Graph based codes for distributed storage systems
July 21, 2015

Christine Kelley

University of Nebraska-Lincoln
Joint work with Allison Beemer and Carolyn Mayer

Combinatorics and Computer Algebra,
COCOA 2015, Fort Collins, CO.

N[

1/23

Outline

© Coding for distributed storage systems (DSS)

2/23

Outline

© Coding for distributed storage systems (DSS)

© Graph based codes

2/23

Outline

© Coding for distributed storage systems (DSS)

© Graph based codes

© (r,0)-locality of codes from expander graphs

2/23

Outline

@ Coding for distributed storage systems (DSS)
© Graph based codes
© (r,0)-locality of codes from expander graphs

@ Relation of locality to stopping sets

2/23

Outline

@ Coding for distributed storage systems (DSS)
© Graph based codes

© (r,0)-locality of codes from expander graphs
@ Relation of locality to stopping sets

a Ongoing work

2/23

Coding for distributed storage systems (DSS)

storage server

storage server

storage server

o i TS e
. h —
S -4
<

2 T
o - i 4 EEEEE
P storageserver 0 ASEESESES

T w)
* a8

storage server

Goal: To store a lot of data across many servers so that multiple users
can access the data reliably and efficiently

3/23

Coding for distributed storage systems (DSS)

storage server EEc=r

4 storage server |
&8

storage server

Pl T
“// i N storage server

N\ . .
. source/information

<

storage server

Goal: To store a lot of data across many servers so that multiple users
can access the data reliably and efficiently
@ Amount of data increases faster than the hardware adapts.

@ Errors are typically viewed as erasures (caused by server failures)
3/23

Some cost metrics

9 Storage overhead

@ Repair bandwidth

@ The number of bits communicated during repairs
@ Locality

@ The number of nodes that participate in the repair process
@ Availability

@ The number of parallel reads available for each data block

Since data centers are large, the idea is to do local repairs rather than full
decoding (such as ML)

4/23

Replication based systems

Example: Combinatorial Batch Code

X @
X; @ AW S, =Xy, Xy, X, Xs}
La W S =(%, X}
. \
& |
e |
®
u
M s, ={x}
n @

m servers storing a total of N symbols
n information symbols

Rate is n/N where N is the total number of symbols stored across all
servers.

5/23

Other code families

@ Multiset batch codes:
Stores linear combinations of data symbols and allows for multiple
user access of same data request.

@ Regenerating codes:
Designed to reduce repair bandwidth.

@ Fractional repetition codes:
Allow for uncoded repairs of failed nodes while reducing repair
bandwidth.

@ Fractional repetition batch codes:
Allow uncoded repairs and parallel reads of subsets of stored data.

9 Locally repairable codes
Systematic codes such that each information symbol has locality 7.

6/23

Other code families

Many constructions use graphs and discrete structures.

In this talk, we will determine the (r, £)-locality of two cases of codes
based on expander graphs.

A code has (7, ¢)-locality if any ¢ erased code symbols may be recovered
by using at most 7 other intact code nodes.

7/23

Linear block codes

@ An [n, k,d] linear block code over 5 is a linear subspace of F§ with
codewords of length n

dimension k

rate r = k/n

minimum distance d

¢ ¢ ¢ ¢

8/23

Linear block codes

@ An [n, k,d] linear block code over 5 is a linear subspace of F§ with
codewords of length n

dimension k

rate r = k/n

minimum distance d

¢ ¢ ¢ ¢

@ Generator matrix (Encoder): G € Matyxn(F2)

C = {c = xG|x € F}}.

@ Parity-check matrix H is an m X n matrix such that GHT =0 .

C = {c|cHT = 0}.

8/23

Graph representation of a linear code

Let C be an [n, k] linear block code defined by the following parity-check

matrix H.

parityl\bit—>|x0 T1 Ty T3 T4 s x6|

20 1 T T 0 0 1 0
H= ” 1 0 1 1 1 0 0
P2 o 1 0 0 1 1 1
3 o 1 0 1 1 0 1

cHT =0<ceC

The code may be represented by the bipartite graph for which H is the
incidence matrix.

9/23

Graph representation of a linear code

We can represent C by the following bipartite graph.

xHT =0 =
(m“,zl:l.“.,:l:(;)H’ =0

Vertices on the left are called variable nodes, and vertices on the right are
called constraint nodes.

10/23

Graph representation of a linear code

We can represent C by the following bipartite graph.

Xo

X1

Xa

X5

X6

C is the set of all binary vectors that, when input to the variable nodes,
satisfy all the check equations

Po :
p1:
p2:
ps3:

To+ 1+ 22+ 25 =0.

To + a2+ 23+ 24 = 0.
T1 + x4 + x5 + 26 = 0.
T, +x3+ x4 + 26 = 0.

10/23

Generalized graph based codes

Earlier, the constraint nodes represented simple parity checks.

A generalized graph based code with constraint nodes of degree d uses a
“subcode” of block length d at each constraint (Tanner '81).

% Sub-Code with g
Vit vy =0

Vot Vg =0

Vat Vg =0

"
—
Sor
oro
oo
R Sugucy

Vi Vy V3 Vg

These have improved minimum distance and are useful in constructions
arising from “nice” regular graphs.

11/23

Expander codes

@ An expander code is a code whose graph is a good expander.

o Good expanders have a large gap between the first and second
largest eigenvalues of the associated adjacency matrix.

@ Expander graphs have been used to design explicit asymptotically
good codes (Sipser and Spielman '96).

12/23

Three standard cases of expander codes

©Q Uses (¢, d)-regular bipartite graph with m variable nodes and n
constraint nodes where every subset U of variable nodes of size
< am has at least dc|U]| neighbors, for some 0 < a < 1 and
0<d<l

o Either with simple parity constraints or subcode constraints.

© Start with a d-regular graph G on n vertices with second largest
eigenvalue p. Let the edges represent the code symbols and the
vertices represent subcode constraints.

Q Start with a (¢, d)-regular bipartite graph with m left nodes and n
right nodes and second largest eigenvalue p. Let the edges represent
code symbols and use two types of subcode constraints, one for each
vertex set.

o Special case when ¢ =d

(Sipser and Spielman '96, Zemor '01, Janwa and Lal '02)

13/23

Three standard cases of expander codes

©Q Uses (¢, d)-regular bipartite graph with m variable nodes and n
constraint nodes where every subset U of variable nodes of size
< am has at least dc|U| neighbors, for some 0 < a < 1 and
0<d<l

o Either with simple parity constraints or subcode constraints.

@ Start with a d-regular graph G on n vertices with second largest
eigenvalue p. Let the edges represent the code symbols and the
vertices represent subcode constraints.

Q Start with a (¢, d)-regular bipartite graph with m left nodes and n
right nodes and second largest eigenvalue p. Let the edges represent
code symbols and use two types of subcode constraints, one for each
vertex set.

o Special case when ¢ =d

(Rawat, Mazumdar, Vishwanath '14) derived (r, ¢)-locality parameters for
(1) and for case (3) when ¢ = d.

14/23

Locality of d-regular graphs with subcode C

Expander Graph G Generalized ~ LDPC code

==
: 8 constraint node
@ N [dk', d] sub-code
@ variable node
€ceo
d-regular expander (2,d)-regular bipartite graph
on N vertices and E edges on E left vertices and N right vertices

Theorem

(Beemer, Mayer, K.) Let C(G,C) be the code defined by a d-regular
graph G with second largest eigenvalue \, and [d, Rd,t + 1] linear
subcode C'. Then C(G,C') has (r,{)-locality for any
d A t— A
(< %(72 + E(’y —?)) where y < T and r = (dR.
(Proof similar to Rawat et al. paper)
15/23

Locality of (¢, d)-regular graphs & subcodes C, (5

Let C := C(G, C1, C3) be the generalized code defined by a (¢, d)-regular
graph G on vertex sets M and N with |M| = m left and |N| = n right
nodes and second largest eigenvalue p. Let C; and Cy be MDS subcodes

with minimum distance dy, do, respectively.

c
d

B [crc,c] copstraint

® [d,rd,d] @nstraint

N =mc =nd

=)

Theorem
(Beemer, Mayer, K.) The code C has (r,{)-locality for

0< B in{dy,do} and v = (1 + rate(C))

16/23

Locality of (¢, d)-regular graphs & subcodes C, (5

Algorithm
Input: A codeword with at most ¢ erasures.
Q Setj=0,i=0.
@ while not all erasures are corrected do
© For every vertex v € M if 7 =0 mod 2, or every vertex v € N if
J =1 mod 2, such that 1 <e < d;;1 — 1 code symbols among c,

or d, are in erasure, use erasure correcting algorithm for C;; to
recover those erasures.

Qi=i+1 j=14 mod?2
Let S? denote the set of vertices in M or N (depending on the iteration

of the algorithm) that have at least one incident edge corresponding to
an erased symbol at the end of iteration i.

17/23

Locality of (¢, d)-regular graphs & subcodes C, (5

Proof Sketch: Assume d; > (14 €)u for i = 1,2 and
(S WQLSE min{dl, dg}
Claim: For i > 1,

|S’L+1| < |S |

T 1l4e
Claim proof sketch: We prove relation for i = 1 and i = 2; later cases
follow similar argument.

@ Proof uses edge density variation (Janwa, Lal '02):
e(5,T) < —|5||T| +35 (|5| +171)

@ (original erasures and |S?| vertices in N with at least d; adjacent
erasures gives dq|S!| < ¢;

@ Similarly, |S?|d2 < e(S!, S?)

@ Applying assumptions and manipulating gives

dymp | 1| _ |Sl|

2
1571 = dymp(l +¢€) 1+e

18/23

Locality of (¢, d)-regular graphs & subcodes C, (5

P 3| <« 15%
@ Similarly we get [S°| < 7
Since sequence | S|, |S?],... is decreasing, algorithm terminates.

Bound on r follows from a worst case argument:

@ Correcting one erasure involves at most min{cry,drs} intact code
symbols where r; is rate of C;.

@ So r < {min{cry,dra}
@ It is easy to show that rate(C) > 71 + 72 — 1
@ Assume WLOG max{c, d} = d and manipulate to obtain

min{ery, dra} < g(l + rate(C))

19/23

Example: the Binary Erasure Channel (BEC)

Input Output

! _ ’ Bina Ternar
p A mpT?» SEC Wpug’
p

N

@ Messages during algorithm are essentially bits.

20/23

Example: the Binary Erasure Channel (BEC)

Received word = (0, A, A1, A 1,A,1)

0 A A 1 A 1 A 1

3

20/23

Example: the Binary Erasure Channel (BEC)

Received word = (0, A, A1, A 1,A,1)

0 A A 1 1 A 1

3

20/23

Example: the Binary Erasure Channel (BEC)

Received word = (0, A, A1, A 1,A,1)

0 A A 1 0 1 A 1

3

20/23

Example: the Binary Erasure Channel (BEC)

Received word = (0, A, A1, A 1,A,1)

3

20/23

Example: the Binary Erasure Channel (BEC)

Received word = (0, A, A1, A 1,A,1)

20/23

Example: the Binary Erasure Channel (BEC)

Received word = (0, A, A1, A 1,A,1)

Example: the Binary Erasure Channel (BEC)

Received word = (0, A, A1, A 1,A,1)

0 0 1 1 0 1 A 1

3

20/23

Example: the Binary Erasure Channel (BEC)

Received word = (0, A, A1, A 1,A,1)

0 0 1 1 0 1 1

3

20/23

Example: the Binary Erasure Channel (BEC)

Received word = (0, A, A1, A 1,A,1)

—— Estimate=(0, 0, 1, 1, 0, 1, 0, 1)

20/23

Relation to stopping sets

@ lterative decoding failure of graph codes over erasure channel is
characterized by stopping sets

@ A stopping set S is a subset of the variable nodes such that each
neighboring constraint of a vertex in S connects to S at least
dmin (subcode) times.

@ When the code is decoded iteratively, £ < syin — 1, where sy, is
the size of the smallest stopping set.

21/23

Ongoing work

@ Extending results to Hypergraph codes

@ Determining the (r, £)-locality of structured LDPC code families

o Compare results to known bounds on spin.

@ Examining the (r, £)-locality of protograph LDPC codes.

22/23

Connections to other discrete structures

©

Affine planes

©

Transversal and resolvable designs

[

Hypergraphs

[

Turan graphs and cages

[

Generalized polygons and other partial geometries

©

Bipartite graphs with certain girth and constraints on vertex set sizes

@ Certain families of regular and bi-regular graphs

23/23

Thank you!

@ Y. Ishai, E. Kushilevitz, R. Ostrovsky, and A. Sahai. Batch codes
and their applications. 2004

@ M. Sipser and D. Spielman, Expander codes, 1996.
@ G. Zemor, On expander codes, 2001.

@ H. Janwa and A. K. Lal. On Tanner codes: minimum distance and
decoding. 2002.

@ A. Dimakis, A. Gal, A. Rawat, and Z. Song. Batch codes through
dense graphs without short cycles. 2014.

@ G. Kamath, N. Prakash, V. Lalitha, and P. V. Kumar. Codes with
local regeneration. 2013.

@ D. Papailiopoulos and A. Dimakis. Locally repairable codes. 2014.

@ A. Rawat, A. Mazumdar, and S. Vishwanath. Cooperative local
repair in distributed storage. 2014

24/23

	Coding for distributed storage systems (DSS)
	Graph based codes
	(r,)-locality of codes from expander graphs
	Relation of locality to stopping sets
	Ongoing work

