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And the topic was inspired by Greg Coxson

Figure: JMM 2014 Undergraduate Poster Session
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Barker Codes and Golay Pairs

• When a radar signal is sent out the returned signal is
compared to it by computing the aperiodic auto correlation
function, A, as follows:

A
x

(j) =

8
><

>:

N�jP
i=1

a

i

ā

i+j

, if 0  j  N � 1;

A
x

(�j), if � N + 1  j < 0.

(1)
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Barker Codes

Definition
A Barker Code, x , is a code of length N consisting of ±1 such that
A

x

(0) = N and |A
x

(j)|  1 for all others.

Definition
The Barker Conjecture states that there exists no Barker
Sequences of length N > 13 and has been proven in the case of all
odd N values.

Note: The even case has been proven up to
N = 4⇥ 198048300122642987380412

Brooke Logan July 21, 2015 Group Symmetries of Complementary Code Matrices



Introduction

Known Symmetries

Searching for N ⇥ 4 CCMs

Using the symmetries

Construction Methods

Conclusion

Barker Codes

Definition
A Barker Code, x , is a code of length N consisting of ±1 such that
A

x

(0) = N and |A
x

(j)|  1 for all others.

Definition
The Barker Conjecture states that there exists no Barker
Sequences of length N > 13 and has been proven in the case of all
odd N values.

Note: The even case has been proven up to
N = 4⇥ 198048300122642987380412

Brooke Logan July 21, 2015 Group Symmetries of Complementary Code Matrices



Introduction

Known Symmetries

Searching for N ⇥ 4 CCMs

Using the symmetries

Construction Methods

Conclusion

Barker Codes

Definition
A Barker Code, x , is a code of length N consisting of ±1 such that
A

x

(0) = N and |A
x

(j)|  1 for all others.

Definition
The Barker Conjecture states that there exists no Barker
Sequences of length N > 13 and has been proven in the case of all
odd N values.

Note: The even case has been proven up to
N = 4⇥ 198048300122642987380412

Brooke Logan July 21, 2015 Group Symmetries of Complementary Code Matrices



Introduction

Known Symmetries

Searching for N ⇥ 4 CCMs

Using the symmetries

Construction Methods

Conclusion

Example of a Binary Code

The autocorrelation function for a single code, x = {1, 1, 1,�1} of
length N = 4, can be computed as follows:

•
A

x

(0) =
NP
i=1

x

i

x

c

i

= (1 · 1) + (1 · 1) + (1 · 1) + (�1 ·�1) = 4

•
A

x

(1) = Ā

x

(�1) =
N�1P
i=1

x

i

x

c

i+1

= (1 · 1) + (1 · 1) + (1 ·�1) = 1

•
A

x

(2) = Ā

x

(�2) =
N�2P
i=1

x

i

x

c

i+2

= (1 · 1) + (1 ·�1) = 0

•
A

x

(3) = Ā

x

(�3) =
N�3P
i=1

x

i

x

c

i+3

= (1 ·�1) = �1
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Example of a Binary Code

x = {1, 1, 1,�1} with A

x

= {�1, 0, 1, 4, 1, 0,�1}
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Example of a Binary Code

y = {1, 1,�1, 1} with A

y

= {1, 0,�1, 4,�1, 0, 1}
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Example of a Binary Code

y = {1, 1,�1, 1} with A

y

= {1, 0,�1, 4,�1, 0, 1}

Brooke Logan July 21, 2015 Group Symmetries of Complementary Code Matrices



Introduction

Known Symmetries

Searching for N ⇥ 4 CCMs

Using the symmetries

Construction Methods

Conclusion

Example of a Pair of Codes

Composite autocorrelation for pair of codes x = {1, 1, 1,�1} and
y = {1, 1,�1, 1}:

•
A

x

+ A

y

• {�1, 0, 1, 4, 1, 0,�1}+ {1, 0,�1, 4,�1, 0, 1}

{0, 0, 0, 8, 0, 0, 0}

This is called a Golay Pair.
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Graph of A
x

, A
y

and A
x

+ A
y
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Complementary Code Matrices

Definition

A complementary code matrix (or CCM) is a N ⇥ K matrix M

whose row Gramian, B = M ·M⇤, is diagonally regular with
diagonal entries equal to K . Here, * represents the conjugate
transpose.

p-phase: exp
⇣
2⇡i
p

+ 2k⇡i
p

⌘
with k = 0, . . . , p � 1

We define the set of N ⇥ K p-phase CCMs as C
N,K (p).
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Example

0

BB@

1 1 1 1
1 1 i �i

�1 �1 i �i

1 1 �1 �1

1

CCA

·

0

BB@

1 1 �1 1
1 1 �1 1
1 �i �i �1
1 i i �1

1

CCA =

0

BB@

4 2 �2 0
2 4 0 2
�2 0 4 �2
0 2 �2 4

1

CCA
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Our Research

• Described relations between symmetries of Complmentary
Code Matrices

• Adapted an existing algorithm to speed up search for CCMs

• Classified the matrices into di↵erent equivalence classes

• Created a new construction method
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Symmetries

Coxson-Haloupek [1]

Suppose that M is an N ⇥ K CCM. Then we can obtain an
equivalent N ⇥ K CCM using the following transformations.

(i) Column multiplication by a unimodular complex number.

(ii) Column conjugate reversal.

(iii) Matrix conjugation.

(iv) Progressive multiplication by consecutive powers of a
unimodular complex number.

(v) Column permutation.
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Definition
The complementary group, G , of the set of all N ⇥ K p-phase
CCMs is defined to be the group generated by the symmetries
S ,P ,C

U

, ⇢
T

,Q(�) and their relations given in the following lemma.
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Lemma

Let M be a N ⇥ K p-phase CCM, M = [x
1

, x
2

, x
3

, . . . , x
K

] and
x

k

= [m
1,k ,m2,k ,m3,k , . . . ,mN,k ]T . Then

(i) C

U

⇢
T

M = ⇢
T

C

U

T

M

(ii) C

U

SM = SC

¯

U

M

(iii) C

U

Q(�)M = Q(�)C
U

M

(iv) C

U

PM = PC

U

P

M

(v) ⇢
T

SM = S⇢
T

M

(vi) ⇢
T

PM = P⇢
T

P

�1

M

(vii) SQ(�)M = Q(�̄)SM

(viii) SPM = PSM

(ix) Q(�)⇢
T

M = C

U

T ,�
⇢
T

Q�M

(x) Q(�)PM = PQ(�)M
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Theorem

The cardinality of the complementary group G of C
N,K (p) is

bounded by
|G |  2K+1

p

K+1

K ! (2)
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Proof

Each CCM preserving operation on the matrix M can be
represented in the following form.

SPC

u

⇢
T

Q(�)

|S | = 2
|P | = K !
|C

U

| = p

K

|⇢
T

| = 2K

|Q(�)| = p

So this will will produce a max of

|G |  |S ||P ||C
U

||⇢
T

||Q(�)| = 2K !pK2Kp = 2K+1

p

K+1

K !

CCMs from M.
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Applications of the Symmetries
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m
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CCA
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= (m̄
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U

2

= (m
2,1m̄1,1,m2,1m̄1,1,m2,1m̄1,1,m2,1m̄1,1)

� = m̄

2,1m1,1

Q(�)C
U

2

C

U

1

M
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Equivalence Classes

N ⇥ K Coxson-Russo Total Number of Hadamard
4-phase CCMs Algorithm Equivalence Classes Representations

2x4 36 2 2
3x4 95 5 5
4x4 231 24 17
5x4 5246 133 0
6x4 23448 1448 0
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Equivalence Classes

N ⇥ K Coxson-Russo Total Number of Hadamard
4-phase CCMs Algorithm Equivalence Classes Representations

2x4 36 2 2
3x4 95 5 5
4x4 231 24 17
5x4 5246 133 0
6x4 23448 1448 0

Exhaustive 4⇥ 4 4-phase CCM ⇡ 4.3 million
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4⇥ 4 Equivalence Class Representations

1. [[1, 1, 1, 1], [1, 1, 1, 1], [1, 1,�1,�1], [�1,�1, 1, 1]]

2. [[1, 1, 1, 1], [1, 1, 1, i ], [�1,�1,�i , 1], [1,�1, 1,�1]]

3. [[1, 1, 1, 1], [1, 1, i , i ], [1,�1, i ,�i ], [�1, 1, 1,�1]]

4. [[1, 1, 1, 1], [1, 1, i , i ], [i ,�i , 1,�1], [1,�1,�1, 1]]

5. [[1, 1, 1, 1], [1, 1,�1,�1], [1,�1, 1,�1], [1,�1,�1, 1]]

6. [[1, 1, 1, 1], [1, i , i ,�1], [�1, i , i , 1], [�1, 1, 1,�1]]

7. [[1, 1, 1, 1], [1, 1, 1, 1], [1, i ,�1,�i ], [�1,�i , 1, i ]]

8. [[1, 1, 1, 1], [1, 1, i , i ], [1,�1, 1,�1], [�1, 1,�i , i ]]

9. [[1, 1, 1, 1], [1, 1, i , i ], [i ,�1, 1,�i ], [1,�1,�i , i ]]

10. [[1, 1, 1, 1], [1, 1, i , i ], [�1,�1, 1, 1], [1,�1, i ,�i ]]

11. [[1, 1, 1, 1], [1, 1, i , i ], [i ,�i , i ,�i ], [1,�1,�i , i ]]

12. [[1, 1, 1, 1], [1, 1,�1,�1], [1,�1, i ,�i ], [1,�1,�i , i ]]
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4⇥ 4 Equivalence Class Representations Continued

13. [[1, 1, 1, 1], [1, 1, i ,�1], [1,�i ,�1, 1], [i ,�1, 1,�i ]]

14. [[1, 1, 1, 1], [1, 1, i ,�1], [1,�i ,�i , i ], [i ,�1, 1,�i ]]

15. [[1, 1, 1, 1], [1, 1, 1, i ], [i ,�1,�i ,�i ], [�i , i , 1,�1]]

16. [[1, 1, 1, 1], [1, 1, 1, i ], [�1,�1,�i , 1], [i ,�i , 1,�1]]

17. [[1, 1, 1, 1], [1, 1, i ,�1], [i ,�1, 1,�1], [1,�i ,�1, i ]]

18. [[1, 1, 1, 1], [1, 1, i , i ], [i ,�i , i ,�i ], [�i , i , 1,�1]]

19. [[1, 1, 1, 1], [1, 1, 1, 1], [i , i ,�i ,�i ], [�i ,�i , i , i ]]

20. [[1, 1, 1, 1], [1, 1,�1,�1], [i ,�i , i ,�i ], [i ,�i ,�i , i ]]

21. [[1, 1, 1, 1], [1, i , i ,�1], [�i ,�1,�1, i ], [�i , i , i ,�i ]]

22. [[1, 1, 1, 1], [1, i ,�1,�i ], [�i , i ,�i , i ], [�i ,�1, i , 1]]

23. [[1, 1, 1, 1], [1, i ,�1,�i ], [�1, 1,�1, 1], [�1, i , 1,�i ]]

24. [[1, 1, 1, 1], [1, i ,�1,�i ], [1,�1, 1,�1], [1,�i ,�1, i ]]
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Kronecker Product

Let A and B be 2⇥ 2 p-phase CCMs.

✓
a

1,1 a

1,2

a

2,1 a

2,2

◆
�

✓
b

1,1 b

1,2

b

2,1 b

2,2

◆
=

0

BB@

a

1,1b1,1 a

1,1b1,2 a

1,2b1,1 a

1,2b1, 2
a

1,1b2,1 a

1,1b2,2 a

1,2b2,1 a

1,2b2,2

a

2,1b1,1 a

2,1b1,2 a

2,2b1,1 a

2,2b11, 2
a

2,1b2,1 a

2,1b2,2 a

2,2b2,1 a

2,2b2,2

1

CCA
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Concatentation Theorem

Let A and B be 4⇥ 2 p-phase CCMs.
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4,2

1

CCA
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Dual Pair Theorem

M =

0

BB@

�1 �1 �i �i

�i �i i i

i �i �1 1
i �i i �i

1

CCA

M = A+ iB

A =

0

BB@

�1 �1 0 0
0 0 0 0
0 0 �1 1
0 0 0 0

1

CCA ,B =

0

BB@

0 0 �1 �1
�1 �1 1 1
1 �1 0 0
1 �1 1 �1

1

CCA

Brooke Logan July 21, 2015 Group Symmetries of Complementary Code Matrices



Introduction

Known Symmetries

Searching for N ⇥ 4 CCMs

Using the symmetries

Construction Methods

Conclusion

Dual Pair Theorem

M =

0

BB@

�1 �1 �i �i

�i �i i i

i �i �1 1
i �i i �i

1

CCA

M = A+ iB

A =

0

BB@

�1 �1 0 0
0 0 0 0
0 0 �1 1
0 0 0 0

1

CCA ,B =

0

BB@

0 0 �1 �1
�1 �1 1 1
1 �1 0 0
1 �1 1 �1

1

CCA

Brooke Logan July 21, 2015 Group Symmetries of Complementary Code Matrices



Introduction

Known Symmetries

Searching for N ⇥ 4 CCMs

Using the symmetries

Construction Methods

Conclusion

Dual Pair Theorem

M =

0

BB@

�1 �1 �i �i

�i �i i i

i �i �1 1
i �i i �i

1

CCA

M = A+ iB

A =

0

BB@

�1 �1 0 0
0 0 0 0
0 0 �1 1
0 0 0 0

1

CCA ,B =

0

BB@

0 0 �1 �1
�1 �1 1 1
1 �1 0 0
1 �1 1 �1

1

CCA

Brooke Logan July 21, 2015 Group Symmetries of Complementary Code Matrices



Introduction

Known Symmetries

Searching for N ⇥ 4 CCMs

Using the symmetries

Construction Methods

Conclusion

Dual Pair Theorem

Assume that A and B are N ⇥ K ternary, {�1, 0, 1} “CCMs”.
Then Z = A+ iB is a N ⇥ K quad-phase CCM if
(i) | A

n,k | + | B
n,k |= 1 {8n, k |1  n  N and 1  k  K}

(ii) BA⇤ � B

⇤
A is diagonally regular
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Proof

Prove Z is quad-phase.

Assumed | A
n,k | + | B

n,k |= 1 which implies �1, 1, i ,�i .

Prove ZZ⇤
is Diagonally Regular.

Z = A+iB so the following holds true.

ZZ⇤
= (A+ iB)(A+ iB)

⇤

= (A+ iB)(A⇤ � iB⇤
)

= AA⇤
+ i(BA⇤ � B⇤A) + BB⇤

QED!
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Constructing the Equivalency Classes

Equivalence Kronecker Concatentation CCM

4-phase CCMs Classes Product Theorem Dual Pair

2x4 2 n/a 2 2

3x4 5 n/a 1 5

4x4 24 2 6 22

5x4 133 n/a 3 94

6x4 1448 2 27 471
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For More Information...

• CCM Website: elvis.rowan.edu/datamining/ccm/

• Equivlency Class Links:
elvis.rowan.edu/datamining/ccm/equivalence/

• Our Paper: arxiv.org/abs/1506.00011

• My email: brookelogan974@gmail.com
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Thank You!
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