Group Symmetries of Complementary Code Matrices

Brooke Logan

Mathematics Department
Rowan University, New Jersey

Combinatorics and Computer Algebra- CoCoA 2015
Colorado State University
Fort Collins, Colorado
July 21, 2015

This work was done in collaboration with Professor Hieu D. Nguyen at Rowan University.

And the topic was inspired by Greg Coxson

Figure: JMM 2014 Undergraduate Poster Session

Barker Codes and Golay Pairs

Barker Codes and Golay Pairs

- When a radar signal is sent out the returned signal is compared to it by computing the aperiodic auto correlation function, A, as follows:

$$
\mathrm{A}_{x}(j)= \begin{cases}\sum_{i=1}^{N-j} a_{i} \bar{a}_{i+j}, & \text { if } 0 \leq j \leq N-1 \tag{1}\\ \mathrm{~A}_{x}(-j), & \text { if }-N+1 \leq j<0\end{cases}
$$

Barker Codes

Definition

A Barker Code, x, is a code of length N consisting of ± 1 such that $A_{x}(0)=N$ and $\left|A_{x}(j)\right| \leq 1$ for all others.

Barker Codes

Definition

A Barker Code, x, is a code of length N consisting of ± 1 such that $A_{x}(0)=N$ and $\left|A_{x}(j)\right| \leq 1$ for all others.

Definition

The Barker Conjecture states that there exists no Barker Sequences of length $N>13$ and has been proven in the case of all odd N values.

Barker Codes

Definition

A Barker Code, x, is a code of length N consisting of ± 1 such that $A_{x}(0)=N$ and $\left|A_{x}(j)\right| \leq 1$ for all others.

Definition

The Barker Conjecture states that there exists no Barker Sequences of length $N>13$ and has been proven in the case of all odd N values.

Note: The even case has been proven up to

$$
N=4 \times 19804830012264298738041^{2}
$$

Example of a Binary Code

The autocorrelation function for a single code, $x=\{1,1,1,-1\}$ of length $N=4$, can be computed as follows:

Example of a Binary Code

The autocorrelation function for a single code, $x=\{1,1,1,-1\}$ of length $N=4$, can be computed as follows:

- $A_{x}(0)=\sum_{i=1}^{N} x_{i} x_{i}^{c}=(1 \cdot 1)+(1 \cdot 1)+(1 \cdot 1)+(-1 \cdot-1)=4$

Example of a Binary Code

The autocorrelation function for a single code, $x=\{1,1,1,-1\}$ of length $N=4$, can be computed as follows:

- $A_{x}(0)=\sum_{i=1}^{N} x_{i} x_{i}^{c}=(1 \cdot 1)+(1 \cdot 1)+(1 \cdot 1)+(-1 \cdot-1)=4$
- $A_{x}(1)=\bar{A}_{x}(-1)=\sum_{i=1}^{N-1} x_{i} x_{i+1}^{c}=(1 \cdot 1)+(1 \cdot 1)+(1 \cdot-1)=1$

Example of a Binary Code

The autocorrelation function for a single code, $x=\{1,1,1,-1\}$ of length $N=4$, can be computed as follows:

- $A_{x}(0)=\sum_{i=1}^{N} x_{i} x_{i}^{c}=(1 \cdot 1)+(1 \cdot 1)+(1 \cdot 1)+(-1 \cdot-1)=4$
- $A_{x}(1)=\bar{A}_{x}(-1)=\sum_{i=1}^{N-1} x_{i} x_{i+1}^{c}=(1 \cdot 1)+(1 \cdot 1)+(1 \cdot-1)=1$
- $A_{x}(2)=\bar{A}_{x}(-2)=\sum_{i=1}^{N-2} x_{i} x_{i+2}^{c}=(1 \cdot 1)+(1 \cdot-1)=0$
- $A_{x}(3)=\bar{A}_{x}(-3)=\sum_{i=1}^{N-3} x_{i} x_{i+3}^{c}=(1 \cdot-1)=-1$

Example of a Binary Code

$$
x=\{1,1,1,-1\} \text { with } A_{x}=\{-1,0,1,4,1,0,-1\}
$$

Example of a Binary Code

$$
y=\{1,1,-1,1\} \text { with } A_{y}=\{1,0,-1,4,-1,0,1\}
$$

Example of a Binary Code

$$
y=\{1,1,-1,1\} \text { with } A_{y}=\{1,0,-1,4,-1,0,1\}
$$

Example of a Pair of Codes

Composite autocorrelation for pair of codes $x=\{1,1,1,-1\}$ and $y=\{1,1,-1,1\}$:

Example of a Pair of Codes

Composite autocorrelation for pair of codes $x=\{1,1,1,-1\}$ and $y=\{1,1,-1,1\}$:

- $A_{x}+A_{y}$
- $\{-1,0,1,4,1,0,-1\}+\{1,0,-1,4,-1,0,1\}$

Example of a Pair of Codes

Composite autocorrelation for pair of codes $x=\{1,1,1,-1\}$ and $y=\{1,1,-1,1\}$:

- $A_{x}+A_{y}$
- $\{-1,0,1,4,1,0,-1\}+\{1,0,-1,4,-1,0,1\}$
$\{0,0,0,8,0,0,0\}$
This is called a Golay Pair.

Introduction

Graph of A_{x}, A_{y} and $A_{x}+A_{y}$

Complementary Code Matrices

Definition

A complementary code matrix (or CCM) is a $N \times K$ matrix M whose row Gramian, $B=M \cdot M^{*}$, is diagonally regular with diagonal entries equal to K. Here, * represents the conjugate transpose.

Complementary Code Matrices

Definition

A complementary code matrix (or CCM) is a $N \times K$ matrix M whose row Gramian, $B=M \cdot M^{*}$, is diagonally regular with diagonal entries equal to K. Here, * represents the conjugate transpose.

$$
p \text {-phase: } \exp \left(\frac{2 \pi i}{p}+\frac{2 k \pi i}{p}\right) \text { with } k=0, \ldots, p-1
$$

We define the set of $N \times K$ p-phase $C C M$ as $C_{N, K}(p)$.

Example

$$
\left(\begin{array}{cccc}
1 & 1 & 1 & 1 \\
1 & 1 & i & -i \\
-1 & -1 & i & -i \\
1 & 1 & -1 & -1
\end{array}\right)
$$

Example

$$
\left(\begin{array}{cccc}
1 & 1 & 1 & 1 \\
1 & 1 & i & -i \\
-1 & -1 & i & -i \\
1 & 1 & -1 & -1
\end{array}\right) \cdot\left(\begin{array}{cccc}
1 & 1 & -1 & 1 \\
1 & 1 & -1 & 1 \\
1 & -i & -i & -1 \\
1 & i & i & -1
\end{array}\right)=
$$

Example

$$
\begin{aligned}
& \left(\begin{array}{cccc}
1 & 1 & 1 & 1 \\
1 & 1 & i & -i \\
-1 & -1 & i & -i \\
1 & 1 & -1 & -1
\end{array}\right) \cdot\left(\begin{array}{cccc}
1 & 1 & -1 & 1 \\
1 & 1 & -1 & 1 \\
1 & -i & -i & -1 \\
1 & i & i & -1
\end{array}\right)= \\
& \\
& \left(\begin{array}{cccc}
4 & 2 & -2 & 0 \\
2 & 4 & 0 & 2 \\
-2 & 0 & 4 & -2 \\
0 & 2 & -2 & 4
\end{array}\right)
\end{aligned}
$$

Our Research

- Described relations between symmetries of Complmentary Code Matrices
- Adapted an existing algorithm to speed up search for CCMs
- Classified the matrices into different equivalence classes
- Created a new construction method

Symmetries

Coxson-Haloupek [1]

Suppose that M is an $N \times K$ CCM. Then we can obtain an equivalent $N \times K$ CCM using the following transformations.
(i) Column multiplication by a unimodular complex number.
(ii) Column conjugate reversal.
(iii) Matrix conjugation.
(iv) Progressive multiplication by consecutive powers of a unimodular complex number.
(v) Column permutation.

Example

$$
\left(\begin{array}{cccc}
1 & 1 & 1 & 1 \\
1 & 1 & -1 & -1 \\
i & -i & i & -i \\
i & -i & -i & i
\end{array}\right) \xrightarrow{x_{1} \times i}
$$

Example

$$
\left(\begin{array}{cccc}
1 & 1 & 1 & 1 \\
1 & 1 & -1 & -1 \\
i & -i & i & -i \\
i & -i & -i & i
\end{array}\right) \xrightarrow{x_{1} \times i}\left(\begin{array}{cccc}
i & 1 & 1 & 1 \\
i & 1 & -1 & -1 \\
-1 & -i & i & -i \\
-1 & -i & -i & i
\end{array}\right)
$$

Example

$$
\left(\begin{array}{cccc}
i & 1 & 1 & 1 \\
i & 1 & -1 & -1 \\
-1 & -i & i & -i \\
-1 & -i & -i & i
\end{array}\right) \xrightarrow{\operatorname{rev}\left(\bar{x}_{2}\right)}
$$

Example

$$
\left(\begin{array}{cccc}
i & 1 & 1 & 1 \\
i & 1 & -1 & -1 \\
-1 & -i & i & -i \\
-1 & -i & -i & i
\end{array}\right) \xrightarrow{\operatorname{rev}\left(\bar{x}_{2}\right)}\left(\begin{array}{cccc}
i & i & 1 & 1 \\
i & i & -1 & -1 \\
-1 & 1 & i & -i \\
-1 & 1 & -i & i
\end{array}\right)
$$

Example

$$
\left(\begin{array}{cccc}
i & i & 1 & 1 \\
i & i & -1 & -1 \\
-1 & 1 & i & -i \\
-1 & 1 & -i & i
\end{array}\right) \xrightarrow{\text { conjugate }}
$$

Example

$$
\left(\begin{array}{cccc}
i & i & 1 & 1 \\
i & i & -1 & -1 \\
-1 & 1 & i & -i \\
-1 & 1 & -i & i
\end{array}\right) \xrightarrow{\text { conjugate }}\left(\begin{array}{cccc}
-i & -i & 1 & 1 \\
-i & -i & -1 & -1 \\
-1 & 1 & -i & i \\
-1 & 1 & i & -i
\end{array}\right)
$$

Example

$$
\left(\begin{array}{cccc}
-i & -i & 1 & 1 \\
-i & -i & -1 & -1 \\
-1 & 1 & -i & i \\
-1 & 1 & i & -i
\end{array}\right) \xrightarrow{Q(i)}
$$

Example

$$
\left(\begin{array}{cccc}
-i & -i & 1 & 1 \\
-i & -i & -1 & -1 \\
-1 & 1 & -i & i \\
-1 & 1 & i & -i
\end{array}\right) \xrightarrow{Q(i)}\left(\begin{array}{cccc}
1 & 1 & i & i \\
i & i & 1 & 1 \\
i & -i & -1 & 1 \\
-1 & 1 & i & -i
\end{array}\right)
$$

Example

$$
\left(\begin{array}{cccc}
1 & 1 & i & i \\
i & i & 1 & 1 \\
i & -i & -1 & 1 \\
-1 & 1 & i & -i
\end{array}\right) \xrightarrow{\left(x_{1}, x_{3}\right)\left(x_{2}, x_{4}\right)}
$$

Example

$$
\left(\begin{array}{cccc}
1 & 1 & i & i \\
i & i & 1 & 1 \\
i & -i & -1 & 1 \\
-1 & 1 & i & -i
\end{array}\right) \xrightarrow{\left(x_{1}, x_{3}\right)\left(x_{2}, x_{4}\right)}\left(\begin{array}{cccc}
i & i & 1 & 1 \\
1 & 1 & i & i \\
-1 & 1 & i & -i \\
i & -i & -1 & 1
\end{array}\right)
$$

Example

$$
\begin{aligned}
& \left(\begin{array}{cccc}
1 & 1 & 1 & 1 \\
1 & 1 & -1 & -1 \\
i & -i & i & -i \\
i & -i & -i & i
\end{array}\right)\left(\begin{array}{cccc}
i & 1 & 1 & 1 \\
i & 1 & -1 & -1 \\
-1 & -i & i & -i \\
-1 & -i & -i & i
\end{array}\right)\left(\begin{array}{cccc}
i & i & 1 & 1 \\
i & i & -1 & -1 \\
-1 & 1 & i & -i \\
-1 & 1 & -i & i
\end{array}\right) \\
& \left(\begin{array}{cccc}
-i & -i & 1 & 1 \\
-i & -i & -1 & -1 \\
-1 & 1 & -i & i \\
-1 & 1 & i & -i
\end{array}\right)\left(\begin{array}{cccc}
1 & 1 & i & i \\
i & i & 1 & 1 \\
i & -i & -1 & 1 \\
-1 & 1 & i & -i
\end{array}\right)\left(\begin{array}{cccc}
i & i & 1 & 1 \\
1 & 1 & i & i \\
-1 & 1 & i & -i \\
i & -i & -1 & 1
\end{array}\right)
\end{aligned}
$$

Quick Proof

$$
\begin{gathered}
U=\left\{\alpha_{1}, \alpha_{2}, \ldots, \alpha_{K}\right\} \\
T=\left\{t_{1}, t_{2}, \ldots, t_{K}\right\} \text { where } t=0,1
\end{gathered}
$$

Quick Proof

$$
\begin{gathered}
U=\left\{\alpha_{1}, \alpha_{2}, \ldots, \alpha_{K}\right\} \\
T=\left\{t_{1}, t_{2}, \ldots, t_{K}\right\} \text { where } t=0,1 \\
C_{U} \rho_{T} M=C_{U} \rho_{T}\left[x_{1}, x_{2}, \ldots, x_{K}\right]
\end{gathered}
$$

Quick Proof

$$
\begin{gathered}
U=\left\{\alpha_{1}, \alpha_{2}, \ldots, \alpha_{K}\right\} \\
T=\left\{t_{1}, t_{2}, \ldots, t_{K}\right\} \text { where } t=0,1 \\
C_{U} \rho_{T} M=C_{U} \rho_{T}\left[x_{1}, x_{2}, \ldots, x_{K}\right] \\
=C_{U}\left[\omega^{2-t_{1}}\left(x_{1}\right), \omega^{2-t_{2}}\left(x_{2}\right), \ldots, \omega^{2-t_{K}}\left(x_{K}\right)\right]
\end{gathered}
$$

Quick Proof

$$
\begin{gathered}
U=\left\{\alpha_{1}, \alpha_{2}, \ldots, \alpha_{K}\right\} \\
T=\left\{t_{1}, t_{2}, \ldots, t_{K}\right\} \text { where } t=0,1 \\
C_{U} \rho_{T} M=C_{U} \rho_{T}\left[x_{1}, x_{2}, \ldots, x_{K}\right] \\
=C_{U}\left[\omega^{2-t_{1}}\left(x_{1}\right), \omega^{2-t_{2}}\left(x_{2}\right), \ldots, \omega^{2-t_{K}}\left(x_{K}\right)\right] \\
=\left[\alpha_{1} \omega^{2-t_{1}}\left(x_{1}\right), \alpha_{2} \omega^{2-t_{2}}\left(x_{2}\right), \ldots, \alpha_{K} \omega^{2-t_{K}}\left(x_{K}\right)\right]
\end{gathered}
$$

Quick Proof

$$
\begin{gathered}
U=\left\{\alpha_{1}, \alpha_{2}, \ldots, \alpha_{K}\right\} \\
T=\left\{t_{1}, t_{2}, \ldots, t_{K}\right\} \text { where } t=0,1 \\
C_{U} \rho_{T} M=C_{U} \rho_{T}\left[x_{1}, x_{2}, \ldots, x_{K}\right] \\
=C_{U}\left[\omega^{2-t_{1}}\left(x_{1}\right), \omega^{2-t_{2}}\left(x_{2}\right), \ldots, \omega^{2-t_{K}}\left(x_{K}\right)\right] \\
=\left[\alpha_{1} \omega^{2-t_{1}}\left(x_{1}\right), \alpha_{2} \omega^{2-t_{2}}\left(x_{2}\right), \ldots, \alpha_{K} \omega^{2-t_{K}}\left(x_{K}\right)\right] \\
=\rho_{T}\left[\omega^{2-t 1}\left(\alpha_{1}\right) x_{1}, \omega^{2-t_{2}}\left(\alpha_{2}\right) x_{2}, \ldots, \omega^{2-t_{K}}\left(\alpha_{K}\right) x_{K}\right]
\end{gathered}
$$

Quick Proof

$$
\begin{gathered}
U=\left\{\alpha_{1}, \alpha_{2}, \ldots, \alpha_{K}\right\} \\
T=\left\{t_{1}, t_{2}, \ldots, t_{K}\right\} \text { where } t=0,1 \\
C_{U} \rho_{T} M=C_{U} \rho_{T}\left[x_{1}, x_{2}, \ldots, x_{K}\right] \\
=C_{U}\left[\omega^{2-t_{1}}\left(x_{1}\right), \omega^{2-t_{2}}\left(x_{2}\right), \ldots, \omega^{2-t_{K}}\left(x_{K}\right)\right] \\
=\left[\alpha_{1} \omega^{2-t_{1}}\left(x_{1}\right), \alpha_{2} \omega^{2-t_{2}}\left(x_{2}\right), \ldots, \alpha_{K} \omega^{2-t_{K}}\left(x_{K}\right)\right] \\
=\rho_{T}\left[\omega^{2-t 1}\left(\alpha_{1}\right) x_{1}, \omega^{2-t_{2}}\left(\alpha_{2}\right) x_{2}, \ldots, \omega^{2-t_{K}}\left(\alpha_{K}\right) x_{K}\right] \\
=
\end{gathered} \rho_{T} C_{U_{T}}\left[x_{1}, x_{2}, x_{3}, \ldots, x_{K}\right] .
$$

Quick Proof

$$
\begin{gathered}
U=\left\{\alpha_{1}, \alpha_{2}, \ldots, \alpha_{K}\right\} \\
T=\left\{t_{1}, t_{2}, \ldots, t_{K}\right\} \text { where } t=0,1 \\
C_{U} \rho_{T} M=C_{U} \rho_{T}\left[x_{1}, x_{2}, \ldots, x_{K}\right] \\
=C_{U}\left[\omega^{2-t_{1}}\left(x_{1}\right), \omega^{2-t_{2}}\left(x_{2}\right), \ldots, \omega^{2-t_{K}}\left(x_{K}\right)\right] \\
=\left[\alpha_{1} \omega^{2-t_{1}}\left(x_{1}\right), \alpha_{2} \omega^{2-t_{2}}\left(x_{2}\right), \ldots, \alpha_{K} \omega^{2-t_{K}}\left(x_{K}\right)\right] \\
=\rho_{T}\left[\omega^{2-t 1}\left(\alpha_{1}\right) x_{1}, \omega^{2-t_{2}}\left(\alpha_{2}\right) x_{2}, \ldots, \omega^{2-t_{K}}\left(\alpha_{K}\right) x_{K}\right] \\
= \\
\rho_{T} C_{U_{T}}\left[x_{1}, x_{2}, x_{3}, \ldots, x_{K}\right] \\
=
\end{gathered} \rho_{T} C_{U_{T}} M, ~ l
$$

Definition

The complementary group, G, of the set of all $N \times K p$-phase CCMs is defined to be the group generated by the symmetries $S, P, C_{U}, \rho_{T}, Q(\beta)$ and their relations given in the following lemma.

Lemma

Let M be a $N \times K$ p-phase CCM, $M=\left[x_{1}, x_{2}, x_{3}, \ldots, x_{K}\right]$ and $x_{k}=\left[m_{1, k}, m_{2, k}, m_{3, k}, \ldots, m_{N, k}\right]^{T}$. Then
(i) $C_{U} \rho_{T} M=\rho_{T} C_{U_{T}} M$
(ii) $C_{U} S M=S C_{\bar{U}} M$
(iii) $C_{U} Q(\beta) M=Q(\beta) C_{U} M$
(iv) $C_{U} P M=P C_{U_{P}} M$
(v) $\rho_{T} S M=S \rho_{T} M$
(vi) $\rho_{T} P M=P \rho_{T_{P-1}} M$
(vii) $S Q(\beta) M=Q(\bar{\beta}) S M$
(viii) $S P M=P S M$
(ix) $Q(\beta) \rho_{T} M=C_{U_{T, \beta}} \rho_{T} Q_{\beta} M$
(x) $Q(\beta) P M=P Q(\beta) M$

Theorem

The cardinality of the complementary group G of $C_{N, K}(p)$ is bounded by

$$
\begin{equation*}
|G| \leq 2^{K+1} p^{K+1} K! \tag{2}
\end{equation*}
$$

Proof

Each CCM preserving operation on the matrix M can be represented in the following form.

$$
S P C_{u} \rho_{T} Q(\beta)
$$

$$
\begin{aligned}
& |S|=2 \\
& |P|=K! \\
& \left|C_{U}\right|=p^{K} \\
& \left|\rho_{T}\right|=2^{K} \\
& |Q(\beta)|=p
\end{aligned}
$$

Proof
Each CCM preserving operation on the matrix M can be represented in the following form.

$$
S P C_{u} \rho_{T} Q(\beta)
$$

$|S|=2$
$|P|=K!$
$\left|C_{U}\right|=p^{K}$
$\left|\rho_{T}\right|=2^{K}$
$|Q(\beta)|=p$
So this will will produce a max of

$$
|G| \leq|S|\left|P\left\|C_{U}\right\| \rho_{T} \| Q(\beta)\right|=2 K!p^{K} 2^{K} p=2^{K+1} p^{K+1} K!
$$

CCMs from M.

Applications of the Symmetries

$$
M=\left(\begin{array}{llll}
m_{1,1} & m_{1,2} & m_{1,3} & m_{1,4} \\
m_{2,1} & m_{2,2} & m_{2,3} & m_{2,4} \\
m_{3,1} & m_{3,2} & m_{3,3} & m_{3,4} \\
m_{4,1} & m_{4,2} & m_{4,3} & m_{4,4}
\end{array}\right)
$$

Applications of the Symmetries

$$
\begin{gathered}
M=\left(\begin{array}{cccc}
m_{1,1} & m_{1,2} & m_{1,3} & m_{1,4} \\
m_{2,1} & m_{2,2} & m_{2,3} & m_{2,4} \\
m_{3,1} & m_{3,2} & m_{3,3} & m_{3,4} \\
m_{4,1} & m_{4,2} & m_{4,3} & m_{4,4}
\end{array}\right) \\
U_{1}=\left(\bar{m}_{1,1}, \bar{m}_{1,2}, \bar{m}_{1,3}, \bar{m}_{1,4}\right)
\end{gathered}
$$

Applications of the Symmetries

$$
\begin{gathered}
M=\left(\begin{array}{cccc}
m_{1,1} & m_{1,2} & m_{1,3} & m_{1,4} \\
m_{2,1} & m_{2,2} & m_{2,3} & m_{2,4} \\
m_{3,1} & m_{3,2} & m_{3,3} & m_{3,4} \\
m_{4,1} & m_{4,2} & m_{4,3} & m_{4,4}
\end{array}\right) \\
U_{1}=\left(\bar{m}_{1,1}, \bar{m}_{1,2}, \bar{m}_{1,3}, \bar{m}_{1,4}\right) \\
U_{2}=\left(m_{2,1} \bar{m}_{1,1}, m_{2,1} \bar{m}_{1,1}, m_{2,1} \bar{m}_{1,1}, m_{2,1} \bar{m}_{1,1}\right)
\end{gathered}
$$

Applications of the Symmetries

$$
\begin{gathered}
M=\left(\begin{array}{cccc}
m_{1,1} & m_{1,2} & m_{1,3} & m_{1,4} \\
m_{2,1} & m_{2,2} & m_{2,3} & m_{2,4} \\
m_{3,1} & m_{3,2} & m_{3,3} & m_{3,4} \\
m_{4,1} & m_{4,2} & m_{4,3} & m_{4,4}
\end{array}\right) \\
U_{1}=\left(\bar{m}_{1,1}, \bar{m}_{1,2}, \bar{m}_{1,3}, \bar{m}_{1,4}\right) \\
U_{2}=\left(m_{2,1} \bar{m}_{1,1}, m_{2,1} \bar{m}_{1,1}, m_{2,1} \bar{m}_{1,1}, m_{2,1} \bar{m}_{1,1}\right) \\
\beta=\bar{m}_{2,1} m_{1,1}
\end{gathered}
$$

Applications of the Symmetries

$$
\begin{gathered}
M=\left(\begin{array}{cccc}
m_{1,1} & m_{1,2} & m_{1,3} & m_{1,4} \\
m_{2,1} & m_{2,2} & m_{2,3} & m_{2,4} \\
m_{3,1} & m_{3,2} & m_{3,3} & m_{3,4} \\
m_{4,1} & m_{4,2} & m_{4,3} & m_{4,4}
\end{array}\right) \\
U_{1}=\left(\bar{m}_{1,1}, \bar{m}_{1,2}, \bar{m}_{1,3}, \bar{m}_{1,4}\right) \\
U_{2}=\left(m_{2,1} \bar{m}_{1,1}, m_{2,1} \bar{m}_{1,1}, m_{2,1} \bar{m}_{1,1}, m_{2,1} \bar{m}_{1,1}\right) \\
\beta=\bar{m}_{2,1} m_{1,1} \\
Q(\beta) C_{U_{2}} C_{U_{1}} M
\end{gathered}
$$

Applications of the Symmetries

$$
\left(\begin{array}{cccc}
1 & 1 & 1 & 1 \\
1 & m_{2,2} & m_{2,3} & m_{2,4} \\
m_{3,1} & m_{3,2} & m_{3,3} & m_{3,4} \\
m_{4,1} & m_{4,2} & m_{4,3} & m_{4,4}
\end{array}\right)
$$

Applications of the Symmetries

$$
\left(\begin{array}{l}
r_{1} \\
r_{2} \\
r_{3} \\
r_{4}
\end{array}\right)
$$

Applications of the Symmetries

$$
\left(\begin{array}{l}
r_{1} \\
r_{2} \\
r_{3} \\
r_{4}
\end{array}\right) \cdot\left(\begin{array}{llll}
\bar{r}_{1} & \bar{r}_{2} & \bar{r}_{3} & \bar{r}_{4}
\end{array}\right)
$$

Applications of the Symmetries

$$
\left(\begin{array}{l}
r_{1} \\
r_{2} \\
r_{3} \\
r_{4}
\end{array}\right) \cdot\left(\begin{array}{llll}
\bar{r}_{1} & \bar{r}_{2} & \bar{F}_{3} & \bar{r}_{4}
\end{array}\right)=\left(\begin{array}{llll}
r_{1} \bar{F}_{1} & r_{1} \bar{r}_{2} & r_{1} \bar{r}_{3} & r_{1} \bar{r}_{4} \\
r_{2} \bar{r}_{1} & r_{2} \bar{r}_{1} & r_{2} \bar{r}_{1} & r_{2} \overline{r_{1}} \\
r_{3} \bar{F}_{1} & r_{3} \bar{r}_{2} & r_{3} \bar{r}_{3} & r_{3} \bar{r}_{4} \\
r_{4} \bar{F}_{1} & r_{4} \bar{r}_{2} & r_{4} \overline{r_{3}} & r_{4} \bar{r}_{4}
\end{array}\right)
$$

Applications of the Symmetries

$$
\begin{gathered}
\left(\begin{array}{l}
r_{1} \\
r_{2} \\
r_{3} \\
r_{4}
\end{array}\right) \cdot\left(\begin{array}{llll}
\bar{r}_{1} & \bar{r}_{2} & \bar{r}_{3} & \bar{r}_{4}
\end{array}\right)=\left(\begin{array}{llll}
r_{1} \bar{r}_{1} & r_{1} \bar{r}_{2} & r_{1} \bar{r}_{3} & r_{1} \bar{r}_{4} \\
r_{2} \bar{r}_{1} & r_{2} \bar{r}_{1} & r_{2} \bar{r}_{1} & r_{2} \bar{r}_{1} \\
r_{3} \bar{r}_{1} & r_{3} \bar{r}_{2} & r_{3} \bar{r}_{3} & r_{3} \bar{r}_{4} \\
r_{4} \bar{r}_{1} & r_{4} \bar{r}_{2} & r_{4} \bar{r}_{3} & r_{4} \bar{r}_{4}
\end{array}\right) \\
r_{4} \bar{r}_{1}
\end{gathered}
$$

Equivalence Classes

$N \times K$ 4-phase CCMs	Coxson-Russo Algorithm	Total Number of Equivalence Classes	Hadamard Representations
2×4	36	2	2
3×4	95	5	5
4×4	231	24	17
5×4	5246	133	0
6×4	23448	1448	0

Equivalence Classes

$N \times K$ 4-phase CCMs	Coxson-Russo Algorithm	Total Number of Equivalence Classes	Hadamard Representations
2×4	36	2	2
3×4	95	5	5
4×4	231	24	17
5×4	5246	133	0
6×4	23448	1448	0

Exhaustive 4×4 4-phase CCM ≈ 4.3 million

4×4 Equivalence Class Representations

1. $[[1,1,1,1],[1,1,1,1],[1,1,-1,-1],[-1,-1,1,1]]$
2. $[[1,1,1,1],[1,1,1, i],[-1,-1,-i, 1],[1,-1,1,-1]]$
3. $[[1,1,1,1],[1,1, i, i],[1,-1, i,-i],[-1,1,1,-1]]$
4. $[[1,1,1,1],[1,1, i, i],[i,-i, 1,-1],[1,-1,-1,1]]$
5. $[[1,1,1,1],[1,1,-1,-1],[1,-1,1,-1],[1,-1,-1,1]]$
6. $[[1,1,1,1],[1, i, i,-1],[-1, i, i, 1],[-1,1,1,-1]]$
7. $[[1,1,1,1],[1,1,1,1],[1, i,-1,-i],[-1,-i, 1, i]]$
8. $[[1,1,1,1],[1,1, i, i],[1,-1,1,-1],[-1,1,-i, i]]$
9. $[[1,1,1,1],[1,1, i, i],[i,-1,1,-i],[1,-1,-i, i]]$
10. $[[1,1,1,1],[1,1, i, i],[-1,-1,1,1],[1,-1, i,-i]]$
11. $[[1,1,1,1],[1,1, i, i],[i,-i, i,-i],[1,-1,-i, i]]$
12. $[[1,1,1,1],[1,1,-1,-1],[1,-1, i,-i],[1,-1,-i, i]]$

4×4 Equivalence Class Representations Continued

13. $[[1,1,1,1],[1,1, i,-1],[1,-i,-1,1],[i,-1,1,-i]]$
14.

$[[1,1,1,1],[1,1, i,-1],[1,-i,-i, i],[i,-1,1,-i]]$
15. $[[1,1,1,1],[1,1,1, i],[i,-1,-i,-i],[-i, i, 1,-1]]$
16. $[[1,1,1,1],[1,1,1, i],[-1,-1,-i, 1],[i,-i, 1,-1]]$
17. $[[1,1,1,1],[1,1, i,-1],[i,-1,1,-1],[1,-i,-1, i]]$
18. $[[1,1,1,1],[1,1, i, i],[i,-i, i,-i],[-i, i, 1,-1]]$
19. $[[1,1,1,1],[1,1,1,1],[i, i,-i,-i],[-i,-i, i, i]]$
20. $[[1,1,1,1],[1,1,-1,-1],[i,-i, i,-i],[i,-i,-i, i]]$
21. $[[1,1,1,1],[1, i, i,-1],[-i,-1,-1, i],[-i, i, i,-i]]$
22. $[[1,1,1,1],[1, i,-1,-i],[-i, i,-i, i],[-i,-1, i, 1]]$
23. $[[1,1,1,1],[1, i,-1,-i],[-1,1,-1,1],[-1, i, 1,-i]]$
24. $[[1,1,1,1],[1, i,-1,-i],[1,-1,1,-1],[1,-i,-1, i]]$

Kronecker Product

Let A and B be $2 \times 2 p$-phase CCMs.

$$
\begin{gathered}
\left(\begin{array}{ll}
a_{1,1} & a_{1,2} \\
a_{2,1} & a_{2,2}
\end{array}\right) \oplus\left(\begin{array}{ll}
b_{1,1} & b_{1,2} \\
b_{2,1} & b_{2,2}
\end{array}\right)= \\
\left(\begin{array}{llll}
a_{1,1} b_{1,1} & a_{1,1} b_{1,2} & a_{1,2} b_{1,1} & a_{1,2} b_{1,2} \\
a_{1,1} b_{2,1} & a_{1,1} b_{2,2} & a_{1,2} b_{2,1} & a_{1,2} b_{2,2} \\
a_{2,1} b_{1,1} & a_{2,1} b_{1,2} & a_{2,2} b_{1,1} & a_{2,2} b_{1} 1,2 \\
a_{2,1} b_{2,1} & a_{2,1} b_{2,2} & a_{2,2} b_{2,1} & a_{2,2} b_{2,2}
\end{array}\right)
\end{gathered}
$$

Concatentation Theorem

Let A and B be 4×2-phase CCMs.

$$
\left[\left(\begin{array}{ll}
a_{1,1} & a_{1,2} \\
a_{2,1} & a_{2,2} \\
a_{3,1} & a_{3,2} \\
a_{4,1} & a_{4,2}
\end{array}\right),\left(\begin{array}{ll}
b_{1,1} & b_{1,2} \\
b_{2,1} & b_{2,2} \\
b_{3,1} & b_{3,2} \\
b_{4,1} & b_{4,2}
\end{array}\right)\right]=\left(\begin{array}{llll}
a_{1,1} & a_{1,2} & b_{1,1} & b_{1,2} \\
a_{2,1} & a_{2,2} & b_{2,1} & b_{2,2} \\
a_{3,1} & a_{3,2} & b_{3,1} & b_{3,2} \\
a_{4,1} & a_{4,2} & b_{4,1} & b_{4,2}
\end{array}\right)
$$

Dual Pair Theorem

$$
M=\left(\begin{array}{cccc}
-1 & -1 & -i & -i \\
-i & -i & i & i \\
i & -i & -1 & 1 \\
i & -i & i & -i
\end{array}\right)
$$

Dual Pair Theorem

$$
\begin{gathered}
M=\left(\begin{array}{cccc}
-1 & -1 & -i & -i \\
-i & -i & i & i \\
i & -i & -1 & 1 \\
i & -i & i & -i
\end{array}\right) \\
M=A+i B
\end{gathered}
$$

Dual Pair Theorem

$$
\begin{gathered}
M=\left(\begin{array}{cccc}
-1 & -1 & -i & -i \\
-i & -i & i & i \\
i & -i & -1 & 1 \\
i & -i & i & -i
\end{array}\right) \\
M=A+i B \\
A=\left(\begin{array}{cccc}
-1 & -1 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & -1 & 1 \\
0 & 0 & 0 & 0
\end{array}\right), B=\left(\begin{array}{cccc}
0 & 0 & -1 & -1 \\
-1 & -1 & 1 & 1 \\
1 & -1 & 0 & 0 \\
1 & -1 & 1 & -1
\end{array}\right)
\end{gathered}
$$

Dual Pair Theorem

Assume that A and B are $N \times K$ ternary, $\{-1,0,1\}$ "CCMs". Then $Z=A+i B$ is a $N \times K$ quad-phase CCM if (i) $\left|A_{n, k}\right|+\left|B_{n, k}\right|=1\{\forall n, k \mid 1 \leq n \leq N$ and $1 \leq k \leq K\}$
(ii) $B A^{*}-B^{*} A$ is diagonally regular

Proof

Prove Z is quad-phase.

Prove $Z Z^{*}$ is Diagonally Regular.

Proof

Prove Z is quad-phase.
Assumed $\left|A_{n, k}\right|+\left|B_{n, k}\right|=1$ which implies $-1,1, i,-i$.
Prove $Z Z^{*}$ is Diagonally Regular.

Proof

Prove Z is quad-phase.
Assumed $\left|A_{n, k}\right|+\left|B_{n, k}\right|=1$ which implies $-1,1, i,-i$.
Prove $Z Z^{*}$ is Diagonally Regular.
$Z=A+i B$ so the following holds true.

$$
\begin{aligned}
Z Z^{*} & =(A+i B)(A+i B)^{*} \\
& =(A+i B)\left(A^{*}-i B^{*}\right) \\
& =A A^{*}+i\left(B A^{*}-B^{*} A\right)+B B^{*}
\end{aligned}
$$

Proof

Prove Z is quad-phase.
Assumed $\left|A_{n, k}\right|+\left|B_{n, k}\right|=1$ which implies $-1,1, i,-i$.
Prove $Z Z^{*}$ is Diagonally Regular.
$Z=A+i B$ so the following holds true.

$$
\begin{aligned}
Z Z^{*} & =(A+i B)(A+i B)^{*} \\
& =(A+i B)\left(A^{*}-i B^{*}\right) \\
& =A A^{*}+i\left(B A^{*}-B^{*} A\right)+B B^{*}
\end{aligned}
$$

QED!

Constructing the Equivalency Classes

4-phase CCMs	Equivalence Classes	Kronecker Product	Concatentation Theorem	CCM Dual Pair
2×4	2	n/a	2	2
3×4	5	n/a	1	5
4×4	24	2	6	22
5×4	133	n / a	3	94
6×4	1448	2	27	471

For More Information...

- CCM Website: elvis.rowan.edu/datamining/ccm/
- Equivlency Class Links: elvis.rowan.edu/datamining/ccm/equivalence/
- Our Paper: arxiv.org/abs/1506.00011
- My email: brookelogan974@gmail.com

Thank You!

References I

\otimes G. Coxson and W. Haloupek
Construction of Complementary Code Matrices for Waveform Design.
Aerospace and Electronic Systems, IEEE Transactions on (Volume:49, Issue: 3) November 25, 2012.
© G. Coxson and J. Russo
Efficient Exhaustive Search for Binary Complementary Code Sets.
Information Sciences and Systems (CISS), 2013 47th Annual Conference on 20-22 March 2013

References II

R. Gibson

Quaternary Golay Sequence Pairs Master's Thesis. Simon Fraser University (Fall 2008).
\& G. Coxson, B. Logan, H. Nguyen
Row-Correlation Function: A New Approach to
Complementary Code Matrices,
Proceedings of 52nd Annual Allerton Conference on
Communication, Control, and Computing (2014), 1358-1361.
B. Logan and H. Nguyen

Group Symmetries of Complementary Code Matrices, CoRR 2015

