## Algebraically defined graphs and generalized quadrangles

Brian Kronenthal

Department of Mathematics Kutztown University of Pennsylvania

Combinatorics and Computer Algebra 2015 July 22, 2015

For given positive integers k and g, find the minimum number of vertices that can be used to construct a k-regular graph of girth g.

For given positive integers k and g, find the minimum number of vertices that can be used to construct a k-regular graph of girth g.

A graph with this minimal number of vertices is called a (k, g)-cage.

For given positive integers k and g, find the minimum number of vertices that can be used to construct a k-regular graph of girth g.

A graph with this minimal number of vertices is called a (k,g)-cage.

It is impossible to construct a (k, g)-cage using fewer than  $\begin{cases}
1 + k \sum_{i=0}^{\frac{g-3}{2}} (k-1)^i = \frac{k(k-1)^r - 2}{k-2} & \text{if } g = 2r + 1 \\
2 \sum_{i=0}^{\frac{g-2}{2}} (k-1)^i = \frac{2(k-1)^r - 2}{k-2} & \text{if } g = 2r
\end{cases}$ 

vertices.

For given positive integers k and g, find the minimum number of vertices that can be used to construct a k-regular graph of girth g.

A graph with this minimal number of vertices is called a (k,g)-cage.

It is impossible to construct a (k,g)-cage using fewer than  $\begin{cases}
1 + k \sum_{i=0}^{\frac{g-3}{2}} (k-1)^i = \frac{k(k-1)^r - 2}{k-2} & \text{if } g = 2r + 1 \\
2 \sum_{i=0}^{\frac{g-2}{2}} (k-1)^i = \frac{2(k-1)^r - 2}{k-2} & \text{if } g = 2r
\end{cases}$ 

vertices.

This lower bound on the number of vertices is called the **Moore bound**.

For given positive integers k and g, find the minimum number of vertices that can be used to construct a k-regular graph of girth g.

A graph with this minimal number of vertices is called a (k,g)-cage.

It is impossible to construct a (k, g)-cage using fewer than  $\begin{cases}
1 + k \sum_{i=0}^{\frac{g-3}{2}} (k-1)^i = \frac{k(k-1)^r - 2}{k-2} & \text{if } g = 2r + 1 \\
2 \sum_{i=0}^{\frac{g-2}{2}} (k-1)^i = \frac{2(k-1)^r - 2}{k-2} & \text{if } g = 2r
\end{cases}$ 

vertices.

This lower bound on the number of vertices is called the **Moore bound**.

Key idea: It is not always possible to construct a graph that meets the Moore bound.

## When can the Moore Bound (potentially) be achieved?

The ONLY possible parameters and examples:

| k  | g  | Unique $(k,g)$ -cage meeting the  |
|----|----|-----------------------------------|
|    |    | lower bound                       |
| 2  | g  | Cg                                |
| k  | 3  | $K_{k+1}$                         |
| k  | 4  | K <sub>k,k</sub>                  |
| 3  | 5  | Petersen graph                    |
| 7  | 5  | Hoffman-Singleton graph           |
| 57 | 5  | ?????                             |
| k  | 6  | Incidence graphs of generalized   |
|    |    | 3-gons of prime power order $k-1$ |
| k  | 8  | Incidence graphs of generalized   |
|    |    | 4-gons of prime power order $k-1$ |
| k  | 12 | Incidence graphs of generalized   |
|    |    | 6-gons of prime power order $k-1$ |



- A (57, 5)-cage would have 3250 vertices and diameter 2.
- The eigenvalues of such a graph's adjacency matrix 57, 7, and -8 (with multiplicities 1, 1729, and 1520, respectively).
- Properties of the automorphism group of a (57,5)-cage have been studied.

| k  | g  | Unique $(k,g)$ -cage meeting the lower bound |
|----|----|----------------------------------------------|
| 2  | g  | Cg                                           |
| k  | 3  | $K_{k+1}$                                    |
| k  | 4  | $K_{k,k}$                                    |
| 3  | 5  | Petersen graph                               |
| 7  | 5  | Hoffman-Singleton graph                      |
| 57 | 5  | ?????                                        |
| k  | 6  | Incidence graphs of generalized 3-gons of    |
|    |    | prime power order $k-1$                      |
| k  | 8  | Incidence graphs of generalized 4-gons of    |
|    |    | prime power order $k-1$                      |
| k  | 12 | Incidence graphs of generalized 6-gons of    |
|    |    | prime power order $k-1$                      |

## What is a Generalized Quadrangle?

#### Definition

A generalized quadrangle of order q is an incidence structure of  $q^3 + q^2 + q + 1$  points and  $q^3 + q^2 + q + 1$  lines such that...

- Every point lies on q + 1 lines; two distinct points determine at most one line.
- Every line contains q + 1 points; two distinct lines have at most one point in common.
- If P is a point and L is a line such that P is not on L, then there exists a unique line that contains P and intersects L.



## An example: GQ(1)

- Every point lies on two lines; two distinct points determine at most one line.
- Every line contains two points; two distinct lines have at most one point in common.
- If P is a point and L is a line such that P is not on L, then there exists a unique line that contains P and intersects L.

## An example: GQ(1)

- Every point lies on two lines; two distinct points determine at most one line.
- Every line contains two points; two distinct lines have at most one point in common.
- If P is a point and L is a line such that P is not on L, then there exists a unique line that contains P and intersects L.



#### Definition

A generalized quadrangle of order q is an incidence structure whose connected (bipartite) point-line incidence graph:

- **(**) is (q + 1)-regular (every vertex is connected to q + 1 others)
- 2 has girth eight (there are no cycles of length less than eight)
- has diameter four (the distance between any two vertices is at most four)

## Example: An alternate characterization of GQ(1)

The point-line incidence graph of GQ(1)...

- is two-regular
- a has girth eight
- 6 has diameter four

## Example: An alternate characterization of GQ(1)

The point-line incidence graph of GQ(1)...

- is two-regular
- a has girth eight
- 6 has diameter four



## Example: GQ(1)



# Example: GQ(2)



# Example: GQ(2)



## Example: GQ(2)



#### How can we represent this boxed subgraph?

Brian Kronenthal Algebraically defined graphs and generalized quadrangles

We will construct a family of bipartite graphs as follows. Let  $\ensuremath{\mathbb{F}}$  be a field.





We will construct a family of bipartite graphs as follows. Let  $\mathbb{F}$  be a field.



$$P = \mathbb{F}^3 = \{(x_1, x_2, x_3) | x_i \in \mathbb{F}\}$$



We will construct a family of bipartite graphs as follows. Let  $\mathbb{F}$  be a field.



We will construct a family of bipartite graphs as follows. Let  ${\mathbb F}$  be a field.



GQ(2)







q = 2



• If so, we have an interesting characterization.



- If so, we have an interesting characterization.
- If not, then we might be able to construct a new generalized quadrangle by replacing the boxed subgraph with this new girth eight graph. This is interesting because for a given odd prime power, only one GQ is known (up to isomorphism). Also, in the even order case, additional GQs can be constructed in this way.



- If so, we have an interesting characterization.
- If not, then we might be able to construct a new generalized quadrangle by replacing the boxed subgraph with this new girth eight graph. This is interesting because for a given odd prime power, only one GQ is known (up to isomorphism). Also, in the even order case, additional GQs can be constructed in this way.



#### Conjecture (V. Dmytrenko, F. Lazebnik, J. Williford; 2007)

 $G_{\mathbb{F}}(xy,xy^2)$  is the unique girth eight algebraically defined graph (up to isomorphism)

### Connection to permutation polynomials

#### Theorem (V. Dmytrenko, F. Lazebnik, J. Williford; 2007)

Let  $q = p^e$  be an odd prime power. Then every monomial graph of girth at least eight is isomorphic to the graph  $G_q(xy, x^ky^{2k})$ , where k is not divisible by p. If  $q \ge 5$ , then:

- $((x+1)^{2k}-1)x^{q-1-k}-2x^{q-1} \in \mathbb{F}_q[x]$  is a permutation polynomial of  $\mathbb{F}_q$ .
- 2  $((x+1)^k x^k)x^k \in \mathbb{F}_q[x]$  is a permutation polynomial of  $\mathbb{F}_q$ .

## Connection to permutation polynomials

#### Theorem (V. Dmytrenko, F. Lazebnik, J. Williford; 2007)

Let  $q = p^e$  be an odd prime power. Then every monomial graph of girth at least eight is isomorphic to the graph  $G_q(xy, x^ky^{2k})$ , where k is not divisible by p. If  $q \ge 5$ , then:

- $((x+1)^{2k}-1)x^{q-1-k}-2x^{q-1} \in \mathbb{F}_q[x]$  is a permutation polynomial of  $\mathbb{F}_q$ .
- 2  $((x+1)^k x^k)x^k \in \mathbb{F}_q[x]$  is a permutation polynomial of  $\mathbb{F}_q$ .

#### Theorem (Hermite-Dickson criterion)

Let  $\mathbb{F}_q$  be of characteristic p. Then  $f \in \mathbb{F}_q[x]$  is a permutation polynomial of  $\mathbb{F}_q$  if and only if the following two conditions hold:

- **1** f has exactly one root in  $\mathbb{F}_q$ .
- Generation for each integer t with 1 ≤ t ≤ q 2 and p / t, the reduction of f<sup>t</sup> (mod x<sup>q</sup> x) has degree at most q 2.

#### Theorem (V. Dmytrenko, F. Lazebnik, J. Williford; 2007)

Let  $q = p^e$  be an odd prime power, with  $e = 2^a 3^b$  for integers  $a, b \ge 0$ and  $p \ge 5$ . Then every girth eight monomial graph  $G_q(x^u y^v, x^k y^m)$  is isomorphic to  $G_q(xy, xy^2)$ .

#### Theorem (V. Dmytrenko, F. Lazebnik, J. Williford; 2007)

Let  $q = p^e$  be an odd prime power, with  $e = 2^a 3^b$  for integers  $a, b \ge 0$ and  $p \ge 5$ . Then every girth eight monomial graph  $G_q(x^u y^v, x^k y^m)$  is isomorphic to  $G_q(xy, xy^2)$ .

• This implies that for any q of this form,  $G_q(xy, xy^2)$  is the girth eight unique monomial graph (up to isomorphism).

#### Theorem (V. Dmytrenko, F. Lazebnik, J. Williford; 2007)

Let  $q = p^e$  be an odd prime power, with  $e = 2^a 3^b$  for integers  $a, b \ge 0$ and  $p \ge 5$ . Then every girth eight monomial graph  $G_q(x^u y^v, x^k y^m)$  is isomorphic to  $G_q(xy, xy^2)$ .

- This implies that for any q of this form,  $G_q(xy, xy^2)$  is the girth eight unique monomial graph (up to isomorphism).
- What about q of other forms?

#### Theorem (BGK, 2012)

Let  $q = p^e$  be an odd prime power, with  $p \ge p_0$ , a lower bound that depends only on the largest prime divisor of e. Then every girth eight monomial graph  $G_q(x^u y^v, x^k y^m)$  is isomorphic to  $G_q(xy, xy^2)$ .

#### Theorem (BGK, 2012)

Let  $q = p^e$  be an odd prime power, with  $p \ge p_0$ , a lower bound that depends only on the largest prime divisor of e. Then every girth eight monomial graph  $G_a(x^u y^v, x^k y^m)$  is isomorphic to

 $G_q(xy, xy^2)$ .

#### Example (What is $p_0$ ?)

- If  $e = 2^a 3^b 5^c$  for integers  $a, b, c \ge 0$ , then  $p \ge p_0 = 7$
- If  $e = 2^a 3^b 5^c 7^d$  for integers  $a, b, c, d \ge 0$ , then  $p \ge p_0 = 11$ .
- If  $e = 2^a 3^b 5^c 7^d 11^y$  for integers  $a, b, c, d, y \ge 0$ , then  $p \ge p_0 = 13$ .

#### Theorem (BGK, 2012)

Let  $q = p^e$  be an odd prime power, with  $p \ge p_0$ , a lower bound that depends only on the largest prime divisor of e. Then every girth eight monomial graph  $G_a(x^u y^v, x^k y^m)$  is isomorphic to

 $G_q(xy, xy^2)$ .

#### Example (What is $p_0$ ?)

- If  $e = 2^a 3^b 5^c$  for integers  $a, b, c \ge 0$ , then  $p \ge p_0 = 7$
- If  $e = 2^a 3^b 5^c 7^d$  for integers  $a, b, c, d \ge 0$ , then  $p \ge p_0 = 11$ .
- If  $e = 2^{a}3^{b}5^{c}7^{d}11^{y}$  for integers  $a, b, c, d, y \ge 0$ , then  $p \ge p_0 = 13$ .

This implies that for any q of this form,  $G_q(xy, xy^2)$  is the unique girth eight monomial graph (up to isomorphism).

### Theorem (Hou, Lappano, Lazebnik, posted on ArXiv a few days ago) Let q be an odd prime power. Then every girth eight monomial graph $G_q(x^u y^v, x^k y^m)$ is isomorphic to $G_q(xy, xy^2)$ .

#### Theorem (F. Lazebnik, J. Williford, and BGK)

Every girth eight polynomial graph  $G_{\mathbb{C}}(x^k y^m, f)$ , where  $f \in \mathbb{C}[x, y]$ , is isomorphic to  $G_{\mathbb{C}}(xy, xy^2)$ .

#### Theorem (F. Lazebnik, J. Williford, and BGK)

Every girth eight polynomial graph  $G_{\mathbb{C}}(x^k y^m, f)$ , where  $f \in \mathbb{C}[x, y]$ , is isomorphic to  $G_{\mathbb{C}}(xy, xy^2)$ .

Note that f in the above theorem does not need to be a monomial; the result holds for any polynomial.

#### Theorem (Lefschetz Principle)

Let  $\phi$  be a sentence in the language of rings. The following are equivalent.

- **0**  $\phi$  is true in the complex numbers.
- **2**  $\phi$  is true in every algebraically closed field of characteristic zero.
- $\bullet$   $\phi$  is true in some algebraically closed field of characteristic zero.
- There are arbitrarily large primes p such that φ is true in some algebraically closed field of characteristic p.
- O There is an m such that for all p > m, φ is true in all algebraically closed fields of characteristic p.

#### Theorem (Lefschetz Principle)

Let  $\phi$  be a sentence in the language of rings. The following are equivalent.

- **(**)  $\phi$  is true in the complex numbers.
- **2**  $\phi$  is true in every algebraically closed field of characteristic zero.
- $\bullet$   $\phi$  is true in some algebraically closed field of characteristic zero.
- There are arbitrarily large primes p such that φ is true in some algebraically closed field of characteristic p.
- O There is an m such that for all p > m, φ is true in all algebraically closed fields of characteristic p.

Informally, if  $G_{\mathbb{C}}(x^k y^m, f)$  is not a candidate to replace  $G_{\mathbb{C}}(xy, xy^2)$ , then  $G_q(x^k y^m, \hat{f})$  is not a candidate to replace  $G_q(xy, xy^2)$  for "many" q.

#### **Open Problem**

Do there exist f and g in  $\mathbb{C}[x, y]$  such that  $G = G_{\mathbb{C}}(f, g)$  has girth eight and G is not isomorphic to  $G_{\mathbb{C}}(xy, xy^2)$ ?

#### **Open Problem**

Do there exist f and g in  $\mathbb{C}[x, y]$  such that  $G = G_{\mathbb{C}}(f, g)$  has girth eight and G is not isomorphic to  $G_{\mathbb{C}}(xy, xy^2)$ ?

**1** This is done when g is a monomial (i.e. when  $g = \alpha x^k y^m$  for  $\alpha \in \mathbb{C}$ ).

#### **Open Problem**

Do there exist f and g in  $\mathbb{C}[x, y]$  such that  $G = G_{\mathbb{C}}(f, g)$  has girth eight and G is not isomorphic to  $G_{\mathbb{C}}(xy, xy^2)$ ?

#### **Open Problem**

Do there exist f and g in  $\mathbb{C}[x, y]$  such that  $G = G_{\mathbb{C}}(f, g)$  has girth eight and G is not isomorphic to  $G_{\mathbb{C}}(xy, xy^2)$ ?

- G has a 6-cycle if and only if there exists a solution a, b, c, x, y, z to the system

$$\begin{cases} f(a,x) - f(b,x) + f(b,y) - f(c,y) + f(c,z) - f(a,z) = 0\\ g(a,x) - g(b,x) + g(b,y) - g(c,y) + g(c,z) - g(a,z) = 0\\ a \neq b, \ b \neq c, \ a \neq c; \ x \neq y, \ y \neq z, \ x \neq z. \end{cases}$$