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Coding for distributed storage systems (DSS)

Goal: To store a lot of data across many servers so that multiple users
can access the data reliably and efficiently
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Coding for distributed storage systems (DSS)

Goal: To store a lot of data across many servers so that multiple users
can access the data reliably and efficiently

Amount of data increases faster than the hardware adapts.

Errors are typically viewed as erasures (caused by server failures)
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Some cost metrics

Storage overhead

Repair bandwidth

The number of bits communicated during repairs

Locality

The number of nodes that participate in the repair process

Availability

The number of parallel reads available for each data block

Since data centers are large, the idea is to do local repairs rather than full
decoding (such as ML)
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Replication based systems

Example: Combinatorial Batch Code

Rate is n/N where N is the total number of symbols stored across all
servers.
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Other code families

Multiset batch codes:
Stores linear combinations of data symbols and allows for multiple
user access of same data request.

Regenerating codes:
Designed to reduce repair bandwidth.

Fractional repetition codes:
Allow for uncoded repairs of failed nodes while reducing repair
bandwidth.

Fractional repetition batch codes:
Allow uncoded repairs and parallel reads of subsets of stored data.

Locally repairable codes
Systematic codes such that each information symbol has locality r.
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Other code families

Many constructions use graphs and discrete structures.

In this talk, we will determine the (r, ℓ)-locality of two cases of codes
based on expander graphs.

A code has (r, ℓ)-locality if any ℓ erased code symbols may be recovered
by using at most r other intact code nodes.
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Linear block codes

An [n, k, d] linear block code over F2 is a linear subspace of F
n
2 with

codewords of length n
dimension k
rate r = k/n
minimum distance d
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Linear block codes

An [n, k, d] linear block code over F2 is a linear subspace of F
n
2 with

codewords of length n
dimension k
rate r = k/n
minimum distance d

Generator matrix (Encoder): G ∈ Matk×n(F2)

C = {c = xG|x ∈ F
k
2}.

Parity-check matrix H is an m × n matrix such that GHT = 0 .

C = {c|cHT = 0}.

8/23



Graph representation of a linear code

Let C be an [n, k] linear block code defined by the following parity-check
matrix H .

H =

parity ↓ \bit → x0 x1 x2 x3 x4 x5 x6

p0 1 1 1 0 0 1 0
p1 1 0 1 1 1 0 0
p2 0 1 0 0 1 1 1
p3 0 1 0 1 1 0 1

cHT = 0 ⇔ c ∈ C

The code may be represented by the bipartite graph for which H is the
incidence matrix.
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Graph representation of a linear code

We can represent C by the following bipartite graph.

x0

x1

x2

x3

x4

x5

x6

0p

1p

2p

3p
xHT = 0 ⇒

(x0, x1, . . . , x6)H
T = 0

Vertices on the left are called variable nodes, and vertices on the right are
called constraint nodes.
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Graph representation of a linear code

We can represent C by the following bipartite graph.

x0

x1

x2

x3

x4

x5

x6

0p

1p

2p

3p

p0 : x0 + x1 + x2 + x5 = 0.
p1 : x0 + x2 + x3 + x4 = 0.
p2 : x1 + x4 + x5 + x6 = 0.
p3 : x1 + x3 + x4 + x6 = 0.

C is the set of all binary vectors that, when input to the variable nodes,
satisfy all the check equations
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Generalized graph based codes

Earlier, the constraint nodes represented simple parity checks.

A generalized graph based code with constraint nodes of degree d uses a
“subcode” of block length d at each constraint (Tanner ’81).
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These have improved minimum distance and are useful in constructions
arising from “nice” regular graphs.
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Expander codes

An expander code is a code whose graph is a good expander.

Good expanders have a large gap between the first and second

largest eigenvalues of the associated adjacency matrix.

Expander graphs have been used to design explicit asymptotically
good codes (Sipser and Spielman ’96).
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Three standard cases of expander codes

1 Uses (c, d)-regular bipartite graph with m variable nodes and n
constraint nodes where every subset U of variable nodes of size
< αm has at least δc|U | neighbors, for some 0 < α < 1 and
0 < δ < 1.

Either with simple parity constraints or subcode constraints.

2 Start with a d-regular graph G on n vertices with second largest
eigenvalue µ. Let the edges represent the code symbols and the
vertices represent subcode constraints.

3 Start with a (c, d)-regular bipartite graph with m left nodes and n
right nodes and second largest eigenvalue µ. Let the edges represent
code symbols and use two types of subcode constraints, one for each
vertex set.

Special case when c = d

(Sipser and Spielman ’96, Zemor ’01, Janwa and Lal ’02)
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Three standard cases of expander codes

1 Uses (c, d)-regular bipartite graph with m variable nodes and n
constraint nodes where every subset U of variable nodes of size
< αm has at least δc|U | neighbors, for some 0 < α < 1 and
0 < δ < 1.

Either with simple parity constraints or subcode constraints.

2 Start with a d-regular graph G on n vertices with second largest
eigenvalue µ. Let the edges represent the code symbols and the
vertices represent subcode constraints.

3 Start with a (c, d)-regular bipartite graph with m left nodes and n
right nodes and second largest eigenvalue µ. Let the edges represent
code symbols and use two types of subcode constraints, one for each
vertex set.

Special case when c = d

(Rawat, Mazumdar, Vishwanath ’14) derived (r, ℓ)-locality parameters for
(1) and for case (3) when c = d.
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Locality of d-regular graphs with subcode C
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d−regular expander
on N vertices and E edges

(2,d)−regular bipartite graph
on E left vertices and N right vertices

LDPC codeGeneralized 
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Expander Graph  G

Theorem

(Beemer, Mayer, K.) Let C(G, C) be the code defined by a d-regular
graph G with second largest eigenvalue λ, and [d, Rd, t + 1] linear
subcode C. Then C(G, C) has (r, ℓ)-locality for any

ℓ ≤
nd

2
(γ2 +

λ

d
(γ − γ2)) where γ ≤

t − λ

d − λ
, and r = ℓdR.

(Proof similar to Rawat et al. paper)
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Locality of (c, d)-regular graphs & subcodes C1, C2

Let C := C(G, C1, C2) be the generalized code defined by a (c, d)-regular
graph G on vertex sets M and N with |M | = m left and |N | = n right
nodes and second largest eigenvalue µ. Let C1 and C2 be MDS subcodes
with minimum distance d1, d2, respectively.

ε11[c,r c, c] constraint

ε22[d,r d, d] constraint

N = mc = nd

c
d

m
n

Theorem

(Beemer, Mayer, K.) The code C has (r, ℓ)-locality for

ℓ ≤
mµǫ

2d
min{d1, d2} and r =

ℓd

2
(1 + rate(C))
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Locality of (c, d)-regular graphs & subcodes C1, C2

Algorithm

Input: A codeword with at most ℓ erasures.

1 Set j = 0, i = 0.

2 while not all erasures are corrected do

3 For every vertex v ∈ M if j ≡ 0 mod 2, or every vertex v ∈ N if
j ≡ 1 mod 2, such that 1 ≤ e ≤ dj+1 − 1 code symbols among c,
or d, are in erasure, use erasure correcting algorithm for Cj+1 to
recover those erasures.

4 i = i + 1, j ≡ i mod 2

Let Si denote the set of vertices in M or N (depending on the iteration
of the algorithm) that have at least one incident edge corresponding to
an erased symbol at the end of iteration i.
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Locality of (c, d)-regular graphs & subcodes C1, C2

Proof Sketch: Assume di ≥ (1 + ǫ)µ for i = 1, 2 and
ℓ ≤ mµǫ

2d
min{d1, d2}.

Claim: For i ≥ 1,

|Si+1| ≤
|Si|

1 + ǫ

Claim proof sketch: We prove relation for i = 1 and i = 2; later cases
follow similar argument.

Proof uses edge density variation (Janwa, Lal ’02):

e(S, T ) ≤
d

m
|S||T | +

µ

2
(|S| + |T |)

ℓ original erasures and |S1| vertices in N with at least d1 adjacent
erasures gives d1|S

1| ≤ ℓ;

Similarly, |S2|d2 ≤ e(S1, S2)

Applying assumptions and manipulating gives

|S2| ≤
d1mµ

d1mµ(1 + ǫ)
|S1| =

|S1|

1 + ǫ
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Locality of (c, d)-regular graphs & subcodes C1, C2

Similarly we get |S3| ≤ |S2|
1+ǫ

Since sequence |S1|, |S2|, . . . is decreasing, algorithm terminates.

Bound on r follows from a worst case argument:

Correcting one erasure involves at most min{cr1, dr2} intact code
symbols where ri is rate of Ci.

So r ≤ ℓ min{cr1, dr2}

It is easy to show that rate(C) ≥ r1 + r2 − 1

Assume WLOG max{c, d} = d and manipulate to obtain

min{cr1, dr2} ≤
d

2
(1 + rate(C))
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Example: the Binary Erasure Channel (BEC)

0
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1−p

1−p

outputB E C 
Binary

input

Ternary

∆
p

p

1

Input Output

Messages during algorithm are essentially bits.
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Example: the Binary Erasure Channel (BEC)

Received word = (0, ∆, ∆, 1, ∆, 1, ∆, 1)

1∆1∆1∆∆0

1 1∆
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Example: the Binary Erasure Channel (BEC)

Received word = (0, ∆, ∆, 1, ∆, 1, ∆, 1)

0

1∆11∆∆0

∆
∆

∆
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Example: the Binary Erasure Channel (BEC)

Received word = (0, ∆, ∆, 1, ∆, 1, ∆, 1)

1∆11∆∆0

0
∆

1 1

0
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Example: the Binary Erasure Channel (BEC)

Received word = (0, ∆, ∆, 1, ∆, 1, ∆, 1)

1∆101∆∆0

∆ ∆

∆0
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Example: the Binary Erasure Channel (BEC)

Received word = (0, ∆, ∆, 1, ∆, 1, ∆, 1)

1∆101∆0

∆00

0

1
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Example: the Binary Erasure Channel (BEC)

Received word = (0, ∆, ∆, 1, ∆, 1, ∆, 1)

1∆101∆00

∆
∆ ∆

1
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Example: the Binary Erasure Channel (BEC)

Received word = (0, ∆, ∆, 1, ∆, 1, ∆, 1)

1∆10100 1

1 1∆
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Example: the Binary Erasure Channel (BEC)

Received word = (0, ∆, ∆, 1, ∆, 1, ∆, 1)

1∆101100

0
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Example: the Binary Erasure Channel (BEC)

Received word = (0, ∆, ∆, 1, ∆, 1, ∆, 1)

Estimate=(0, 0, 1, 1, 0, 1, 0, 1)
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Relation to stopping sets

Iterative decoding failure of graph codes over erasure channel is
characterized by stopping sets

A stopping set S is a subset of the variable nodes such that each
neighboring constraint of a vertex in S connects to S at least
dmin(subcode) times.

v9v8v7v6v5v4v3v2v1v0

v0 v1 v3 v5S = {   ,   ,   ,   }

When the code is decoded iteratively, ℓ ≤ smin − 1, where smin is
the size of the smallest stopping set.
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Ongoing work

Extending results to Hypergraph codes

Determining the (r, ℓ)-locality of structured LDPC code families

Compare results to known bounds on smin.

Examining the (r, ℓ)-locality of protograph LDPC codes.
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Connections to other discrete structures

Affine planes

Transversal and resolvable designs

Hypergraphs

Turan graphs and cages

Generalized polygons and other partial geometries

Bipartite graphs with certain girth and constraints on vertex set sizes

Certain families of regular and bi-regular graphs
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