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Near polygons

A near 2d-gon is a graph of diameter d in which for every maximal
clique C and every vertex v there exists a unique vertex πC (v) in
C that is nearest to v .

It is a point-line geometry N that satisfies the following properties:

(NP1) The collinearity graph of N is connected and has diameter
d .

(NP2) For every point x and every line L there exists a unique
point πL(x) incident with L that is nearest to x .
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Hyperplanes of point-line geometries

A set H of points is called a hyperplane if for every line L, either
L ∩ H is a singleton or L is contained in H. If no line is contained
in H, then it is called an ovoid (or a 1-ovoid). In a near 2d-gon,
the set Hx of points that are distance < d from a point x form a
hyperplane, known as a singular hyperplane.
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Motivation

Let N be a near polygon isometrically embedded in another near
polygon N ′. For every point x of N ′ the set
Hx = {y ∈ P : d(x , y) < m} forms a hyperplane of N , where
m := max{d(x , y) : y ∈ P}.
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Isometric embeddings of near polygons
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W (2) with a grid GQ(2, 1)
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Main Problem

Given a near polygon N of order (s, t) with automorphism group
G , compute all hyperplanes of N up to equivalence under the

action of G .

The notion of 1-ovoids is equivalent to exact hitting sets in a
hypergraph. Therefore, computing 1-ovoids is equivalent to
computing exact covers, which is known to be NP-hard.
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Slim geometries

If M is the incidence matrix of N with rows indexed by lines and
columns by points, then a hyperplane corresponds to a 0-1 vector
x such that Mx ∈ {1, s + 1}n.

Let S be a point-line geometry with three points on each line (i.e.,
a 3-uniform hypergraph).

A set H intersects every line in 1 or 3 points ⇐⇒ Hc intersects
every line in 0 or 2 points ⇐⇒ the characteristic vector v of Hc

satisfies Mv = 0 over F2.
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Algorithm for three points on each line

Let U be the null space of M over F2. Then 2dimU − 1 is the total
number of hyperplanes.

Algorithm 1 pseudocode for computing hyperplanes

Initiate N := 2dimU − 1 and Hyperplanes := dictionary().
while N 6= 0 do

Pick a non-zero vector v in U and let H be the corresponding
hyperplane.
Let H ′ := SmallestImageSet(H).
if H ′ not in Hyperplanes then

Add H ′ to Hyperplanes and put N := N−Size(OrbitG (H)).
end if

end while
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A big improvement

Let S be the set of all singular hyperplanes and assume that
〈S〉 = U. Define index i for a hyperplane H to be the minimum
number of singular hyperplanes whose “sum” is equal to H.
Adding hyperplanes in the increasing order of i gives us a big
improvement!

Let x be a point, Hx its corresponding singular hyperplane. Define
S1 := {Hx}. Inductively, Si+1 is obtained from Si by computing
sums of all pairs from Si × S .

To check if a candidate H for Si+1 is new, it suffices to
compare it with elements of Si−1, Si and Si+1!

For a fixed H ∈ Si , we can restrict to elements of S
corresponding to the point representatives of the action of
StabG (H).
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Test Case: Hall-Janko Near Octagon

The Hall-Janko (or the Cohen-Tits near octagon) is a near octagon
of order (2, 4) with its full automorphism group of size 1209600
isomorphic to J2 : 2. It is a regular near octagon giving rise to a
distance-regular graph with intersection array {10, 8, 8, 2; 1, 1, 4, 5},
which uniquely determines the graph.

Computational Results: It has 228 − 1 hyperplanes partitioned
into 470 equivalence classes under the action of J2 : 2 (≈ 60 mins
after all improvements*).
Remark: This gives rise to a binary [315, 28, 64] code with
automorphism group J2 : 2, originally discovered by J. D. Key and
J. Moori in 2002.

* using RepresentativeAction instead of SmallestImageSet!!!
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G2(4) Near Octagon

There exists a near octagon of order (2, 10) which contains the
Hall-Janko near octagon isometrically embedded in it and that has
the group G2(4) : 2 as its full automorphism group.

It can be constructed using the conjugacy class of 4095 central
involutions of the group G2(4) : 2.

Reference: A. Bishnoi and B. De Bruyn. A new near octagon and
the Suzuki tower. http://arxiv.org/abs/1501.04119.
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Generalized Polygons

A generalized 2d-gon can be viewed as a near 2d-gon which
satisfies the following additional properties:

(GH1) Every point is incident with at least two lines.

(GH2) Given any two points x , y at distance i from each other,
there is a unique neighbour of y that is at distance i − 1
from x .

A near 4-gon is a (possibly degenerate) generalized 4-gon, aka,
generalized quadrangle.

The incidence graph of a generalized n-gon has a diameter n and
girth 2n. Therefore, it is a (bipartite) Moore graph. The
collinearity graph is a distance regular graph. By Feit and Higman,
generalized n-gons exist only for n = 3, 4, 6, 8 and 12.
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Generalized Hexagons

They are near 6-gons in which every pair of points at distance 2
have a unique common neighbour. All known generalized hexagons
have order (q, 1), (1, q), (q, q), (q, q3) or (q3, q) for prime power
q.

GH of order (q, 1) is obtained from the incidence graph of
PG (2, q).

Split Cayley hexagons H(q) of order (q, q) are generalized
hexagons with the group G2(q) of order q6(q6 − 1)(q2 − 1) as an
automorphism group.
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Known 1-ovoids in generalized hexagons

Every GH(q, 1) has 1-ovoids (since the incidence graph of
PG (2, q) has a perfect matching). No GH(s, s3) can have 1-ovoids
(De Bruyn - Vanhove, 2013).

H(2) has 36 1-ovoids, all isomorphic under the action of
G2(2), while its point-line dual HD(2) has none.

H(3) ∼= H(3)D has 3888 1-ovoids, all isomorphic under the
action of G2(3).

H(4) has two non-isomorphic 1-ovoids.

See “Ovoids and Spreads of Finite Classical Generalized Hexagons
and Applications” by An De Wispelaere (PhD Thesis).
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New Result

Theorem (A. B. and F. Ihringer)

The dual split Cayley hexagon of order 4 has no 1-ovoids.

For H(4), Pech and Reichard proved that examples given by An are
the only ones in “Enumerating Set Orbits”. Exhaustive search with
symmetry breaking doesn’t seem to work for H(4)D .
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Proof

Main Idea: Since H(4, 1) is a full subgeometry of H(4)D , every
1-ovoid of H(4)D gives rise to a 1-ovoid of H(4, 1).
So, fix a subgeometry H ∼= H(4, 1) of H(4)D , compute all 1-ovoids
of H up to equivalence under the action of Stab(H), show that
none of them extends to a 1-ovoid of H(4)D .

To list 1-ovoids, use the Dancing Links algorithm by Knuth for
finding exact covers. Every 1-ovoid of H(4, 1) corresponds to a
perfect matching in the incidence graph of PG (2, 4) and hence
there are 18534400 of them in total.

There are 350 different 1-ovoids (≈ 44 min), none of them extends
to an ovoid of H(4)D (≈ 1 min using LP solvers).
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Semi-finite generalized polygons

Is there a generalized polygon of order (s,∞)?

GQ’s of order (s,∞) do not exist for s = 2, 3 and 4 (Cameron,
Brouwer/Kantor, Cherlin).

Let G be a generalized hexagon of order (q, q) contained in a
generalized hexagon G′ as a full subgeometry Then points of G′ are
at distance 0, 1 or 2 from G giving rise to three different types of
hyperplanes.

Theorem

If a generalized hexagon doesn’t have 1-ovoids, then it cannot be
contained in any semi-finite generalized hexagon as a full
subgeometry.
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Semi-finite hexagons

Theorem (A. B. and B. De Bruyn)

A semi-finite generalized hexagon of order (2,∞) doesn’t contain
any subhexagons of order (2, 2).

Lemma (A. B. and B. De Bruyn)

Let L be a line of G′ that doesnt intersect G. Then there exists an
integer cL such that for any distinct points x , y on L we have
|Hx ∩ Hy | = q + 1− cL.

Using this and some computations we can also handle H(3) and
H(4).
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Open Problems

1 Classify 1-ovoids in H(5) and its dual.

2 For char(Fq) 6= 3, are there any 1-ovoids in H(q)D?

3 Are there any semi-finite hexagons containing a subhexagon
of order q? (solved for q = 2, 3, 4)

4 Are there any spreads in GQ(q2, q3) obtained from the
Hermitian variety H(4, q2)? (solved for q = 2)

5 Are there any 1-ovoids in Ree-Tits octagons? (solved for order
(2, 4))
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