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Cages and the Moore bound

For given positive integers k and g , find the minimum number of vertices
that can be used to construct a k-regular graph of girth g .

A graph with this minimal number of vertices is called a (k, g)-cage.

It is impossible to construct a (k , g)-cage using fewer than
1 + k

g−3
2∑

i=0

(k − 1)i =
k(k − 1)r − 2

k − 2
if g = 2r + 1

2

g−2
2∑

i=0

(k − 1)i =
2(k − 1)r − 2

k − 2
if g = 2r

vertices.

This lower bound on the number of vertices is called the Moore bound.

Key idea: It is not always possible to construct a graph that meets
the Moore bound.
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When can the Moore Bound (potentially) be achieved?

The ONLY possible parameters and examples:

k g Unique (k, g)-cage meeting the
lower bound

2 g Cg

k 3 Kk+1

k 4 Kk,k

3 5 Petersen graph

7 5 Hoffman-Singleton graph

57 5 ?????

k 6 Incidence graphs of generalized
3-gons of prime power order k−1

k 8 Incidence graphs of generalized
4-gons of prime power order k−1

k 12 Incidence graphs of generalized
6-gons of prime power order k−1
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Brief intermission: What about a (57, 5)-cage?

A (57, 5)-cage would have 3250 vertices and diameter 2.

The eigenvalues of such a graph’s adjacency matrix 57, 7, and -8
(with multiplicities 1, 1729, and 1520, respectively).

Properties of the automorphism group of a (57, 5)-cage have been
studied.
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What is a Generalized Quadrangle?

k g Unique (k , g)-cage meeting the lower bound

2 g Cg

k 3 Kk+1

k 4 Kk,k

3 5 Petersen graph

7 5 Hoffman-Singleton graph

57 5 ?????

k 6 Incidence graphs of generalized 3-gons of
prime power order k − 1

k 8 Incidence graphs of generalized 4-gons of
prime power order k − 1

k 12 Incidence graphs of generalized 6-gons of
prime power order k − 1
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What is a Generalized Quadrangle?

Definition

A generalized quadrangle of order q is an incidence structure of
q3 + q2 + q + 1 points and q3 + q2 + q + 1 lines such that...

1 Every point lies on q + 1 lines; two distinct points determine at most
one line.

2 Every line contains q + 1 points; two distinct lines have at most one
point in common.

3 If P is a point and L is a line such that P is not on L, then there
exists a unique line that contains P and intersects L.

r P
l

=⇒

r P
lr

Q
m
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An example: GQ(1)

1 Every point lies on two lines; two distinct points determine at most
one line.

2 Every line contains two points; two distinct lines have at most one
point in common.

3 If P is a point and L is a line such that P is not on L, then there
exists a unique line that contains P and intersects L.

u u

u u
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GQ(q): An alternate characterization

Definition

A generalized quadrangle of order q is an incidence structure whose
connected (bipartite) point-line incidence graph:

1 is (q + 1)-regular (every vertex is connected to q + 1 others)

2 has girth eight (there are no cycles of length less than eight)

3 has diameter four (the distance between any two vertices is at most
four)
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Example: An alternate characterization of GQ(1)

The point-line incidence graph of GQ(1)...

1 is two-regular

2 has girth eight

3 has diameter four
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Example: GQ(1)
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Example: GQ(2)

=⇒
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How can we represent this boxed subgraph?
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Connection to Algebraically Defined Graphs

We will construct a family of bipartite graphs as follows.
Let F be a field.
Let f (x , y) and g(x , y) be bivariate polynomials with coefficients in F.

#
"

 
!

#
"

 
!

P = F3 = {(x1, x2, x3)|xi ∈ F}

L = F3 = {[y1, y2, y3]|yi ∈ F}

uuuuuuuuuuuuuuuuuuu

uuuuuuuuuuuuuuuuuuu

u

u

(x1, x2, x3)

[y1, y2, y3]

adjacency iff

{
x2 + y2 = f (x1, y1)

x3 + y3 = g(x1, y1)
GF(f , g)
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GQ(2)
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q = 2

#
"

 
!

#
"

 
!P = F3

2

L = F3
2

u u u u u u u u

ug ug ug ug ug ug ug ug

u

ug

(x1, x2, x3)

[y1, y2, y3]

adjacency iff

{
x2 + y2 = x1y1

x3 + y3 = x1y
2
1

GF2(xy , xy
2)

∼=

gugu
gugu
gugu
gugu
uu
uu
uu
uu

Generalizes to any Fq
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Question: Is GF(xy , xy2) the unique girth
eight algebraically defined graph (up to
isomorphism)?

If so, we have an interesting
characterization.

If not, then we might be able to
construct a new generalized quadrangle
by replacing the boxed subgraph with
this new girth eight graph. This is
interesting because for a given odd
prime power, only one GQ is known (up
to isomorphism). Also, in the even
order case, additional GQs can be
constructed in this way.
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Conjecture (V. Dmytrenko, F. Lazebnik, J. Williford; 2007)

GF(xy , xy2) is the unique girth eight algebraically defined graph (up to
isomorphism)
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Connection to permutation polynomials

Theorem (V. Dmytrenko, F. Lazebnik, J. Williford; 2007)

Let q = pe be an odd prime power. Then every monomial graph of girth
at least eight is isomorphic to the graph Gq(xy , xky2k), where k is not
divisible by p. If q ≥ 5, then:

1 ((x + 1)2k − 1)xq−1−k − 2xq−1 ∈ Fq[x ] is a permutation polynomial
of Fq.

2 ((x + 1)k − xk)xk ∈ Fq[x ] is a permutation polynomial of Fq.

Theorem (Hermite-Dickson criterion)

Let Fq be of characteristic p. Then f ∈ Fq[x ] is a permutation polynomial
of Fq if and only if the following two conditions hold:

1 f has exactly one root in Fq.

2 for each integer t with 1 ≤ t ≤ q − 2 and p6 | t, the reduction of f t

(mod xq − x) has degree at most q − 2.
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A Key Result

Theorem (V. Dmytrenko, F. Lazebnik, J. Williford; 2007)

Let q = pe be an odd prime power, with e = 2a3b for integers a, b ≥ 0
and p ≥ 5.
Then every girth eight monomial graph Gq(xuy v , xkym) is isomorphic to
Gq(xy , xy2).

This implies that for any q of this form, Gq(xy , xy2) is the girth eight
unique monomial graph (up to isomorphism).

What about q of other forms?
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Additional Results

Theorem (BGK, 2012)

Let q = pe be an odd prime power, with p ≥ p0, a lower bound that
depends only on the largest prime divisor of e.
Then every girth eight monomial graph Gq(xuy v , xkym) is isomorphic to
Gq(xy , xy2).

Example (What is p0?)

If e = 2a3b5c for integers a, b, c ≥ 0, then p ≥ p0 = 7

If e = 2a3b5c7d for integers a, b, c , d ≥ 0, then p ≥ p0 = 11.

If e = 2a3b5c7d11y for integers a, b, c , d , y ≥ 0, then p ≥ p0 = 13.

This implies that for any q of this form, Gq(xy , xy2) is the unique
girth eight monomial graph (up to isomorphism).
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This implies that for any q of this form, Gq(xy , xy2) is the unique
girth eight monomial graph (up to isomorphism).
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Breaking News!

Theorem (Hou, Lappano, Lazebnik, posted on ArXiv a few days ago)

Let q be an odd prime power. Then every girth eight monomial graph
Gq(xuy v , xkym) is isomorphic to Gq(xy , xy2).
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Can we say more over a different field?

Theorem (F. Lazebnik, J. Williford, and BGK)

Every girth eight polynomial graph GC(xkym, f ), where f ∈ C[x , y ], is
isomorphic to GC(xy , xy2).

Note that f in the above theorem does not need to be a monomial; the
result holds for any polynomial.
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Connection back to the finite field case

Theorem (Lefschetz Principle)

Let φ be a sentence in the language of rings. The following are equivalent.

1 φ is true in the complex numbers.

2 φ is true in every algebraically closed field of characteristic zero.

3 φ is true in some algebraically closed field of characteristic zero.

4 There are arbitrarily large primes p such that φ is true in some
algebraically closed field of characteristic p.

5 There is an m such that for all p > m, φ is true in all algebraically
closed fields of characteristic p.

Informally, if GC(xkym, f ) is not a candidate to replace GC(xy , xy2), then
Gq(xkym, f̂ ) is not a candidate to replace Gq(xy , xy2) for “many” q.
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Future Work

Open Problem

Do there exist f and g in C[x , y ] such that G = GC(f , g) has girth eight
and G is not isomorphic to GC(xy , xy2)?

1 This is done when g is a monomial (i.e. when g = αxkym for α ∈ C).
2 G has a 4-cycle if and only if there exists a solution a, b, x , y to the

system

f (a, x)− f (b, x) + f (b, y)− f (a, y) = 0

g(a, x)− g(b, x) + g(b, y)− g(a, y) = 0

a 6= b, x 6= y .

3 G has a 6-cycle if and only if there exists a solution a, b, c , x , y , z to
the system

f (a, x)− f (b, x) + f (b, y)− f (c , y) + f (c , z)− f (a, z) = 0

g(a, x)− g(b, x) + g(b, y)− g(c , y) + g(c , z)− g(a, z) = 0

a 6= b, b 6= c , a 6= c ; x 6= y , y 6= z , x 6= z .
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