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Facts from Gröbner bases theory

Let M be the set of monomials of k[X
1

, . . . ,Xn] =: k[X] and endow M
with a monomial order �. Given f 2 k[X] \ {0} the leading monomial of
f (lm(f )) is the greatest monomial appearing in f . Let I ⇢ k[X] be an
ideal, we say that {g

1

, . . . , gs} ⇢ I is a Gröbner basis for I (w.r.t. �) if the
leading monomial of any nonzero polynomial in I is multiple of lm(gi ) for
some i = 1, . . . , s. One can prove that such a set is a basis for I in the
usual sense I = (g

1

, . . . , gs) and that any ideal has a Gröbner basis.
A related and very important concept is the footprint of I (w.r.t. �)
defined as
�(I ) = {M 2 M | M is not the leading monomial of any polynomial in I}
Buchberger (1965) proved that {M + I | M 2 �(I )} is a basis for k[X]/I
(considered as a k-vector space).
If I is homogeneous then {M + I | M 2 �(I ), deg(M) = d} is a basis for
k[X]d/I (d).
We also have that M 2 �(I ) if and only if M is not a multiple of lm(gi )
for all i = 1, . . . , s.
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, . . . , gs} ⇢ I is a Gröbner basis for I (w.r.t. �) if the
leading monomial of any nonzero polynomial in I is multiple of lm(gi ) for
some i = 1, . . . , s. One can prove that such a set is a basis for I in the
usual sense I = (g

1

, . . . , gs) and that any ideal has a Gröbner basis.
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Gröbner bases and coding theory
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A (linear error correcting) code of length N defined over Fq is an
Fq-vector subspace C ⇢ FN

q . Given an N-tuple ↵ = (↵
1

, . . . ,↵N) 2 FN
q

the weight of ↵ is w(↵) = #{i |↵i 6= 0} and the minimum distance of C
is dmin(C ) := min{w(↵) |↵ 2 C \ {0}}.
One may use a set X = {P

1

, . . . ,PN} ⇢ AN(Fq) to construct a code in
the following way. Let IX ⇢ Fq[X0

, . . . ,XN ] = Fq[X] be the ideal of X
and let ' : Fq[X]/IX ! FN

q be given by '(f + IX ) = (f (P
1

), . . . , f (PN)).
It is not di�cult to show that ' is an isomorphism of Fq-vector spaces.
Thus, for any subspace L ⇢ Fq[X]/IX we have a code CL := '(L).
Let d be a nonnegative integer and let
Ld := {f + IX | f = 0 or deg(f )  d}.
In this case we say that CLd is “of Reed-Muller type” and has order d .
From Buchberger’s result we know that the classes of the monomials in
�(IX )) form a basis for Fq[X]/IX (in particular #(�(IX )) = N) and one
may prove that the set �(IX )d := {M + IX |M 2 �(IX ), deg(M)  d} is a
basis for Ld , so that dim(CLd ) = #(�(IX )d).
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As for the minimum distance dmin(CL), we would like to estimate the
number of zero entries in '(f + IX ) = (f (P

1

), . . . , f (PN)). Let
IX ,f := IX + (f ), we want to estimate N �#(V (IX ,f )). From IX ⇢ IX ,f we
get �(IX ,f ) ⇢ �(IX ), in particular �(IX ,f ) is finite which implies
#(V (IX ,f ))  #(�(IX ,f )) and we get N �#(V (IX ,f )) � N �#(�(IX ,f )).

From Buchberger’s result we can assume that f is a linear combination of
monomials in �(IX ) so that lm(f ) 2 �(IX ). It is not di�cult to prove
that N �#(�(IX ,f )) � {M 2 �(IX ) | lm(f )| M}, so the idea now is to
determine for each monomial M 0 2 �(IX ) the cardinality of the set
{M 2 �(IX ) |M 0| M}, and from this determine a lower bound for
dmin(CL). Moreover, it is true that if {g

1

, . . . , gs} is a Gröbner basis for IX
and {f , g

1

, . . . , gs} is a Gröbner basis for IX ,f then this bound (with
M

0 = lm(f )) is the true value of the minimum distance.

These techniques have been used to determine the parameters of codes
CLd when X = A

1

⇥ · · ·⇥ AN 2 AN(Fq), as well as some higher Hamming
weights for these codes.
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Ćıcero Carvalho (UFU) Gröbner bases methods on some evaluation codes 4 / 12

As for the minimum distance dmin(CL), we would like to estimate the
number of zero entries in '(f + IX ) = (f (P

1

), . . . , f (PN)). Let
IX ,f := IX + (f ), we want to estimate N �#(V (IX ,f )). From IX ⇢ IX ,f we
get �(IX ,f ) ⇢ �(IX ), in particular �(IX ,f ) is finite which implies
#(V (IX ,f ))  #(�(IX ,f )) and we get N �#(V (IX ,f )) � N �#(�(IX ,f )).

From Buchberger’s result we can assume that f is a linear combination of
monomials in �(IX ) so that lm(f ) 2 �(IX ). It is not di�cult to prove
that N �#(�(IX ,f )) � {M 2 �(IX ) | lm(f )| M}, so the idea now is to
determine for each monomial M 0 2 �(IX ) the cardinality of the set
{M 2 �(IX ) |M 0| M}, and from this determine a lower bound for
dmin(CL). Moreover, it is true that if {g

1

, . . . , gs} is a Gröbner basis for IX
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, . . . , gs} is a Gröbner basis for IX ,f then this bound (with
M

0 = lm(f )) is the true value of the minimum distance.

These techniques have been used to determine the parameters of codes
CLd when X = A

1

⇥ · · ·⇥ AN 2 AN(Fq), as well as some higher Hamming
weights for these codes.
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and {f , g

1
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One may also use a set S = {P
1

, . . . ,PN} ⇢ P`(Fq) to construct a code in

the following way. Let IS ⇢ Fq[X0

, . . . ,X`] = Fq[X] be the (homogeneous)

ideal of S . We know that Fq[X]/IS =
L1

d=0

Fq[X]d/IS(d), then fix a d

consider the evaluation morphism ' : Fq[X]d/IS(d) ! FN
q where

'(f + IX ) = (f (P
1

), . . . , f (PN)) (with the points written in “standard

notation”). Observe that ' is injective, so defining Cd = Im(') we have

dim(Cd) = dimFq Fq[X]d/IS(d).

In a joint work with Victor G.L. Neumann we chose S to be the set of

points on a rational normal scroll and used some ideas from the a�ne case

to calculate the parameters of Cd

Let m and n be integers such that 1  m  n and let ` = n +m + 1. A
rational normal scroll is the algebraic surface defined by

S =

⇢
(x

0

: · · · : x`) 2 P`(Fq) | rank
✓
x

0

· · · xn�1

xn+1

· · · x`�1

x

1

· · · xn xn+2

· · · x`

◆
= 1

�
.



Codes defined over projective varieties
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dim(Cd) = dimFq Fq[X]d/IS(d).

In a joint work with Victor G.L. Neumann we chose S to be the set of

points on a rational normal scroll and used some ideas from the a�ne case

to calculate the parameters of Cd
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It is not di�cult to prove that S = S

0

[ C1 [ L

0

, where
S

0

= {(1 : a : · · · : an : b : ab : · · · : amb) | (a, b) 2 A2(Fq)},
C1 = {(0 : · · · : 0 : am : am�1

b : · · · : bm) 2 S | (a : b) 2 P1(Fq)} , and
L

0

= {(0 : · · · : 0 : a : 0 : · · · 0 : b) 2 S | (a : b) 2 P1(Fq)}.
The union is disjoint, except for the point (0 : . . . : 0 : 1) = L

0

\ C1, thus
S has N := q

2 + 2(q + 1)� 1 = (q + 1)2 points hence Cd is a code of
length (q + 1)2. Since dimCd = dimFq Fq[X]d/IS(d) to calculate dimCd
we could count the number of monomials of degree d in some footprint of
IS , so we look for a description of IS .

A good place to start is to examine the ideal I generated by the set G of
binomials “suggested” by the definition of S , namely
G = {XiXj � Xi+1

Xj�1

| 0  i  `� 2 , i 6= n, i + 1 < j  ` , j 6= n + 1}
It turns out that G is a Gröbner basis for I w.r.t. the graded lexicographic
order � where X` � · · · � X

0

, but then I $ IS . Take for example
1 = m < n = 2 and q = 5. We have X

0

X

2

� X

2

1

2 G and if I = IS then
we should have X

5

0

X

2

� X

6

1

2 I , but in this case
X

5

0

X

2

�X

6

1

�X

4

0

(X
0

X

2

�X

2

1

) = X

4

0

X

2

1

�X

6

1

2 I but this is not true (since
X

4

0

X

2

1

is not a multiple of X
0

X

2

, X
0

X

4

or X
1

X

4

).
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It turns out that G is a Gröbner basis for I w.r.t. the graded lexicographic
order � where X` � · · · � X

0

, but then I $ IS . Take for example
1 = m < n = 2 and q = 5. We have X

0

X

2

� X

2

1

2 G and if I = IS then
we should have X

5

0

X

2

� X

6

1

2 I , but in this case
X

5

0

X

2

�X

6

1

�X

4

0

(X
0

X

2

�X

2

1

) = X

4

0

X

2

1

�X

6

1

2 I but this is not true (since
X

4

0

X

2

1

is not a multiple of X
0

X

2

, X
0

X

4

or X
1

X

4

).



Codes defined on rational normal scrolls
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We found a parametrization for S using four parameters ↵,�, �, � 2 Fq in
the following way:

rank
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a

0

a

1

· · · an�1

an+1

· · · a`�1

a

1

a

2

· · · an an+2

· · · a`

◆
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This lead us to consider the homomorphism of Fq-algebras
 : Fq[X] �! Fq[Y ,Z ,V ,W ] given by  (Xi ) = YV

i
W

n�i for
i = 0, . . . , n and  (Xj) = ZV

j�n�1

W

`�j for j = n+ 1, . . . , ` = n+m+ 1.

Let B be the image of  and let’s consider  : Fq[X] �! B.
We can make  a graded morphism of algebras by defining
deg(Y y

Z

z
V

v
W

w ) = y + z , and then B =
L

d�0

Bd , where Bd is
generated as an Fq-module by Y

y
Z

z
V

v
W

w with y + z = d and
v + w = ny +mz .
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Ćıcero Carvalho (UFU) Gröbner bases methods on some evaluation codes 8 / 12

Thus
 : Fq[X] ! B

Xi 7! YV

i
W

n�i for i = 0, . . . , n
Xj 7! ZV

j�n�1

W

`�j for i = n + 1, . . . , ` = n +m + 1
is a morphism of graded Fq-algebras. Not surprisingly we proved that

ker = I , proving that 0 �! I (d) �! Fq[X]d
 �! Bd �! 0 is an exact

sequence of Fq-modules for all d � 0.

Thus Fq[X]d/I (d) ⇠= Bd for all d � 0 (hence Fq[X]/I ⇠= B) and for some
ideal J ⇢ B we must have Fq[X]/IS ⇠= B/J . Based on examples like the
one we saw (over F

5

) we defined J as a graded ideal J =
L

d�0

J (d)
where J (d), as an Fq-submodule of Bd , is generated by the elements
Y

y
Z

z
V

v
W

w � Y

ỹ
Z

z̃
V

ṽ
W

w̃ where y , z , v ,w , ỹ , z̃ , ṽ , w̃ are non-negative
integers satisfying

y + z = ỹ + z̃ = d y = 0 () ỹ = 0
v + w = ny +mz , ṽ + w̃ = nỹ +mz̃ y = d () ỹ = d

q � 1 | y � ỹ , q � 1 | v � ṽ v = 0 () ṽ = 0
v = ny +mz () ṽ = nỹ +mz̃
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y + z = ỹ + z̃ = d y = 0 () ỹ = 0
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Ćıcero Carvalho (UFU) Gröbner bases methods on some evaluation codes 8 / 12

Thus
 : Fq[X] ! B

Xi 7! YV

i
W

n�i for i = 0, . . . , n
Xj 7! ZV

j�n�1

W

`�j for i = n + 1, . . . , ` = n +m + 1
is a morphism of graded Fq-algebras. Not surprisingly we proved that

ker = I , proving that 0 �! I (d) �! Fq[X]d
 �! Bd �! 0 is an exact

sequence of Fq-modules for all d � 0.

Thus Fq[X]d/I (d) ⇠= Bd for all d � 0 (hence Fq[X]/I ⇠= B) and for some
ideal J ⇢ B we must have Fq[X]/IS ⇠= B/J . Based on examples like the
one we saw (over F

5

) we defined J as a graded ideal J =
L

d�0

J (d)
where J (d), as an Fq-submodule of Bd , is generated by the elements
Y

y
Z

z
V

v
W

w � Y

ỹ
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integers satisfying
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where J (d), as an Fq-submodule of Bd , is generated by the elements
Y

y
Z

z
V

v
W

w � Y

ỹ
Z

z̃
V

ṽ
W

w̃ where y , z , v ,w , ỹ , z̃ , ṽ , w̃ are non-negative
integers satisfying

y + z = ỹ + z̃ = d y = 0 () ỹ = 0
v + w = ny +mz , ṽ + w̃ = nỹ +mz̃ y = d () ỹ = d

q � 1 | y � ỹ , q � 1 | v � ṽ v = 0 () ṽ = 0
v = ny +mz () ṽ = nỹ +mz̃
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y + z = ỹ + z̃ = d y = 0 () ỹ = 0
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After some work we proved that the sequence

0 �! IS(d) �! Fq[X]d
 �! Bd/J (d) �! 0 is an exact sequence of

Fq-modules for all d � 0. So

dimFq Cd = dimFq Fq[X]d/IS(d) = dimFq Bd/J (d).

We defined a order on the monomials of B and proved that if we define

�(J ) to be the set of monomials which are not leading monomials of J
(with respect to that order) then the classes of the monomials of �(J ) in

B/J form a basis for B/J as an Fq-vector space.

Moreover, the classes of the monomials of degree d which are not leading

monomials of polynomials in J (d) form a basis as an Fq-vector space

basis for Bd/J (d).
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We were able to count these classes and prove that the dimension of Cd

is:

(a) (n +m)
d(d + 1)

2
+ d + 1 if d  q/n;

(b) (s + 1)


(n +m)s

2
+m(d � s) + 1

�
+ (d � s)(q + 1)

if m < n and q/n < d  q/m, where s =

�
q �md

n �m

⌫
;

(c) (d + 1)(q + 1) if q/m < d < q;

(d) (q + 1)2 if q  d .

Observe that if d � q then the evaluation morphism
' : F[X]d/IS(d) ! FN

q , where N = (q + 1)2, is surjective, so the code is

equal to F(q+1)

2

q and the minimum distance is equal to 1.
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Ćıcero Carvalho (UFU) Gröbner bases methods on some evaluation codes 10 / 12

We were able to count these classes and prove that the dimension of Cd

is:

(a) (n +m)
d(d + 1)

2
+ d + 1 if d  q/n;

(b) (s + 1)


(n +m)s

2
+m(d � s) + 1

�
+ (d � s)(q + 1)

if m < n and q/n < d  q/m, where s =

�
q �md

n �m

⌫
;

(c) (d + 1)(q + 1) if q/m < d < q;

(d) (q + 1)2 if q  d .

Observe that if d � q then the evaluation morphism
' : F[X]d/IS(d) ! FN

q , where N = (q + 1)2, is surjective, so the code is

equal to F(q+1)

2

q and the minimum distance is equal to 1.



Codes defined on rational normal scrolls
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To estimate dmin(Cd), using a reasoning similar to the a�ne case, we
proved that a lower bound for '(f + IS(d)) is
#({M 2 �(J ) | degM = e, lm(f ) |M}) for e � 0. Using these results we
were able to show that dmin(Cd) satisfies
(q � d + 1)(q � nd + 1)  dmin(Cd)  q(q � nd + 1) for d  q/n ,

q � d + 1  �S(d)  q � d + 1 + � for q/n < d < q ,

where � is defined by

� =

8
>><

>>:

�
q �md

n �m

⌫
if q

n < d  q
m and m < n ;

0 if q
m < d < q .

In the case when n = m we manage to determine the precise values for
dmin(Cd), which are

dmin(Cd) =

8
<

:

(q � d + 1)(q � nd + 1) for 1  d  q/n
q � d + 1 for q/n  d  q

1 for q  d .
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