

Group Symmetries of Complementary Code Matrices

Brooke Logan

Mathematics Department Rowan University, New Jersey

Combinatorics and Computer Algebra- CoCoA 2015 Colorado State University Fort Collins, Colorado July 21, 2015

This work was done in collaboration with Professor Hieu D. Nguyen at Rowan University.

And the topic was inspired by Greg Coxson

Figure: JMM 2014 Undergraduate Poster Session

Brooke Logan

July 21, 2015

Group Symmetries of Complementary Code Matrices

Known Symmetries Searching for $N \times 4$ CCMs Using the symmetries Construction Methods Conclusion

Barker Codes and Golay Pairs

Barker Codes and Golay Pairs

• When a radar signal is sent out the returned signal is compared to it by computing the aperiodic auto correlation function, *A*, as follows:

$$A_{x}(j) = \begin{cases} \sum_{i=1}^{N-j} a_{i}\bar{a}_{i+j}, & \text{if } 0 \le j \le N-1; \\ \frac{1}{A_{x}(-j)}, & \text{if } -N+1 \le j < 0. \end{cases}$$
(1)

Known Symmetries Searching for $N \times 4$ CCMs Using the symmetries Construction Methods Conclusion

Definition

A Barker Code, x, is a code of length N consisting of ± 1 such that $A_x(0) = N$ and $|A_x(j)| \le 1$ for all others.

l'i Ouran

Introduction Known Symmetries

Searching for $N \times 4$ CCMs Using the symmetries Construction Methods Conclusion

Barker Codes

Definition

A Barker Code, x, is a code of length N consisting of ± 1 such that $A_x(0) = N$ and $|A_x(j)| \le 1$ for all others.

Definition

The Barker Conjecture states that there exists no Barker Sequences of length N > 13 and has been proven in the case of all odd N values.

Conclusion

Barker Codes

Definition

A Barker Code, x, is a code of length N consisting of ± 1 such that $A_x(0) = N$ and $|A_x(j)| \le 1$ for all others.

Definition

The Barker Conjecture states that there exists no Barker Sequences of length N > 13 and has been proven in the case of all odd N values.

Note: The even case has been proven up to $N = 4 \times 19804830012264298738041^2$

Example of a Binary Code

Example of a Binary Code

•
$$A_x(0) = \sum_{i=1}^N x_i x_i^c = (1 \cdot 1) + (1 \cdot 1) + (1 \cdot 1) + (-1 \cdot -1) = 4$$

Example of a Binary Code

•
$$A_x(0) = \sum_{i=1}^{N} x_i x_i^c = (1 \cdot 1) + (1 \cdot 1) + (1 \cdot 1) + (-1 \cdot -1) = 4$$

• $A_x(1) = \bar{A}_x(-1) = \sum_{i=1}^{N-1} x_i x_{i+1}^c = (1 \cdot 1) + (1 \cdot 1) + (1 \cdot -1) = 1$

Example of a Binary Code

•
$$A_x(0) = \sum_{i=1}^{N} x_i x_i^c = (1 \cdot 1) + (1 \cdot 1) + (1 \cdot 1) + (-1 \cdot -1) = 4$$

• $A_x(1) = \bar{A}_x(-1) = \sum_{i=1}^{N-1} x_i x_{i+1}^c = (1 \cdot 1) + (1 \cdot 1) + (1 \cdot -1) = 1$
• $A_x(2) = \bar{A}_x(-2) = \sum_{i=1}^{N-2} x_i x_{i+2}^c = (1 \cdot 1) + (1 \cdot -1) = 0$
• $A_x(3) = \bar{A}_x(-3) = \sum_{i=1}^{N-3} x_i x_{i+3}^c = (1 \cdot -1) = -1$

Example of a Binary Code

Example of a Binary Code

 $y = \{1, 1, -1, 1\}$ with $A_y = \{1, 0, -1, 4, -1, 0, 1\}$

Example of a Binary Code

Example of a Pair of Codes

Composite autocorrelation for pair of codes $x = \{1, 1, 1, -1\}$ and $y = \{1, 1, -1, 1\}$:

Example of a Pair of Codes

Composite autocorrelation for pair of codes $x = \{1, 1, 1, -1\}$ and $y = \{1, 1, -1, 1\}$:

- $A_x + A_y$
- $\{-1, 0, 1, 4, 1, 0, -1\} + \{1, 0, -1, 4, -1, 0, 1\}$

Example of a Pair of Codes

Composite autocorrelation for pair of codes $x = \{1, 1, 1, -1\}$ and $y = \{1, 1, -1, 1\}$:

•
$$A_x + A_y$$

• $\{-1, 0, 1, 4, 1, 0, -1\} + \{1, 0, -1, 4, -1, 0, 1\}$
 $\{0, 0, 0, 8, 0, 0, 0\}$

This is called a Golay Pair.

Known Symmetries Searching for $N \times 4$ CCMs Using the symmetries Construction Methods Conclusion

Graph of A_x , A_y and $A_x + A_y$

Complementary Code Matrices

Definition

A complementary code matrix (or CCM) is a $N \times K$ matrix M whose row Gramian, $B = M \cdot M^*$, is diagonally regular with diagonal entries equal to K. Here, * represents the conjugate transpose.

Complementary Code Matrices

Definition

A complementary code matrix (or CCM) is a $N \times K$ matrix M whose row Gramian, $B = M \cdot M^*$, is diagonally regular with diagonal entries equal to K. Here, * represents the conjugate transpose.

p-phase: exp
$$\left(\frac{2\pi i}{p} + \frac{2k\pi i}{p}\right)$$
 with $k = 0, \dots, p-1$

We define the set of $N \times K$ *p*-phase CCMs as $C_{N,K}(p)$.

Known Symmetries Searching for $N \times 4$ CCMs Using the symmetries Construction Methods Conclusion

$$\left(egin{array}{ccccc} 1 & 1 & 1 & 1 & 1 \ 1 & 1 & i & -i \ -1 & -1 & i & -i \ 1 & 1 & -1 & -1 \end{array}
ight)$$

Known Symmetries Searching for $N \times 4$ CCMs Using the symmetries Construction Methods Conclusion

Example

Known Symmetries Searching for $N \times 4$ CCMs Using the symmetries Construction Methods Conclusion

Example

Our Research

- Described relations between symmetries of Complmentary
 Code Matrices
- Adapted an existing algorithm to speed up search for CCMs
- Classified the matrices into different equivalence classes
- Created a new construction method

Coxson-Haloupek [1]

Suppose that M is an $N \times K$ CCM. Then we can obtain an equivalent $N \times K$ CCM using the following transformations.

- (i) Column multiplication by a unimodular complex number.
- (ii) Column conjugate reversal.
- (iii) Matrix conjugation.
- (iv) Progressive multiplication by consecutive powers of a unimodular complex number.
- (v) Column permutation.

l: Constant

Example

Example

$$\begin{pmatrix} -i & -i & 1 & 1\\ -i & -i & -1 & -1\\ -1 & 1 & -i & i\\ -1 & 1 & i & -i \end{pmatrix} \xrightarrow{Q(i)}$$

Example

$\begin{pmatrix} -i & -i & 1 & 1 \\ -i & -i & -1 & -1 \\ -1 & 1 & -i & i \\ -1 & 1 & i & -i \end{pmatrix} \xrightarrow{Q(i)} \begin{pmatrix} 1 & 1 & i & i \\ i & i & 1 & 1 \\ i & -i & -1 & 1 \\ -1 & 1 & i & -i \end{pmatrix}$

Example

Example

$$U = \{\alpha_1, \alpha_2, \dots, \alpha_K\}$$
$$T = \{t_1, t_2, \dots, t_K\} \text{ where } t = 0, 1$$

$$U = \{\alpha_1, \alpha_2, \dots, \alpha_K\}$$
$$T = \{t_1, t_2, \dots, t_K\} \text{ where } t = 0, 1$$

$$C_U \rho_T M = C_U \rho_T [x_1, x_2, \dots, x_K]$$

$$U = \{\alpha_1, \alpha_2, \dots, \alpha_K\}$$
$$T = \{t_1, t_2, \dots, t_K\} \text{ where } t = 0, 1$$

2

$$C_U \rho_T M = C_U \rho_T [x_1, x_2, \dots, x_K]$$

= $C_U [\omega^{2-t_1}(x_1), \omega^{2-t_2}(x_2), \dots, \omega^{2-t_K}(x_K)]$

$$U = \{\alpha_1, \alpha_2, \dots, \alpha_K\}$$
$$T = \{t_1, t_2, \dots, t_K\} \text{ where } t = 0, 1$$

2

$$C_U \rho_T M = C_U \rho_T [x_1, x_2, \dots, x_K]$$

= $C_U [\omega^{2-t_1}(x_1), \omega^{2-t_2}(x_2), \dots, \omega^{2-t_K}(x_K)]$
= $[\alpha_1 \omega^{2-t_1}(x_1), \alpha_2 \omega^{2-t_2}(x_2), \dots, \alpha_K \omega^{2-t_K}(x_K)]$

$$U = \{ lpha_1, lpha_2, \dots, lpha_K \}$$

 $T = \{ t_1, t_2, \dots, t_K \}$ where $t = 0, 1$

$$C_{U}\rho_{T}M = C_{U}\rho_{T}[x_{1}, x_{2}, \dots, x_{K}]$$

= $C_{U}[\omega^{2-t_{1}}(x_{1}), \omega^{2-t_{2}}(x_{2}), \dots, \omega^{2-t_{K}}(x_{K})]$
= $[\alpha_{1}\omega^{2-t_{1}}(x_{1}), \alpha_{2}\omega^{2-t_{2}}(x_{2}), \dots, \alpha_{K}\omega^{2-t_{K}}(x_{K})]$
= $\rho_{T}[\omega^{2-t_{1}}(\alpha_{1})x_{1}, \omega^{2-t_{2}}(\alpha_{2})x_{2}, \dots, \omega^{2-t_{K}}(\alpha_{K})x_{K}]$

Liouan

$$U = \{ lpha_1, lpha_2, \dots, lpha_K \}$$

 $T = \{ t_1, t_2, \dots, t_K \}$ where $t = 0, 1$

$$C_{U}\rho_{T}M = C_{U}\rho_{T}[x_{1}, x_{2}, \dots, x_{K}]$$

= $C_{U}[\omega^{2-t_{1}}(x_{1}), \omega^{2-t_{2}}(x_{2}), \dots, \omega^{2-t_{K}}(x_{K})]$
= $[\alpha_{1}\omega^{2-t_{1}}(x_{1}), \alpha_{2}\omega^{2-t_{2}}(x_{2}), \dots, \alpha_{K}\omega^{2-t_{K}}(x_{K})]$
= $\rho_{T}[\omega^{2-t_{1}}(\alpha_{1})x_{1}, \omega^{2-t_{2}}(\alpha_{2})x_{2}, \dots, \omega^{2-t_{K}}(\alpha_{K})x_{K}]$
= $\rho_{T}C_{U_{T}}[x_{1}, x_{2}, x_{3}, \dots, x_{K}]$

Liouan

$$U = \{ lpha_1, lpha_2, \dots, lpha_K \}$$

 $T = \{ t_1, t_2, \dots, t_K \}$ where $t = 0, 1$

$$C_{U}\rho_{T}M = C_{U}\rho_{T}[x_{1}, x_{2}, \dots, x_{K}]$$

= $C_{U}[\omega^{2-t_{1}}(x_{1}), \omega^{2-t_{2}}(x_{2}), \dots, \omega^{2-t_{K}}(x_{K})]$
= $[\alpha_{1}\omega^{2-t_{1}}(x_{1}), \alpha_{2}\omega^{2-t_{2}}(x_{2}), \dots, \alpha_{K}\omega^{2-t_{K}}(x_{K})]$
= $\rho_{T}[\omega^{2-t_{1}}(\alpha_{1})x_{1}, \omega^{2-t_{2}}(\alpha_{2})x_{2}, \dots, \omega^{2-t_{K}}(\alpha_{K})x_{K}]$
= $\rho_{T}C_{U_{T}}[x_{1}, x_{2}, x_{3}, \dots, x_{K}]$
= $\rho_{T}C_{U_{T}}M$

Liouan

Definition

The **complementary group**, *G*, of the set of all $N \times K$ *p*-phase CCMs is defined to be the group generated by the symmetries $S, P, C_U, \rho_T, Q(\beta)$ and their relations given in the following lemma.

Lemma

Let M be a $N \times K$ p-phase CCM, $M = [x_1, x_2, x_3, \dots, x_K]$ and $x_k = [m_{1,k}, m_{2,k}, m_{3,k}, \dots, m_{N,k}]^T$. Then (i) $C_{II}\rho_T M = \rho_T C_{IIT} M$ (ii) $C_{II}SM = SC_{\bar{II}}M$ (iii) $C_U Q(\beta) M = Q(\beta) C_U M$ (iv) $C_U PM = PC_{U_P}M$ (v) $\rho_T SM = S\rho_T M$ (vi) $\rho_T PM = P \rho_{T_{p-1}} M$ (vii) $SQ(\beta)M = Q(\overline{\beta})SM$ (viii) SPM = PSM(ix) $Q(\beta)\rho_T M = C_{U_T\beta}\rho_T Q_\beta M$ (x) $Q(\beta)PM = PQ(\beta)M$

Theorem

The cardinality of the complementary group G of $C_{N,K}(p)$ is bounded by

$$|G| \le 2^{K+1} p^{K+1} K! \tag{2}$$

Proof

Each CCM preserving operation on the matrix M can be represented in the following form.

 $SPC_u \rho_T Q(\beta)$

Proof

Each CCM preserving operation on the matrix M can be represented in the following form.

 $SPC_u \rho_T Q(\beta)$

$$\begin{split} |S| &= 2\\ |P| &= K!\\ |C_U| &= p^K\\ |\rho_T| &= 2^K\\ |Q(\beta)| &= p\\ \text{So this will will produce a max of} \end{split}$$

$$|G| \le |S||P||C_U||\rho_T||Q(\beta)| = 2K!p^K 2^K p = 2^{K+1}p^{K+1}K!$$

CCMs from *M*.

Brooke Logan

$$M = \begin{pmatrix} m_{1,1} & m_{1,2} & m_{1,3} & m_{1,4} \\ m_{2,1} & m_{2,2} & m_{2,3} & m_{2,4} \\ m_{3,1} & m_{3,2} & m_{3,3} & m_{3,4} \\ m_{4,1} & m_{4,2} & m_{4,3} & m_{4,4} \end{pmatrix}$$

$$M = \begin{pmatrix} m_{1,1} & m_{1,2} & m_{1,3} & m_{1,4} \\ m_{2,1} & m_{2,2} & m_{2,3} & m_{2,4} \\ m_{3,1} & m_{3,2} & m_{3,3} & m_{3,4} \\ m_{4,1} & m_{4,2} & m_{4,3} & m_{4,4} \end{pmatrix}$$

$$U_1 = (ar{m}_{1,1}, ar{m}_{1,2}, ar{m}_{1,3}, ar{m}_{1,4})$$

$$M = \begin{pmatrix} m_{1,1} & m_{1,2} & m_{1,3} & m_{1,4} \\ m_{2,1} & m_{2,2} & m_{2,3} & m_{2,4} \\ m_{3,1} & m_{3,2} & m_{3,3} & m_{3,4} \\ m_{4,1} & m_{4,2} & m_{4,3} & m_{4,4} \end{pmatrix}$$
$$U_1 = (\bar{m}_{1,1}, \bar{m}_{1,2}, \bar{m}_{1,3}, \bar{m}_{1,4})$$

$$U_2 = (m_{2,1}\bar{m}_{1,1}, m_{2,1}\bar{m}_{1,1}, m_{2,1}\bar{m}_{1,1}, m_{2,1}\bar{m}_{1,1})$$

$$M = \begin{pmatrix} m_{1,1} & m_{1,2} & m_{1,3} & m_{1,4} \\ m_{2,1} & m_{2,2} & m_{2,3} & m_{2,4} \\ m_{3,1} & m_{3,2} & m_{3,3} & m_{3,4} \\ m_{4,1} & m_{4,2} & m_{4,3} & m_{4,4} \end{pmatrix}$$
$$U_1 = (\bar{m}_{1,1}, \bar{m}_{1,2}, \bar{m}_{1,3}, \bar{m}_{1,4})$$
$$U_2 = (m_{2,1}\bar{m}_{1,1}, m_{2,1}\bar{m}_{1,1}, m_{2,1}\bar{m}_{1,1}, m_{2,1}\bar{m}_{1,1})$$

$$\beta = \bar{m}_{2,1}m_{1,1}$$

Applications of the Symmetries

$$M = \begin{pmatrix} m_{1,1} & m_{1,2} & m_{1,3} & m_{1,4} \\ m_{2,1} & m_{2,2} & m_{2,3} & m_{2,4} \\ m_{3,1} & m_{3,2} & m_{3,3} & m_{3,4} \\ m_{4,1} & m_{4,2} & m_{4,3} & m_{4,4} \end{pmatrix}$$
$$U_1 = (\bar{m}_{1,1}, \bar{m}_{1,2}, \bar{m}_{1,3}, \bar{m}_{1,4})$$

$$U_2 = (m_{2,1}\bar{m}_{1,1}, m_{2,1}\bar{m}_{1,1}, m_{2,1}\bar{m}_{1,1}, m_{2,1}\bar{m}_{1,1})$$

$$\beta = \bar{m}_{2,1}m_{1,1}$$

 $Q(\beta)C_{U_2}C_{U_1}M$

$$\left(\begin{array}{c} r_1\\r_2\\r_3\\r_4\end{array}\right)\cdot\left(\begin{array}{ccc} \bar{r}_1&\bar{r}_2&\bar{r}_3&\bar{r}_4\end{array}\right)$$

$$\begin{pmatrix} r_{1} \\ r_{2} \\ r_{3} \\ r_{4} \end{pmatrix} \cdot \begin{pmatrix} \bar{r}_{1} & \bar{r}_{2} & \bar{r}_{3} & \bar{r}_{4} \end{pmatrix} = \begin{pmatrix} r_{1}\bar{r}_{1} & r_{1}\bar{r}_{2} & r_{1}\bar{r}_{3} & r_{1}\bar{r}_{4} \\ r_{2}\bar{r}_{1} & r_{2}\bar{r}_{1} & r_{2}\bar{r}_{1} & r_{2}\bar{r}_{1} \\ r_{3}\bar{r}_{1} & r_{3}\bar{r}_{2} & r_{3}\bar{r}_{3} & r_{3}\bar{r}_{4} \\ r_{4}\bar{r}_{1} & r_{4}\bar{r}_{2} & r_{4}\bar{r}_{3} & r_{4}\bar{r}_{4} \end{pmatrix}$$

Equivalence Classes

$N \times K$	Coxson-Russo	Total Number of	Hadamard
4-phase CCMs	Algorithm	Equivalence Classes	Representations
2×4	36	2	2
3x4	95	5	5
4×4	231	24	17
5×4	5246	133	0
6×4	23448	1448	0

Equivalence Classes

N imes K	Coxson-Russo	Total Number of	Hadamard
4-phase CCMs	Algorithm	Equivalence Classes	Representations
2×4	36	2	2
3×4	95	5	5
4×4	231	24	17
5×4	5246	133	0
6×4	23448	1448	0

Exhaustive 4 \times 4 4-phase CCM \approx 4.3 million

4×4 Equivalence Class Representations

4×4 Equivalence Class Representations Continued

13.	[[1, 1, 1, 1], [1, 1, i, -1], [1, -i, -1, 1], [i, -1, 1, -i]]
14.	[[1, 1, 1, 1], [1, 1, i, -1], [1, -i, -i, i], [i, -1, 1, -i]]
15.	[[1, 1, 1, 1], [1, 1, 1, i], [i, -1, -i, -i], [-i, i, 1, -1]]
16.	[[1, 1, 1, 1], [1, 1, 1, i], [-1, -1, -i, 1], [i, -i, 1, -1]]
17.	[[1, 1, 1, 1], [1, 1, i, -1], [i, -1, 1, -1], [1, -i, -1, i]]
18.	[[1, 1, 1, 1], [1, 1, i, i], [i, -i, i, -i], [-i, i, 1, -1]]
19.	[[1, 1, 1, 1], [1, 1, 1, 1], [i, i, -i, -i], [-i, -i, i, i]]
20.	[[1, 1, 1, 1], [1, 1, -1, -1], [i, -i, i, -i], [i, -i, -i, i]]
21.	[[1, 1, 1, 1], [1, i, i, -1], [-i, -1, -1, i], [-i, i, i, -i]]
22.	[[1, 1, 1, 1], [1, i, -1, -i], [-i, i, -i, i], [-i, -1, i, 1]]
23.	[[1, 1, 1, 1], [1, i, -1, -i], [-1, 1, -1, 1], [-1, i, 1, -i]
24.	[[1, 1, 1, 1], [1, i, -1, -i], [1, -1, 1, -1], [1, -i, -1, i]

Kronecker Product

Let A and B be 2×2 p-phase CCMs.

$$\begin{pmatrix} a_{1,1} & a_{1,2} \\ a_{2,1} & a_{2,2} \end{pmatrix} \oplus \begin{pmatrix} b_{1,1} & b_{1,2} \\ b_{2,1} & b_{2,2} \end{pmatrix} = \begin{pmatrix} a_{1,1}b_{1,1} & a_{1,1}b_{1,2} & a_{1,2}b_{1,1} & a_{1,2}b_{1,2} \\ a_{1,1}b_{2,1} & a_{1,1}b_{2,2} & a_{1,2}b_{2,1} & a_{1,2}b_{2,2} \\ a_{2,1}b_{1,1} & a_{2,1}b_{1,2} & a_{2,2}b_{1,1} & a_{2,2}b_{1,1}, 2 \\ a_{2,1}b_{2,1} & a_{2,1}b_{2,2} & a_{2,2}b_{2,1} & a_{2,2}b_{2,2} \end{pmatrix}$$

Concatentation Theorem

Let A and B be 4×2 p-phase CCMs.

$$\begin{bmatrix} \begin{pmatrix} a_{1,1} & a_{1,2} \\ a_{2,1} & a_{2,2} \\ a_{3,1} & a_{3,2} \\ a_{4,1} & a_{4,2} \end{pmatrix}, \begin{pmatrix} b_{1,1} & b_{1,2} \\ b_{2,1} & b_{2,2} \\ b_{3,1} & b_{3,2} \\ b_{4,1} & b_{4,2} \end{pmatrix} \end{bmatrix} = \begin{pmatrix} a_{1,1} & a_{1,2} & b_{1,1} & b_{1,2} \\ a_{2,1} & a_{2,2} & b_{2,1} & b_{2,2} \\ a_{3,1} & a_{3,2} & b_{3,1} & b_{3,2} \\ a_{4,1} & a_{4,2} & b_{4,1} & b_{4,2} \end{pmatrix}$$

Dual Pair Theorem

Dual Pair Theorem

Dual Pair Theorem

Dual Pair Theorem

Assume that A and B are $N \times K$ ternary, $\{-1, 0, 1\}$ "CCMs". Then Z = A + iB is a $N \times K$ quad-phase CCM if (i) $|A_{n,k}| + |B_{n,k}| = 1$ { $\forall n, k | 1 \le n \le N$ and $1 \le k \le K$ } (ii) $BA^* - B^*A$ is diagonally regular

Prove Z is quad-phase.

Prove ZZ* is Diagonally Regular.

Proof

Prove Z is quad-phase. Assumed $|A_{n,k}| + |B_{n,k}| = 1$ which implies -1, 1, i, -i.

Prove ZZ* is Diagonally Regular.

Proof

Prove Z is quad-phase. Assumed $|A_{n,k}| + |B_{n,k}| = 1$ which implies -1, 1, i, -i.

Prove ZZ^* is Diagonally Regular. Z = A+iB so the following holds true.

$$ZZ^* = (A + iB)(A + iB)^*$$

= (A + iB)(A^* - iB^*)
= AA^* + i(BA^* - B^*A) + BB^*
Introduction Known Symmetries Searching for N × 4 CCMs Using the symmetries Construction Methods Conclusion

Proof

Prove Z is quad-phase. Assumed $|A_{n,k}| + |B_{n,k}| = 1$ which implies -1, 1, i, -i.

Prove ZZ^* is Diagonally Regular. Z = A+iB so the following holds true.

$$ZZ^* = (A + iB)(A + iB)^*$$

= (A + iB)(A* - iB*)
= AA* + i(BA* - B*A) + BB*

QED!

Introduction Known Symmetries Searching for N × 4 CCMs Using the symmetries Construction Methods Conclusion

Constructing the Equivalency Classes

	Equivalence	Kronecker	Concatentation	ССМ
4-phase CCMs	Classes	Product	Theorem	Dual Pair
2×4	2	n/a	2	2
3×4	5	n/a	1	5
4×4	24	2	6	22
5×4	133	n/a	3	94
6×4	1448	2	27	471

Introduction Known Symmetries Searching for N × 4 CCMs Using the symmetries Construction Methods Conclusion

For More Information...

- CCM Website: elvis.rowan.edu/datamining/ccm/
- Equivlency Class Links: elvis.rowan.edu/datamining/ccm/equivalence/
- Our Paper: arxiv.org/abs/1506.00011
- My email: brookelogan974@gmail.com

Thank You!

Introduction Known Symmetries Searching for $N \times 4$ CCMs Using the symmetries Construction Methods Conclusion

References I

📎 G. Coxson and W. Haloupek

Construction of Complementary Code Matrices for Waveform Design.

Aerospace and Electronic Systems, IEEE Transactions on (Volume:49, Issue: 3) November 25, 2012.

🔈 G. Coxson and J. Russo

Efficient Exhaustive Search for Binary Complementary Code Sets.

Information Sciences and Systems (CISS), 2013 47th Annual Conference on 20-22 March 2013

Introduction Known Symmetries Searching for $N \times 4$ CCMs Using the symmetries Construction Methods Conclusion

References II

📡 R. Gibson

Quaternary Golay Sequence Pairs Master's Thesis. Simon Fraser University (Fall 2008).

- 📎 G. Coxson, B. Logan, H. Nguyen Row-Correlation Function: A New Approach to Complementary Code Matrices, Proceedings of 52nd Annual Allerton Conference on Communication, Control, and Computing (2014), 1358-1361.
- 📎 B. Logan and H. Nguyen Group Symmetries of Complementary Code Matrices, CoRR 2015