoplus_{d>0} \mathcal{B}_{d}$, where \mathcal{B}_{d} is generated as an \mathbb{F}_{q}-module by $Y^{y} Z^{z} V^{v} W^{w}$ with $y+z=d$ and $v+w=n y+m z$.

Codes defined on rational normal scrolls

We found a parametrization for S using four parameters $\alpha, \beta, \gamma, \delta \in \mathbb{F}_{q}$ in the following way:

$$
\left.\begin{array}{r}
\left(\begin{array}{cccccccc}
\alpha \delta^{n} & : \cdots: & \alpha \gamma^{n} & : & a_{n+1} & : \cdots: & a_{\ell} &)
\end{array}\right. \\
\operatorname{rank}\left(\begin{array}{cccccc}
\alpha \delta^{n} & \alpha \gamma \delta^{n-1} & \cdots & \alpha \gamma^{n-1} \delta & a_{n+1} & \cdots \\
\alpha \gamma \delta^{n-1} & \alpha \gamma^{2} \delta^{n-2} & \cdots & \alpha \gamma^{n} & a_{n+2} & \cdots
\end{array} a_{\ell-1}\right.
\end{array}\right)=1 .
$$

\square We can make Ψ a graded morphism of algebras by defining $\operatorname{deg}\left(Y^{y} Z^{z} V^{v} W^{w}\right)=y+z$, and then $\mathcal{B}=\bigoplus_{d \geq 0} \mathcal{B}_{d}$, where \mathcal{B}_{d} is generated as an \mathbb{F}_{q}-module by $Y^{y} Z^{z} V^{v} W^{w}$ with $y+z=d$ and $v+w=n y+m z$.

Codes defined on rational normal scrolls

We found a parametrization for S using four parameters $\alpha, \beta, \gamma, \delta \in \mathbb{F}_{q}$ in the following way:

$$
\left.\begin{array}{r}
\left(\begin{array}{cccccccc}
\alpha \delta^{n} & : \cdots: & \alpha \gamma^{n} & : & \beta \delta^{m} & : \cdots: & a_{\ell} &)
\end{array}\right. \\
\operatorname{rank}\left(\begin{array}{cccccc}
\alpha \delta^{n} & \alpha \gamma \delta^{n-1} & \cdots & \alpha \gamma^{n-1} \delta & \beta \delta^{m} & \cdots \\
\alpha \gamma \delta^{n-1} & \alpha \gamma^{2} \delta^{n-2} & \cdots & \alpha \gamma^{n} & a_{n+2} & \cdots
\end{array} a_{\ell-1}\right.
\end{array}\right)=1 .
$$

\square We can make Ψ a graded morphism of algebras by defining $\operatorname{deg}\left(Y^{y} Z^{z} V^{v} W^{w}\right)=y+z$, and then $\mathcal{B}=\bigoplus_{d \geq 0} \mathcal{B}_{d}$, where \mathcal{B}_{d} is generated as an \mathbb{F}_{q}-module by $Y^{y} Z^{z} V^{v} W^{w}$ with $y+z=d$ and $v+w=n y+m z$.

Codes defined on rational normal scrolls

We found a parametrization for S using four parameters $\alpha, \beta, \gamma, \delta \in \mathbb{F}_{q}$ in the following way:

$$
\begin{aligned}
& \left(\alpha \delta^{n}: \cdots: \alpha \gamma^{n}: \beta \delta^{m}: \cdots: \quad a_{\ell} \quad\right) \in S \text { if and only if } \\
& \operatorname{rank}\left(\begin{array}{ccccccc}
\alpha \delta^{n} & \alpha \gamma \delta^{n-1} & \cdots & \alpha \gamma^{n-1} \delta & \beta \delta^{m} & \cdots & a_{\ell-1} \\
\alpha \gamma \delta^{n-1} & \alpha \gamma^{2} \delta^{n-2} & \cdots & \alpha \gamma^{n} & \beta \gamma \delta^{m-1} & \cdots & a_{\ell}
\end{array}\right)=1
\end{aligned}
$$

\square We can make Ψ a graded morphism of algebras by defining $\operatorname{deg}\left(Y^{y} Z^{z} V^{v} W^{w}\right)=y+z$, and then $\mathcal{B}=\bigoplus_{d \geq 0} \mathcal{B}_{d}$, where \mathcal{B}_{d} is generated as an \mathbb{F}_{q}-module by $Y^{y} Z^{z} V^{v} W^{w}$ with $y+z=d$ and $v+w=n y+m z$.

Codes defined on rational normal scrolls

We found a parametrization for S using four parameters $\alpha, \beta, \gamma, \delta \in \mathbb{F}_{q}$ in the following way:

$$
\begin{aligned}
& \left(\alpha \delta^{n}: \cdots: \alpha \gamma^{n}: \beta \delta^{m}: \cdots: \quad a_{\ell} \quad\right) \in S \text { if and only if } \\
& \operatorname{rank}\left(\begin{array}{ccccccc}
\alpha \delta^{n} & \alpha \gamma \delta^{n-1} & \cdots & \alpha \gamma^{n-1} \delta & \beta \delta^{m} & \cdots & \beta \gamma^{m-1} \delta \\
\alpha \gamma \delta^{n-1} & \alpha \gamma^{2} \delta^{n-2} & \cdots & \alpha \gamma^{n} & \beta \gamma \delta^{m-1} & \cdots & a_{\ell}
\end{array}\right)=1
\end{aligned}
$$

\square We can make Ψ a graded morphism of algebras by defining $\operatorname{deg}\left(Y^{y} Z^{z} V^{v} W^{w}\right)=y+z$, and then $\mathcal{B}=\bigoplus_{d>0} \mathcal{B}_{d}$, where \mathcal{B}_{d} is generated as an \mathbb{F}_{q}-module by $Y^{y} Z^{z} V^{v} W^{w}$ with $y+z=d$ and $v+w=n y+m z$.

Codes defined on rational normal scrolls

We found a parametrization for S using four parameters $\alpha, \beta, \gamma, \delta \in \mathbb{F}_{q}$ in the following way:

$$
\begin{array}{r}
\left(\begin{array}{cccccccc}
\alpha \delta^{n} & : \cdots: & \alpha \gamma^{n} & : & \beta \delta^{m} & : \cdots: & \beta \gamma^{m}
\end{array}\right) \in S \text { if and only if } \\
\operatorname{rank}\left(\begin{array}{ccccccc}
\alpha \delta^{n} & \alpha \gamma \delta^{n-1} & \cdots & \alpha \gamma^{n-1} \delta & \beta \delta^{m} & \cdots & \beta \gamma^{m-1} \delta \\
\alpha \gamma \delta^{n-1} & \alpha \gamma^{2} \delta^{n-2} & \cdots & \alpha \gamma^{n} & \beta \gamma \delta^{m-1} & \cdots & \beta \gamma^{m}
\end{array}\right)=1
\end{array}
$$

Let \mathcal{B} be the image of ψ and let's consider $\psi: \mathbb{F}_{q}[\mathbf{X}] \longrightarrow \mathcal{B}$. We can make Ψ a graded morphism of algebras by defining $\operatorname{deg}\left(Y^{y} Z^{z} V^{v} W^{w}\right)=y+z$, and then $\mathcal{B}=\bigoplus_{d>0} \mathcal{B}_{d}$, where \mathcal{B}_{d} is generated as an \mathbb{F}_{q}-module by $Y^{y} Z^{z} V^{v} W^{w}$ with $y+z=d$ and $v+w=n y+m z$.

Codes defined on rational normal scrolls

We found a parametrization for S using four parameters $\alpha, \beta, \gamma, \delta \in \mathbb{F}_{q}$ in the following way:

$$
\begin{array}{r}
\left(\begin{array}{cccccccc}
\alpha \delta^{n} & : \cdots: & \alpha \gamma^{n} & : & \beta \delta^{m} & : \cdots: & \beta \gamma^{m}
\end{array}\right) \in S \text { if and only if } \\
\operatorname{rank}\left(\begin{array}{ccccccc}
\alpha \delta^{n} & \alpha \gamma \delta^{n-1} & \cdots & \alpha \gamma^{n-1} \delta & \beta \delta^{m} & \cdots & \beta \gamma^{m-1} \delta \\
\alpha \gamma \delta^{n-1} & \alpha \gamma^{2} \delta^{n-2} & \cdots & \alpha \gamma^{n} & \beta \gamma \delta^{m-1} & \cdots & \beta \gamma^{m}
\end{array}\right)=1
\end{array}
$$

This lead us to consider the homomorphism of \mathbb{F}_{q}-algebras

Codes defined on rational normal scrolls

We found a parametrization for S using four parameters $\alpha, \beta, \gamma, \delta \in \mathbb{F}_{q}$ in the following way:

$$
\begin{array}{r}
\left(\begin{array}{cccccccc}
\alpha \delta^{n} & : \cdots: & \alpha \gamma^{n} & : & \beta \delta^{m} & : \cdots: & \beta \gamma^{m}
\end{array}\right) \in S \text { if and only if } \\
\operatorname{rank}\left(\begin{array}{ccccccc}
\alpha \delta^{n} & \alpha \gamma \delta^{n-1} & \cdots & \alpha \gamma^{n-1} \delta & \beta \delta^{m} & \cdots & \beta \gamma^{m-1} \delta \\
\alpha \gamma \delta^{n-1} & \alpha \gamma^{2} \delta^{n-2} & \cdots & \alpha \gamma^{n} & \beta \gamma \delta^{m-1} & \cdots & \beta \gamma^{m}
\end{array}\right)=1
\end{array}
$$

This lead us to consider the homomorphism of \mathbb{F}_{q}-algebras $\Psi: \mathbb{F}_{q}[\mathbf{X}] \longrightarrow \mathbb{F}_{q}[Y, Z, V, W]$ given by $\Psi\left(X_{i}\right)=Y V^{i} W^{n-i}$ for $i=0, \ldots, n$

Codes defined on rational normal scrolls

We found a parametrization for S using four parameters $\alpha, \beta, \gamma, \delta \in \mathbb{F}_{q}$ in the following way:
$\left(\alpha \delta^{n}: \cdots: \alpha \gamma^{n}: \beta \delta^{m}: \cdots: \beta \gamma^{m}\right) \in S$ if and only if $\operatorname{rank}\left(\begin{array}{ccccccc}\alpha \delta^{n} & \alpha \gamma \delta^{n-1} & \cdots & \alpha \gamma^{n-1} \delta & \beta \delta^{m} & \cdots & \beta \gamma^{m-1} \delta \\ \alpha \gamma \delta^{n-1} & \alpha \gamma^{2} \delta^{n-2} & \cdots & \alpha \gamma^{n} & \beta \gamma \delta^{m-1} & \cdots & \beta \gamma^{m}\end{array}\right)=1$

This lead us to consider the homomorphism of \mathbb{F}_{q}-algebras $\Psi: \mathbb{F}_{q}[\mathbf{X}] \longrightarrow \mathbb{F}_{q}[Y, Z, V, W]$ given by $\Psi\left(X_{i}\right)=Y V^{i} W^{n-i}$ for $i=0, \ldots, n$ and $\Psi\left(X_{j}\right)=Z V^{j-n-1} W^{\ell-j}$ for $j=n+1, \ldots, \ell=n+m+1$.

Codes defined on rational normal scrolls

We found a parametrization for S using four parameters $\alpha, \beta, \gamma, \delta \in \mathbb{F}_{q}$ in the following way:

$$
\left.\operatorname{rank}\left(\begin{array}{cccccc}
Y V^{0} W^{n} & Y V^{1} W^{n-1} & & Y V^{n-1} W^{1} & Z V^{0} W^{m} & Z V^{m-1} W^{1} \\
\alpha \delta^{n} & \alpha \gamma \delta^{n-1} & \cdots & \alpha \gamma^{n-1} \delta & \beta \delta^{m} & \cdots \\
\alpha \gamma \delta^{n-1} & \alpha \gamma^{2} \delta^{n-2} & \cdots & \alpha \gamma^{m-1} \delta & \beta \gamma \delta^{m-1} & \cdots
\end{array}\right) \beta \gamma^{m}\right)=1
$$

This lead us to consider the homomorphism of \mathbb{F}_{q}-algebras $\Psi: \mathbb{F}_{q}[\mathbf{X}] \longrightarrow \mathbb{F}_{q}[Y, Z, V, W]$ given by $\Psi\left(X_{i}\right)=Y V^{i} W^{n-i}$ for $i=0, \ldots, n$ and $\Psi\left(X_{j}\right)=Z V^{j-n-1} W^{\ell-j}$ for $j=n+1, \ldots, \ell=n+m+1$.
Let \mathcal{B} be the image of Ψ and let's consider $\Psi: \mathbb{F}_{q}[\mathrm{X}] \longrightarrow \mathcal{B}$.
We can make Ψ a graded morphism of algebras by defining $\operatorname{deg}\left(Y^{y} Z^{z} V^{v} W^{w}\right)=y+z$, and then $\mathcal{B}=\bigoplus_{d>0} \mathcal{B}_{d}$, where \mathcal{B}_{d} is generated as an \mathbb{F}_{q}-module by $Y^{y} Z^{z} V^{v} W^{w}$ with $y+z=d$ and $v+w=n y+m z$.

Codes defined on rational normal scrolls

We found a parametrization for S using four parameters $\alpha, \beta, \gamma, \delta \in \mathbb{F}_{q}$ in the following way:

$$
\left.\operatorname{rank}\left(\begin{array}{cccccc}
Y V^{0} W^{n} & Y V^{1} W^{n-1} & & Y V^{n-1} W^{1} & Z V^{0} W^{m} & Z V^{m-1} W^{1} \\
\alpha \delta^{n} & \alpha \gamma \delta^{n-1} & \cdots & \alpha \gamma^{n-1} \delta & \beta \delta^{m} & \cdots \\
\alpha \gamma \delta^{n-1} & \alpha \gamma^{2} \delta^{n-2} & \cdots & \alpha \gamma^{m-1} \delta & \beta \gamma \delta^{m-1} & \cdots
\end{array}\right) \beta \gamma^{m}\right)=1
$$

This lead us to consider the homomorphism of \mathbb{F}_{q}-algebras $\Psi: \mathbb{F}_{q}[\mathbf{X}] \longrightarrow \mathbb{F}_{q}[Y, Z, V, W]$ given by $\Psi\left(X_{i}\right)=Y V^{i} W^{n-i}$ for $i=0, \ldots, n$ and $\Psi\left(X_{j}\right)=Z V^{j-n-1} W^{\ell-j}$ for $j=n+1, \ldots, \ell=n+m+1$.
Let \mathcal{B} be the image of Ψ and let's consider $\Psi: \mathbb{F}_{q}[\mathrm{X}] \longrightarrow \mathcal{B}$.
We can make Ψ a graded morphism of algebras by defining $\operatorname{deg}\left(Y^{y} Z^{z} V^{v} W^{w}\right)=y+z$, and then $\mathcal{B}=\bigoplus_{d>0} \mathcal{B}_{d}$, where \mathcal{B}_{d} is generated as an \mathbb{F}_{q}-module by $Y^{y} Z^{z} V^{v} W^{w}$ with $y+z=d$ and $v+w=n y+m z$.

Codes defined on rational normal scrolls

We found a parametrization for S using four parameters $\alpha, \beta, \gamma, \delta \in \mathbb{F}_{q}$ in the following way:

$$
\operatorname{rank}\left(\begin{array}{cccccc}
Y V^{0} W^{n} & Y V^{1} W^{n-1} & & Y V^{n-1} W^{1} & Z V^{0} W^{m} & Z V^{m-1} W^{1} \\
\alpha \delta^{n} & \alpha \gamma \delta^{n-1} & \cdots & \alpha \gamma^{n-1} \delta & \beta \delta^{m} & \cdots \\
\alpha \gamma \delta^{n-1} & \alpha \gamma^{2} \delta^{n-2} & \cdots & \alpha \gamma^{m-1} \delta & \beta \gamma \delta^{m-1} & \cdots \\
Y V^{1} W^{n-1} & Y V^{2} W^{n-2} & Y V^{0} W^{n} & Z V^{1} W^{m-1} & \beta \gamma^{m}
\end{array}\right)=1
$$

This lead us to consider the homomorphism of \mathbb{F}_{q}-algebras $\Psi: \mathbb{F}_{q}[\mathbf{X}] \longrightarrow \mathbb{F}_{q}[Y, Z, V, W]$ given by $\Psi\left(X_{i}\right)=Y V^{i} W^{n-i}$ for $i=0, \ldots, n$ and $\Psi\left(X_{j}\right)=Z V^{j-n-1} W^{\ell-j}$ for $j=n+1, \ldots, \ell=n+m+1$.
Let \mathcal{B} be the image of Ψ and let's consider $\Psi: \mathbb{F}_{q}[\mathbf{X}] \longrightarrow \mathcal{B}$. We can make Ψ a graded morphism of algebras by defining $\operatorname{deg}\left(Y^{y} Z^{z} V^{v} W^{w}\right)=y+z$, and then $\mathcal{B}=\bigoplus_{d \geq 0} \mathcal{B}_{d}$, where \mathcal{B}_{d} is generated as an \mathbb{F}_{q}-module by $Y^{y} Z^{z} V^{v} W^{w}$ with $y+z=d$ and $v+w=n y+m z$.

Codes defined on rational normal scrolls

We found a parametrization for S using four parameters $\alpha, \beta, \gamma, \delta \in \mathbb{F}_{q}$ in the following way:

$$
\operatorname{rank}\left(\begin{array}{cccccc}
Y V^{0} W^{n} & Y V^{1} W^{n-1} & & Y V^{n-1} W^{1} & Z V^{0} W^{m} & \\
\alpha \delta^{n} & \alpha \gamma \delta^{n-1} & \cdots & \alpha \gamma^{n-1} W^{1} \\
\alpha \gamma \delta^{n-1} & \alpha \gamma^{2} \delta^{n-2} & \cdots & \beta \delta^{m} & \cdots & \beta \gamma^{m-1} \delta \\
Y V^{1} W^{n-1} & Y V^{2} W^{n-2} & \beta \gamma \delta^{m-1} & \cdots & \beta \gamma^{m}
\end{array}\right)=1
$$

This lead us to consider the homomorphism of \mathbb{F}_{q}-algebras $\Psi: \mathbb{F}_{q}[\mathbf{X}] \longrightarrow \mathbb{F}_{q}[Y, Z, V, W]$ given by $\Psi\left(X_{i}\right)=Y V^{i} W^{n-i}$ for $i=0, \ldots, n$ and $\Psi\left(X_{j}\right)=Z V^{j-n-1} W^{\ell-j}$ for $j=n+1, \ldots, \ell=n+m+1$.
Let \mathcal{B} be the image of Ψ and let's consider $\Psi: \mathbb{F}_{q}[\mathbf{X}] \longrightarrow \mathcal{B}$.
We can make Ψ a graded morphism of algebras by defining $\operatorname{deg}\left(Y^{y} Z^{z} V^{v} W^{w}\right)=y+z$,

[^1]$v+w=n y+m z$

Codes defined on rational normal scrolls

We found a parametrization for S using four parameters $\alpha, \beta, \gamma, \delta \in \mathbb{F}_{q}$ in the following way:

$$
\operatorname{rank}\left(\begin{array}{cccccc}
Y V^{0} W^{n} & Y V^{1} W^{n-1} & & Y V^{n-1} W^{1} & Z V^{0} W^{m} & Z V^{m-1} W^{1} \\
\alpha \delta^{n} & \alpha \gamma \delta^{n-1} & \cdots & \alpha \gamma^{n-1} \delta & \beta \delta^{m} & \cdots \\
\alpha \gamma \delta^{n-1} & \alpha \gamma^{2} \delta^{n-2} & \cdots & \alpha \gamma^{m-1} \delta & \beta \gamma \delta^{m-1} & \cdots \\
Y V^{1} W^{n-1} & Y V^{2} W^{n-2} & Y V^{0} W^{n} & Z V^{1} W^{m-1} & \beta \gamma^{m}
\end{array}\right)=1
$$

This lead us to consider the homomorphism of \mathbb{F}_{q}-algebras $\Psi: \mathbb{F}_{q}[\mathbf{X}] \longrightarrow \mathbb{F}_{q}[Y, Z, V, W]$ given by $\Psi\left(X_{i}\right)=Y V^{i} W^{n-i}$ for $i=0, \ldots, n$ and $\Psi\left(X_{j}\right)=Z V^{j-n-1} W^{\ell-j}$ for $j=n+1, \ldots, \ell=n+m+1$.
Let \mathcal{B} be the image of Ψ and let's consider $\Psi: \mathbb{F}_{q}[\mathbf{X}] \longrightarrow \mathcal{B}$.
We can make Ψ a graded morphism of algebras by defining $\operatorname{deg}\left(Y^{y} Z^{z} V^{v} W^{w}\right)=y+z$, and then $\mathcal{B}=\bigoplus_{d \geq 0} \mathcal{B}_{d}$, where \mathcal{B}_{d} is generated as an \mathbb{F}_{q}-module by $Y^{y} Z^{z} V^{v} W^{w}$ with $y+z=d$ and $v+w=n y+m z$.

Codes defined on rational normal scrolls

Thus

$$
\begin{aligned}
\Psi: \mathbb{F}_{q}[\mathbf{X}] & \rightarrow \mathcal{B} \\
X_{i} & \mapsto Y V^{i} W^{n-i} \text { for } i=0, \ldots, n \\
X_{j} & \mapsto Z V^{j-n-1} W^{\ell-j} \text { for } i=n+1, \ldots, \ell=n+m+1
\end{aligned}
$$

is a morphism of graded \mathbb{F}_{q}-algebras. Not surprisingly we proved that ker $\psi=I$, proving that $0 \longrightarrow I(d) \longrightarrow \mathbb{F}_{a}[\mathbf{X}]_{d} \xrightarrow{\psi} \mathcal{B}_{d} \longrightarrow 0$ is an exact sequence of \mathbb{F}_{q}-modules for all $d \geq 0$.
Thus $\mathbb{F}_{q}[\mathbf{X}]_{d} / I(d) \cong \mathcal{B}_{d}$ for all $d \geq 0$ (hence $\mathbb{F}_{q}[\mathbf{X}] / I \cong \mathcal{B}$) and for some ideal $\mathcal{J} \subset \mathcal{B}$ we must have $\mathbb{F}_{q}[\mathbf{X}] / I_{S} \cong \mathcal{B} / \mathcal{J}$. Based on examples like the one we saw (over \bar{F}_{5}) we defined \mathcal{J} as a graded ideal $\mathcal{J}=\Theta_{d>0} \mathcal{J}(d)$ where $\mathcal{J}(d)$, as an \mathbb{F}_{q}-submodule of \mathcal{B}_{d}, is generated by the elements $Y^{y} Z^{z} V^{v} W^{w}-Y^{\tilde{y}} Z^{z} V^{\tilde{v}} W^{\tilde{w}}$ where $y, z, v, w, \tilde{y}, \tilde{z}, \tilde{v}, \tilde{w}$ are non-negative integers satisfying

$$
\begin{aligned}
& y+z=\tilde{y}+\tilde{z}=d \\
& v+w=n y+m z, \tilde{v}+\tilde{w}=n \tilde{y}+m \tilde{z} \\
& q-1|y-\tilde{y}, q-1| v-\tilde{v} \\
& v=n y+m z \Longleftrightarrow \tilde{v}=n \tilde{y}+m \tilde{z}
\end{aligned}
$$

Codes defined on rational normal scrolls

Thus

$$
\begin{aligned}
\Psi: \mathbb{F}_{q}[\mathbf{X}] & \rightarrow \mathcal{B} \\
X_{i} & \mapsto Y V^{i} W^{n-i} \text { for } i=0, \ldots, n \\
X_{j} & \mapsto Z V^{j-n-1} W^{\ell-j} \text { for } i=n+1, \ldots, \ell=n+m+1
\end{aligned}
$$

is a morphism of graded \mathbb{F}_{q}-algebras. Not surprisingly we proved that
ker $\psi=I$, proving that $0 \longrightarrow I(d) \longrightarrow \mathbb{F}_{q}[\mathbf{X}]_{d} \xrightarrow{\psi} \mathcal{B}_{d} \longrightarrow 0$ is an exact sequence of \mathbb{F}_{q}-modules for all $d \geq 0$.
Thus $\mathbb{F}_{q}[\mathbf{X}]_{d} / I(d) \cong \mathcal{B}_{d}$ for all $d \geq 0$ (hence $\mathbb{F}_{q}[\mathbf{X}] / I \cong \mathcal{B}$) and for some ideal $\mathcal{J} \subset \mathcal{B}$ we must have $\mathbb{F}_{q}[\mathbf{X}] / I_{S} \cong \mathcal{B} / \mathcal{J}$. Based on examples like the one we saw (over \mathbb{F}_{5}) we defined \mathcal{J} as a graded ideal $\mathcal{J}=\bigoplus_{d \geq 0} \mathcal{J}(d)$ where $\mathcal{J}(d)$, as an \mathbb{F}_{q}-submodule of \mathcal{B}_{d}, is generated by the elements $Y^{y} Z^{z} V^{v} W^{w}-Y^{\tilde{y}} Z^{\tilde{z}} V^{\tilde{v}} W^{\tilde{w}}$ where $y, z, v, w, \tilde{y}, \tilde{z}, \tilde{v}, \tilde{w}$ are non-negative integers satisfying

Codes defined on rational normal scrolls

Thus

$$
\begin{aligned}
\Psi: \mathbb{F}_{q}[\mathbf{X}] & \rightarrow \mathcal{B} \\
X_{i} & \mapsto Y V^{i} W^{n-i} \text { for } i=0, \ldots, n \\
X_{j} & \mapsto Z V^{j-n-1} W^{\ell-j} \text { for } i=n+1, \ldots, \ell=n+m+1
\end{aligned}
$$

is a morphism of graded \mathbb{F}_{q}-algebras. Not surprisingly we proved that
ker $\psi=I$, proving that $0 \longrightarrow I(d) \longrightarrow \mathbb{F}_{q}[X]_{d} \xrightarrow{\psi} \mathcal{B}_{d} \longrightarrow 0$ is an exact sequence of \mathbb{F}_{q}-modules for all $d \geq 0$.
Thus $\mathbb{F}_{q}[\mathbf{X}]_{d} / I(d) \cong \mathcal{B}_{d}$ for all $d \geq 0$ (hence $\mathbb{F}_{q}[X] / / \cong \mathcal{B}$) and for some ideal $\mathcal{J} \subset \mathcal{B}$ we must have $\mathbb{F}_{q}[X] / I_{S} \cong \mathcal{B} / \mathcal{J}$. Based on examples like the one we saw (over \mathbb{F}_{5}) we defined \mathcal{J} as a graded ideal $\mathcal{J}=\bigoplus_{d \geq 0} \mathcal{J}(d)$ where $\mathcal{J}(d)$, as an \mathbb{F}_{q}-submodule of \mathcal{B}_{d}, is generated by the elements $Y^{y} Z^{z} V^{v} W^{w}-Y^{\tilde{y}} Z^{\tilde{z}} V^{\tilde{v}} W^{\tilde{w}}$ where $y, z, v, w, \tilde{y}, \tilde{z}, \tilde{v}, \tilde{w}$ are non-negative integers satisfying

Codes defined on rational normal scrolls

Thus

$$
\begin{aligned}
\Psi: \mathbb{F}_{q}[\mathbf{X}] & \rightarrow \mathcal{B} \\
X_{i} & \mapsto Y V^{i} W^{n-i} \text { for } i=0, \ldots, n \\
X_{j} & \mapsto Z V^{j-n-1} W^{\ell-j} \text { for } i=n+1, \ldots, \ell=n+m+1
\end{aligned}
$$

is a morphism of graded \mathbb{F}_{q}-algebras. Not surprisingly we proved that ker $\Psi=I$, proving that $0 \longrightarrow I(d) \longrightarrow \mathbb{F}_{q}[X]_{d} \longrightarrow B_{d} \longrightarrow 0$ is an exact sequence of \mathbb{F}_{q}-modules for all $d \geq 0$.
 ideal $\mathcal{J} \subset \mathcal{B}$ we must have $\mathbb{F}_{q}[\mathbf{X}] / I_{S} \cong \mathcal{B} / \mathcal{J}$. Based on examples like the one we saw (over \mathbb{F}_{5}) we defined \mathcal{J} as a graded ideal $\mathcal{J}=\bigoplus_{d \geq 0} \mathcal{J}(d)$ where $\mathcal{J}(d)$, as an \mathbb{F}_{q}-submodule of \mathcal{B}_{d}, is generated by the elements $Y^{y} Z^{z} V^{v} W^{w}-Y^{\tilde{y}} Z^{\tilde{z}} V^{\tilde{v}} W^{\tilde{w}}$ where $y, z, v, w, \tilde{y}, \tilde{z}, \tilde{v}, \tilde{w}$ are non-negative

integers satisfying

Codes defined on rational normal scrolls

Thus

$$
\begin{aligned}
\Psi: \mathbb{F}_{q}[\mathbf{X}] & \rightarrow \mathcal{B} \\
X_{i} & \mapsto Y V^{i} W^{n-i} \text { for } i=0, \ldots, n \\
X_{j} & \mapsto Z V^{j-n-1} W^{\ell-j} \text { for } i=n+1, \ldots, \ell=n+m+1
\end{aligned}
$$

is a morphism of graded \mathbb{F}_{q}-algebras. Not surprisingly we proved that ker $\Psi=I$, proving that $0 \longrightarrow I(d) \longrightarrow \mathbb{F}_{q}[\mathbf{X}]_{d} \xrightarrow{\Psi} \mathcal{B}_{d} \longrightarrow 0$ is an exact

integers satisfying

Codes defined on rational normal scrolls

Thus

$$
\begin{aligned}
\Psi: \mathbb{F}_{q}[\mathbf{X}] & \rightarrow \mathcal{B} \\
X_{i} & \mapsto Y V^{i} W^{n-i} \text { for } i=0, \ldots, n \\
X_{j} & \mapsto Z V^{j-n-1} W^{\ell-j} \text { for } i=n+1, \ldots, \ell=n+m+1
\end{aligned}
$$

is a morphism of graded \mathbb{F}_{q}-algebras. Not surprisingly we proved that ker $\Psi=I$, proving that $0 \longrightarrow I(d) \longrightarrow \mathbb{F}_{q}[\mathbf{X}]_{d} \xrightarrow{\Psi} \mathcal{B}_{d} \longrightarrow 0$ is an exact sequence of \mathbb{F}_{q}-modules for all $d \geq 0$.

integers satisfying

Codes defined on rational normal scrolls

Thus

$$
\begin{aligned}
\Psi: \mathbb{F}_{q}[\mathbf{X}] & \rightarrow \mathcal{B} \\
X_{i} & \mapsto Y V^{i} W^{n-i} \text { for } i=0, \ldots, n \\
X_{j} & \mapsto Z V^{j-n-1} W^{\ell-j} \text { for } i=n+1, \ldots, \ell=n+m+1
\end{aligned}
$$

is a morphism of graded \mathbb{F}_{q}-algebras. Not surprisingly we proved that $\operatorname{ker} \Psi=I$, proving that $0 \longrightarrow I(d) \longrightarrow \mathbb{F}_{q}[\mathbf{X}]_{d} \xrightarrow{\Psi} \mathcal{B}_{d} \longrightarrow 0$ is an exact sequence of \mathbb{F}_{q}-modules for all $d \geq 0$.
Thus $\mathbb{F}_{q}[\mathbf{X}]_{d} / I(d) \cong \mathcal{B}_{d}$ for all $d \geq 0$ \qquad hence $\left.\mathbb{F}_{q}[\mathrm{X}] / I \cong \mathcal{B}\right)$ and for some

integers satisfying

Codes defined on rational normal scrolls

Thus

$$
\begin{aligned}
\Psi: \mathbb{F}_{q}[\mathbf{X}] & \rightarrow \mathcal{B} \\
X_{i} & \mapsto Y V^{i} W^{n-i} \text { for } i=0, \ldots, n \\
X_{j} & \mapsto Z V^{j-n-1} W^{\ell-j} \text { for } i=n+1, \ldots, \ell=n+m+1
\end{aligned}
$$

is a morphism of graded \mathbb{F}_{q}-algebras. Not surprisingly we proved that $\operatorname{ker} \Psi=I$, proving that $0 \longrightarrow I(d) \longrightarrow \mathbb{F}_{q}[\mathbf{X}]_{d} \xrightarrow{\Psi} \mathcal{B}_{d} \longrightarrow 0$ is an exact sequence of \mathbb{F}_{q}-modules for all $d \geq 0$.
Thus $\mathbb{F}_{q}[\mathbf{X}]_{d} / I(d) \cong \mathcal{B}_{d}$ for all $d \geq 0$ (hence $\mathbb{F}_{q}[\mathbf{X}] / I \cong \mathcal{B}$) \qquad
one we saw (over \mathbb{F}_{5}) we defined \mathcal{J} as a graded ideal $\mathcal{J}=\bigoplus_{d \geq 0} \mathcal{J}(d)$ where $\mathcal{J}(d)$, as an \mathbb{F}_{q}-submodule of \mathcal{B}_{d}, is generated by the elements

integers satisfying

Codes defined on rational normal scrolls

Thus

$$
\begin{aligned}
\Psi: \mathbb{F}_{q}[\mathbf{X}] & \rightarrow \mathcal{B} \\
X_{i} & \mapsto Y V^{i} W^{n-i} \text { for } i=0, \ldots, n \\
X_{j} & \mapsto Z V^{j-n-1} W^{\ell-j} \text { for } i=n+1, \ldots, \ell=n+m+1
\end{aligned}
$$

is a morphism of graded \mathbb{F}_{q}-algebras. Not surprisingly we proved that $\operatorname{ker} \Psi=I$, proving that $0 \longrightarrow I(d) \longrightarrow \mathbb{F}_{q}[\mathbf{X}]_{d} \xrightarrow{\Psi} \mathcal{B}_{d} \longrightarrow 0$ is an exact sequence of \mathbb{F}_{q}-modules for all $d \geq 0$.
Thus $\mathbb{F}_{q}[\mathbf{X}]_{d} / I(d) \cong \mathcal{B}_{d}$ for all $d \geq 0$ (hence $\mathbb{F}_{q}[\mathbf{X}] / I \cong \mathcal{B}$) and for some ideal $\mathcal{J} \subset \mathcal{B}$ we must have $\mathbb{F}_{q}[\mathbf{X}] / I_{S} \cong \mathcal{B} / \mathcal{J}$.

integers satisfying

Codes defined on rational normal scrolls

Thus

$$
\begin{aligned}
\Psi: \mathbb{F}_{q}[\mathbf{X}] & \rightarrow \mathcal{B} \\
X_{i} & \mapsto Y V^{i} W^{n-i} \text { for } i=0, \ldots, n \\
X_{j} & \mapsto Z V^{j-n-1} W^{\ell-j} \text { for } i=n+1, \ldots, \ell=n+m+1
\end{aligned}
$$

is a morphism of graded \mathbb{F}_{q}-algebras. Not surprisingly we proved that $\operatorname{ker} \Psi=I$, proving that $0 \longrightarrow I(d) \longrightarrow \mathbb{F}_{q}[\mathbf{X}]_{d} \xrightarrow{\Psi} \mathcal{B}_{d} \longrightarrow 0$ is an exact sequence of \mathbb{F}_{q}-modules for all $d \geq 0$.
Thus $\mathbb{F}_{q}[\mathbf{X}]_{d} / I(d) \cong \mathcal{B}_{d}$ for all $d \geq 0$ (hence $\mathbb{F}_{q}[\mathbf{X}] / I \cong \mathcal{B}$) and for some ideal $\mathcal{J} \subset \mathcal{B}$ we must have $\mathbb{F}_{q}[\mathbf{X}] / I_{S} \cong \mathcal{B} / \mathcal{J}$. Based on examples like the one we saw (over \mathbb{F}_{5}) we defined \mathcal{J} as a graded ideal $\mathcal{J}=\bigoplus_{d \geq 0} \mathcal{J}(d)$ where

integers satisfying

Codes defined on rational normal scrolls

Thus

$$
\begin{aligned}
\Psi: \mathbb{F}_{q}[\mathbf{X}] & \rightarrow \mathcal{B} \\
X_{i} & \mapsto Y V^{i} W^{n-i} \text { for } i=0, \ldots, n \\
X_{j} & \mapsto Z V^{j-n-1} W^{\ell-j} \text { for } i=n+1, \ldots, \ell=n+m+1
\end{aligned}
$$

is a morphism of graded \mathbb{F}_{q}-algebras. Not surprisingly we proved that $\operatorname{ker} \Psi=I$, proving that $0 \longrightarrow I(d) \longrightarrow \mathbb{F}_{q}[\mathbf{X}]_{d} \xrightarrow{\Psi} \mathcal{B}_{d} \longrightarrow 0$ is an exact sequence of \mathbb{F}_{q}-modules for all $d \geq 0$.
Thus $\mathbb{F}_{q}[\mathbf{X}]_{d} / I(d) \cong \mathcal{B}_{d}$ for all $d \geq 0$ (hence $\mathbb{F}_{q}[\mathbf{X}] / I \cong \mathcal{B}$) and for some ideal $\mathcal{J} \subset \mathcal{B}$ we must have $\mathbb{F}_{q}[\mathbf{X}] / I_{S} \cong \mathcal{B} / \mathcal{J}$. Based on examples like the one we saw (over \mathbb{F}_{5}) we defined \mathcal{J} as a graded ideal $\mathcal{J}=\bigoplus_{d \geq 0} \mathcal{J}(d)$ where $\mathcal{J}(d)$, as an \mathbb{F}_{q}-submodule of \mathcal{B}_{d}, is generated by the elements
integers satisfying

Codes defined on rational normal scrolls

Thus

$$
\begin{aligned}
\Psi: \mathbb{F}_{q}[\mathbf{X}] & \rightarrow \mathcal{B} \\
X_{i} & \mapsto Y V^{i} W^{n-i} \text { for } i=0, \ldots, n \\
X_{j} & \mapsto Z V^{j-n-1} W^{\ell-j} \text { for } i=n+1, \ldots, \ell=n+m+1
\end{aligned}
$$

is a morphism of graded \mathbb{F}_{q}-algebras. Not surprisingly we proved that ker $\Psi=I$, proving that $0 \longrightarrow I(d) \longrightarrow \mathbb{F}_{q}[\mathbf{X}]_{d} \xrightarrow{\Psi} \mathcal{B}_{d} \longrightarrow 0$ is an exact sequence of \mathbb{F}_{q}-modules for all $d \geq 0$.
Thus $\mathbb{F}_{q}[\mathbf{X}]_{d} / I(d) \cong \mathcal{B}_{d}$ for all $d \geq 0$ (hence $\mathbb{F}_{q}[\mathbf{X}] / I \cong \mathcal{B}$) and for some ideal $\mathcal{J} \subset \mathcal{B}$ we must have $\mathbb{F}_{q}[\mathbf{X}] / I_{S} \cong \mathcal{B} / \mathcal{J}$. Based on examples like the one we saw (over \mathbb{F}_{5}) we defined \mathcal{J} as a graded ideal $\mathcal{J}=\bigoplus_{d \geq 0} \mathcal{J}(d)$ where $\mathcal{J}(d)$, as an \mathbb{F}_{q}-submodule of \mathcal{B}_{d}, is generated by the elements $Y^{y} Z^{z} V^{v} W^{w}-Y^{\tilde{y}} Z^{\tilde{z}} V^{\tilde{v}} W^{\tilde{w}}$ where $y, z, v, w, \tilde{y}, \tilde{z}, \tilde{v}, \tilde{w}$ are non-negative integers satisfying

Codes defined on rational normal scrolls

Thus

$$
\begin{aligned}
\Psi: \mathbb{F}_{q}[\mathbf{X}] & \rightarrow \mathcal{B} \\
X_{i} & \mapsto Y V^{i} W^{n-i} \text { for } i=0, \ldots, n \\
X_{j} & \mapsto Z V^{j-n-1} W^{\ell-j} \text { for } i=n+1, \ldots, \ell=n+m+1
\end{aligned}
$$

is a morphism of graded \mathbb{F}_{q}-algebras. Not surprisingly we proved that $\operatorname{ker} \Psi=I$, proving that $0 \longrightarrow I(d) \longrightarrow \mathbb{F}_{q}[\mathbf{X}]_{d} \xrightarrow{\Psi} \mathcal{B}_{d} \longrightarrow 0$ is an exact sequence of \mathbb{F}_{q}-modules for all $d \geq 0$.
Thus $\mathbb{F}_{q}[\mathbf{X}]_{d} / I(d) \cong \mathcal{B}_{d}$ for all $d \geq 0$ (hence $\mathbb{F}_{q}[\mathbf{X}] / I \cong \mathcal{B}$) and for some ideal $\mathcal{J} \subset \mathcal{B}$ we must have $\mathbb{F}_{q}[\mathbf{X}] / I_{S} \cong \mathcal{B} / \mathcal{J}$. Based on examples like the one we saw (over \mathbb{F}_{5}) we defined \mathcal{J} as a graded ideal $\mathcal{J}=\bigoplus_{d \geq 0} \mathcal{J}(d)$ where $\mathcal{J}(d)$, as an \mathbb{F}_{q}-submodule of \mathcal{B}_{d}, is generated by the elements $Y^{y} Z^{z} V^{v} W^{w}-Y^{\tilde{y}} Z^{\tilde{z}} V^{\tilde{v}} W^{\tilde{w}}$ where $y, z, v, w, \tilde{y}, \tilde{z}, \tilde{v}, \tilde{w}$ are non-negative integers satisfying

$$
\begin{array}{l|l}
y+z=\tilde{y}+\tilde{z}=d & \\
v+w=n y+m z, \tilde{v}+\tilde{w}=n \tilde{y}+m \tilde{z} & y=0 \Longleftrightarrow \tilde{y}=0 \\
q=d \Longleftrightarrow \tilde{y}=d \\
q-1|y-\tilde{y}, q-1| v-\tilde{v} & v=0 \Longleftrightarrow \tilde{v}=0
\end{array}
$$

Codes defined on rational normal scrolls

After some work we proved that the sequence
$0 \longrightarrow I_{S}(d) \longrightarrow \mathbb{F}_{q}[\mathbf{X}]_{d} \xrightarrow{\Psi} \mathcal{B}_{d} / \mathcal{J}(d) \longrightarrow 0$ is an exact sequence of \mathbb{F}_{q}-modules for all $d \geq 0$. So
$\operatorname{dim}_{\mathbb{F}_{q}} C_{d}=\operatorname{dim}_{\mathbb{F}_{q}} \mathbb{F}_{q}[X]_{d} / I_{S}(d)=\operatorname{dim}_{\mathbb{F}_{q}} \mathcal{B}_{d} / \mathcal{J}(d)$.
We defined a order on the monomials of \mathcal{B} and proved that if we define $\Delta(\mathcal{I})$ to be the set of monomials which are not leading monomials of \mathcal{T} (with respect to that order) then the classes of the monomials of $\Delta(\mathcal{J})$ in $\mathcal{B} / \mathcal{J}$ form a basis for $\mathcal{B} / \mathcal{J}$ as an \mathbb{F}_{q}-vector space.

Moreover, the classes of the monomials of degree d which are not leading monomials of polynomials in $\mathcal{J}(d)$ form a basis as an \mathbb{F}_{q}-vector space basis for $\mathcal{B}_{d} / \mathcal{T}(d)$.

Codes defined on rational normal scrolls

After some work we proved that the sequence

We defined a order on the monomials of \mathcal{B} and proved that if we define $\Delta(\mathcal{J})$ to be the set of monomials which are not leading monomials of \mathcal{J} (with respect to that order) then the classes of the monomials of $\Delta(\mathcal{J})$ in $\mathcal{B} / \mathcal{J}$ form a basis for $\mathcal{B} / \mathcal{J}$ as an $\mathbb{F}_{q^{-}}$-vector space.

Moreover, the classes of the monomials of degree d which are not leading monomials of polynomials in $\mathcal{J}(d)$ form a basis as an \mathbb{F}_{q}-vector space basis for $\mathcal{B}_{d} / \mathcal{J}(d)$

Codes defined on rational normal scrolls

After some work we proved that the sequence $0 \longrightarrow I_{S}(d) \longrightarrow \mathbb{F}_{q}[\mathbf{X}]_{d} \xrightarrow{\Psi} \mathcal{B}_{d} / \mathcal{J}(d) \longrightarrow 0$ is an exact sequence of $\mathbb{F}_{q^{-}}$-modules for all $d \geq 0$.
$\operatorname{dim}_{\mathbb{F}_{q}} C_{d}=\operatorname{dim}_{\mathbb{F}_{q}} \mathbb{F}_{q}[\mathbf{X}]_{d} / I_{S}(d)=\operatorname{dim}_{\mathbb{F}_{q}} \mathcal{B}_{d} / \mathcal{J}(d)$.
We defined a order on the monomials of \mathcal{B} and proved that if we define $\Delta(\mathcal{J})$ to be the set of monomials which are not leading monomials of \mathcal{J} (with respect to that order) then the classes of the monomials of $\Delta(\mathcal{J})$ in $\mathcal{B} / \mathcal{J}$ form a basis for $\mathcal{B} / \mathcal{J}$ as an \mathbb{F}_{q}-vector space.

Moreover, the classes of the monomials of degree d which are not leading monomials of polynomials in $\mathcal{J}(d)$ form a basis as an \mathbb{F}_{q}-vector space basis for $\mathcal{B}_{d} / \mathcal{J}(d)$.

Codes defined on rational normal scrolls

After some work we proved that the sequence $0 \longrightarrow I_{S}(d) \longrightarrow \mathbb{F}_{q}[\mathbf{X}]_{d} \xrightarrow{\Psi} \mathcal{B}_{d} / \mathcal{J}(d) \longrightarrow 0$ is an exact sequence of \mathbb{F}_{q}-modules for all $d \geq 0$. So $\operatorname{dim}_{\mathbb{F}_{q}} C_{d}=\operatorname{dim}_{\mathbb{F}_{q}} \mathbb{F}_{q}[\mathbf{X}]_{d} / I_{S}(d)=\operatorname{dim}_{\mathbb{F}_{q}} \mathcal{B}_{d} / \mathcal{J}(d)$.

We defined a order on the monomials of \mathcal{B} and proved that if we define $\Delta(\mathcal{J})$ to be the set of monomials which are not leading monomials of \mathcal{J} (with respect to that order) then the classes of the monomials of $\Delta(\mathcal{J})$ in $\mathcal{B} / \mathcal{J}$ form a basis for $\mathcal{B} / \mathcal{J}$ as an \mathbb{F}_{q}-vector space.

Moreover, the classes of the monomials of degree d which are not leading monomials of polynomials in $\mathcal{J}(d)$ form a basis as an \mathbb{F}_{q}-vector space basis for $\mathcal{B}_{d} / \mathcal{J}(d)$

Codes defined on rational normal scrolls

After some work we proved that the sequence $0 \longrightarrow I_{S}(d) \longrightarrow \mathbb{F}_{q}[\mathbf{X}]_{d} \xrightarrow{\Psi} \mathcal{B}_{d} / \mathcal{J}(d) \longrightarrow 0$ is an exact sequence of \mathbb{F}_{q}-modules for all $d \geq 0$. So $\operatorname{dim}_{\mathbb{F}_{q}} C_{d}=\operatorname{dim}_{\mathbb{F}_{q}} \mathbb{F}_{q}[\mathbf{X}]_{d} / I_{S}(d)=\operatorname{dim}_{\mathbb{F}_{q}} \mathcal{B}_{d} / \mathcal{J}(d)$.

We defined a order on the monomials of \mathcal{B} and proved that if we define $\Delta(\mathcal{J})$ to be the set of monomials which are not leading monomials of \mathcal{J} (with respect to that order) then the classes of the monomials of $\Delta(\mathcal{J})$ in $\mathcal{B} / \mathcal{J}$ form a basis for $\mathcal{B} / \mathcal{J}$ as an \mathbb{F}_{q}-vector space.

Moreover, the classes of the monomials of degree d which are not leading monomials of polynomials in $\mathcal{J}(d)$ form a basis as an \mathbb{F}_{q}-vector space basis for $\mathcal{B}_{d} / \mathcal{J}(d)$

Codes defined on rational normal scrolls

After some work we proved that the sequence $0 \longrightarrow I_{S}(d) \longrightarrow \mathbb{F}_{q}[\mathbf{X}]_{d} \xrightarrow{\Psi} \mathcal{B}_{d} / \mathcal{J}(d) \longrightarrow 0$ is an exact sequence of \mathbb{F}_{q}-modules for all $d \geq 0$. So $\operatorname{dim}_{\mathbb{F}_{q}} C_{d}=\operatorname{dim}_{\mathbb{F}_{q}} \mathbb{F}_{q}[\mathbf{X}]_{d} / I_{S}(d)=\operatorname{dim}_{\mathbb{F}_{q}} \mathcal{B}_{d} / \mathcal{J}(d)$.

We defined a order on the monomials of \mathcal{B} and proved that if we define $\Delta(\mathcal{J})$ to be the set of monomials which are not leading monomials of \mathcal{J} (with respect to that order)
$\mathcal{B} / \mathcal{J}$ form a basis for $\mathcal{B} / \mathcal{J}$ as an \mathbb{F}_{q}-vector space.
Moreover, the classes of the monomials of degree d which are not leading monomials of polynomials in $\mathcal{J}(d)$ form a basis as an \mathbb{F}_{a}-vector space basis for $\mathcal{B}_{d} / \mathcal{J}(d)$

Codes defined on rational normal scrolls

After some work we proved that the sequence $0 \longrightarrow I_{S}(d) \longrightarrow \mathbb{F}_{q}[\mathbf{X}]_{d} \xrightarrow{\Psi} \mathcal{B}_{d} / \mathcal{J}(d) \longrightarrow 0$ is an exact sequence of \mathbb{F}_{q}-modules for all $d \geq 0$. So $\operatorname{dim}_{\mathbb{F}_{q}} C_{d}=\operatorname{dim}_{\mathbb{F}_{q}} \mathbb{F}_{q}[\mathbf{X}]_{d} / I_{S}(d)=\operatorname{dim}_{\mathbb{F}_{q}} \mathcal{B}_{d} / \mathcal{J}(d)$.

We defined a order on the monomials of \mathcal{B} and proved that if we define $\Delta(\mathcal{J})$ to be the set of monomials which are not leading monomials of \mathcal{J} (with respect to that order) then the classes of the monomials of $\Delta(\mathcal{J})$ in $\mathcal{B} / \mathcal{J}$ form a basis for $\mathcal{B} / \mathcal{J}$ as an \mathbb{F}_{q}-vector space.

Moreover, the classes of the monomials of degree d which are not leading monomials of polynomials in $\mathcal{J}(d)$ form a basis as an \mathbb{F}_{q}-vector space basis for $\mathcal{B}_{d} / \mathcal{J}(d)$

Codes defined on rational normal scrolls

After some work we proved that the sequence $0 \longrightarrow I_{S}(d) \longrightarrow \mathbb{F}_{q}[\mathbf{X}]_{d} \xrightarrow{\Psi} \mathcal{B}_{d} / \mathcal{J}(d) \longrightarrow 0$ is an exact sequence of \mathbb{F}_{q}-modules for all $d \geq 0$. So $\operatorname{dim}_{\mathbb{F}_{q}} C_{d}=\operatorname{dim}_{\mathbb{F}_{q}} \mathbb{F}_{q}[\mathbf{X}]_{d} / I_{S}(d)=\operatorname{dim}_{\mathbb{F}_{q}} \mathcal{B}_{d} / \mathcal{J}(d)$.

We defined a order on the monomials of \mathcal{B} and proved that if we define $\Delta(\mathcal{J})$ to be the set of monomials which are not leading monomials of \mathcal{J} (with respect to that order) then the classes of the monomials of $\Delta(\mathcal{J})$ in $\mathcal{B} / \mathcal{J}$ form a basis for $\mathcal{B} / \mathcal{J}$ as an \mathbb{F}_{q}-vector space.

Moreover, the classes of the monomials of degree d which are not leading monomials of polynomials in $\mathcal{J}(d)$

Codes defined on rational normal scrolls

After some work we proved that the sequence $0 \longrightarrow I_{S}(d) \longrightarrow \mathbb{F}_{q}[\mathbf{X}]_{d} \xrightarrow{\Psi} \mathcal{B}_{d} / \mathcal{J}(d) \longrightarrow 0$ is an exact sequence of \mathbb{F}_{q}-modules for all $d \geq 0$. So $\operatorname{dim}_{\mathbb{F}_{q}} C_{d}=\operatorname{dim}_{\mathbb{F}_{q}} \mathbb{F}_{q}[\mathbf{X}]_{d} / I_{S}(d)=\operatorname{dim}_{\mathbb{F}_{q}} \mathcal{B}_{d} / \mathcal{J}(d)$.

We defined a order on the monomials of \mathcal{B} and proved that if we define $\Delta(\mathcal{J})$ to be the set of monomials which are not leading monomials of \mathcal{J} (with respect to that order) then the classes of the monomials of $\Delta(\mathcal{J})$ in $\mathcal{B} / \mathcal{J}$ form a basis for $\mathcal{B} / \mathcal{J}$ as an \mathbb{F}_{q}-vector space.

Moreover, the classes of the monomials of degree d which are not leading monomials of polynomials in $\mathcal{J}(d)$ form a basis as an \mathbb{F}_{q}-vector space basis for $\mathcal{B}_{d} / \mathcal{J}(d)$.

Codes defined on rational normal scrolls

We were able to count these classes and prove that the dimension of C_{d} is:
(a) $(n+m) \frac{d(d+1)}{2}+d+1$ if $d \leq q / n$;
(b) $(s+1)\left[\frac{(n+m) s}{2}+m(d-s)+1\right]+(d-s)(q+1)$
if $m<n$ and $a / n<d \leq a / m$ where $s=\left|\frac{q-m d}{n-m}\right|$
(c) $(d+1)(q+1)$ if $q / m<d<q$;
(d) $(q+1)^{2}$ if $q \leq d$.

Observe that if $d \geq q$ then the evaluation morphism $\varphi: \mathbb{F}[X]_{d} / I_{S}(d) \rightarrow \mathbb{F}_{q}^{N}$, where $N=(q+1)^{2}$, is surjective, so the code is equal to $\mathbb{F}_{q}^{(q+1)^{2}}$ and the minimum distance is equal to 1 .

Codes defined on rational normal scrolls

We were able to count these classes and prove that the dimension of C_{d} is:
(a) $(n+m) \frac{d(d+1)}{2}+d+1$ if $d \leq q / n$;
(b) $(s+1)\left[\frac{(n+m) s}{2}+m(d-s)+1\right]+(d-s)(q+1)$
if $m<n$ and $q / n<d \leq q / m$, where $s=\left\lfloor\frac{q-m d}{n-m}\right\rfloor$;
(c) $(d+1)(q+1)$ if $q / m<d<q$;
(d) $(q+1)^{2}$ if $q \leq d$.

Observe that if $d \geq q$ then the evaluation morphism
$\varphi: \mathbb{F}[\mathbf{X}]_{d} / I_{s}(d) \rightarrow \mathbb{F}_{q}^{N}$, where $N=(q+1)^{2}, \quad$ is surjective, so the code is and the minimum distance is equal to 1 .

Codes defined on rational normal scrolls

We were able to count these classes and prove that the dimension of C_{d} is:
(a) $(n+m) \frac{d(d+1)}{2}+d+1$ if $d \leq q / n$;
(b) $(s+1)\left[\frac{(n+m) s}{2}+m(d-s)+1\right]+(d-s)(q+1)$
if $m<n$ and $q / n<d \leq q / m$, where $s=\left\lfloor\frac{q-m d}{n-m}\right\rfloor$;
(c) $(d+1)(q+1)$ if $q / m<d<q$;
(d) $(q+1)^{2}$ if $q \leq d$.

Observe that if $d \geq q$ then the evaluation morphism
\square

Codes defined on rational normal scrolls

We were able to count these classes and prove that the dimension of C_{d} is:
(a) $(n+m) \frac{d(d+1)}{2}+d+1$ if $d \leq q / n$;
(b) $(s+1)\left[\frac{(n+m) s}{2}+m(d-s)+1\right]+(d-s)(q+1)$
if $m<n$ and $q / n<d \leq q / m$, where $s=\left\lfloor\frac{q-m d}{n-m}\right\rfloor$;
(c) $(d+1)(q+1)$ if $q / m<d<q$;
(d) $(q+1)^{2}$ if $q \leq d$.

Observe that if $d \geq q$ then the evaluation morphism $\varphi: \mathbb{F}[\mathbf{X}]_{d} / I_{S}(d) \rightarrow \mathbb{F}_{q}^{N}$, where $N=(q+1)^{2}$, is surjective, so the code is
equal to $\mathbb{F}_{q}^{(q-1)}$ and the minimum distance is equal to 1 .

Codes defined on rational normal scrolls

We were able to count these classes and prove that the dimension of C_{d} is:
(a) $(n+m) \frac{d(d+1)}{2}+d+1$ if $d \leq q / n$;
(b) $(s+1)\left[\frac{(n+m) s}{2}+m(d-s)+1\right]+(d-s)(q+1)$
if $m<n$ and $q / n<d \leq q / m$, where $s=\left\lfloor\frac{q-m d}{n-m}\right\rfloor$;
(c) $(d+1)(q+1)$ if $q / m<d<q$;
(d) $(q+1)^{2}$ if $q \leq d$.

Observe that if $d \geq q$ then the evaluation morphism $\varphi: \mathbb{F}[\mathbf{X}]_{d} / I_{S}(d) \rightarrow \mathbb{F}_{q}^{N}$, where $N=(q+1)^{2}$, is surjective, so the code is equal to $\mathbb{F}_{q}^{(q+1)^{2}}$ and the minimum distance is equal to 1 .

Codes defined on rational normal scrolls

We were able to count these classes and prove that the dimension of C_{d} is:
(a) $(n+m) \frac{d(d+1)}{2}+d+1$ if $d \leq q / n$;
(b) $(s+1)\left[\frac{(n+m) s}{2}+m(d-s)+1\right]+(d-s)(q+1)$
if $m<n$ and $q / n<d \leq q / m$, where $s=\left\lfloor\frac{q-m d}{n-m}\right\rfloor$;
(c) $(d+1)(q+1)$ if $q / m<d<q$;
(d) $(q+1)^{2}$ if $q \leq d$.

Observe that if $d \geq q$ then the evaluation morphism $\varphi: \mathbb{F}[\mathbf{X}]_{d} / I_{S}(d) \rightarrow \mathbb{F}_{q}^{N}$, where $N=(q+1)^{2}$, is surjective, so the code is equal to $\mathbb{F}_{q}^{(q+1)^{2}}$ and the minimum distance is equal to 1 .

Codes defined on rational normal scrolls

To estimate $d_{\text {min }}\left(C_{d}\right)$, using a reasoning similar to the affine case, we proved that a lower bound for $\varphi\left(f+I_{S}(d)\right)$ is $\#(\{M \in \Delta(\mathcal{J})|\operatorname{deg} M=e, \operatorname{lm}(f)| M\})$ for $e \geqslant 0$. Using these results we were able to show that $d_{\text {min }}\left(C_{d}\right)$ satisfies

$$
\begin{array}{cl}
(q-d+1)(q-n d+1) \leq d_{\min }\left(C_{d}\right) \leq q(q-n d+1) & \text { for } d \leq q / n, \\
q-d+1 \leq \delta_{S}(d) \leq q-d+1+\sigma & \text { for } q / n<d<q
\end{array}
$$

where σ is defined by
$\sigma=\left\{\begin{array}{c}\left.\left\lvert\, \frac{q-m d}{n-m}\right.\right\rfloor \\ 0\end{array}\right.$
if $\frac{q}{n}<d \leq \frac{q}{m}$ and $m<n$;

In the case when $n=m$ we manage to determine the precise values for $d_{\min }\left(C_{d}\right)$, which are

$$
\begin{array}{cl}
(q-d+1)(q-n d+1) & \text { for } 1 \leq d \leq q / n \\
q-d+1 & \text { for } q / n \leq d \leq q \\
1 & \text { for } q \leq d .
\end{array}
$$

Codes defined on rational normal scrolls

To estimate $d_{\text {min }}\left(C_{d}\right)$, using a reasoning similar to the affine case, we proved that a lower bound for $\varphi\left(f+I_{S}(d)\right)$ is

where σ is defined by

In the case when $n=m$ we manage to determine the precise values for $d_{\min }\left(C_{d}\right)$. which are

Codes defined on rational normal scrolls

To estimate $d_{\min }\left(C_{d}\right)$, using a reasoning similar to the affine case, we proved that a lower bound for $\varphi\left(f+I_{S}(d)\right)$ is $\#(\{M \in \Delta(\mathcal{J})|\operatorname{deg} M=e, \operatorname{lm}(f)| M\})$ for $e \gg 0$. Using these results we were able to show that $d_{\text {min }}\left(C_{d}\right)$ satisfies

where σ is defined by

In the case when $n=m$ we manage to determine the precise values for $d_{\min }\left(C_{d}\right)$, which are

Codes defined on rational normal scrolls

To estimate $d_{\text {min }}\left(C_{d}\right)$, using a reasoning similar to the affine case, we proved that a lower bound for $\varphi\left(f+I_{S}(d)\right)$ is $\#(\{M \in \Delta(\mathcal{J})|\operatorname{deg} M=e, \operatorname{lm}(f)| M\})$ for $e \gg 0$. Using these results we were able to show that $d_{\min }\left(C_{d}\right)$ satisfies
where σ is defined by

In the case when $n=m$ we manage to determine the precise values for $d_{\min }\left(C_{d}\right)$, which are

Codes defined on rational normal scrolls

To estimate $d_{\min }\left(C_{d}\right)$, using a reasoning similar to the affine case, we proved that a lower bound for $\varphi\left(f+I_{S}(d)\right)$ is $\#(\{M \in \Delta(\mathcal{J})|\operatorname{deg} M=e, \operatorname{lm}(f)| M\})$ for $e \gg 0$. Using these results we were able to show that $d_{\min }\left(C_{d}\right)$ satisfies

$$
\begin{array}{cl}
(q-d+1)(q-n d+1) \leq d_{\min }\left(C_{d}\right) \leq q(q-n d+1) & \text { for } d \leq q / n \\
q-d+1 \leq \delta_{S}(d) \leq q-d+1+\sigma & \text { for } q / n<d<q
\end{array}
$$

where σ is defined by
$\sigma=\left\{\begin{array}{cl}\left\lfloor\frac{q-m d}{n-m}\right\rfloor & \text { if } \frac{q}{n}<d \leq \frac{q}{m} \text { and } m<n ; \\ 0 & \text { if } \frac{q}{m}<d<q .\end{array}\right.$
In the case when $n=m$ we manage to determine the precise values for $d_{\min }\left(C_{d}\right)$, which are

Codes defined on rational normal scrolls

To estimate $d_{\text {min }}\left(C_{d}\right)$, using a reasoning similar to the affine case, we proved that a lower bound for $\varphi\left(f+I_{S}(d)\right)$ is $\#(\{M \in \Delta(\mathcal{J})|\operatorname{deg} M=e, \operatorname{lm}(f)| M\})$ for $e \gg 0$. Using these results we were able to show that $d_{\min }\left(C_{d}\right)$ satisfies

$$
\begin{array}{cl}
(q-d+1)(q-n d+1) \leq d_{\min }\left(C_{d}\right) \leq q(q-n d+1) & \text { for } d \leq q / n, \\
q-d+1 \leq \delta_{S}(d) \leq q-d+1+\sigma & \text { for } q / n<d<q
\end{array}
$$

where σ is defined by
$\sigma=\left\{\begin{array}{cl}\left\lfloor\frac{q-m d}{n-m}\right\rfloor & \text { if } \frac{q}{n}<d \leq \frac{q}{m} \text { and } m<n ; \\ 0 & \text { if } \frac{q}{m}<d<q .\end{array}\right.$
In the case when $n=m$ we manage to determine the precise values for $d_{\text {min }}\left(C_{d}\right)$, which are

Codes defined on rational normal scrolls

To estimate $d_{\min }\left(C_{d}\right)$, using a reasoning similar to the affine case, we proved that a lower bound for $\varphi\left(f+I_{S}(d)\right)$ is $\#(\{M \in \Delta(\mathcal{J})|\operatorname{deg} M=e, \operatorname{lm}(f)| M\})$ for $e \gg 0$. Using these results we were able to show that $d_{\min }\left(C_{d}\right)$ satisfies

$$
\begin{array}{cl}
(q-d+1)(q-n d+1) \leq d_{\min }\left(C_{d}\right) \leq q(q-n d+1) & \text { for } d \leq q / n \\
q-d+1 \leq \delta_{S}(d) \leq q-d+1+\sigma & \text { for } q / n<d<q
\end{array}
$$

where σ is defined by
$\sigma=\left\{\begin{array}{cl}\left\lfloor\frac{q-m d}{n-m}\right\rfloor & \text { if } \frac{q}{n}<d \leq \frac{q}{m} \text { and } m<n ; \\ 0 & \text { if } \frac{q}{m}<d<q .\end{array}\right.$
In the case when $n=m$ we manage to determine the precise values for $d_{\text {min }}\left(C_{d}\right)$, which are
$d_{\min }\left(C_{d}\right)=\left\{\begin{array}{cl}(q-d+1)(q-n d+1) & \text { for } 1 \leq d \leq q / n \\ q-d+1 & \text { for } q / n \leq d \leq q \\ 1 & \text { for } q \leq d .\end{array}\right.$

THANK YOU!

[^0]: weights for these codes.

[^1]: generated as an \mathbb{F}_{q}-module by $Y^{y} Z^{z} V^{v} W^{w}$ with $y+z=d$ and

