Computing Hyperplanes of Near Polygons

Anurag Bishnoi
(joint work with Bart De Bruyn)

Ghent University
anurag.2357@gmail.com

CoCoA 2015 -
Combinatorics and Computer Algebra

Near polygons

A near $2 d$-gon is a graph of diameter d in which for every maximal clique C and every vertex v there exists a unique vertex $\pi_{C}(v)$ in C that is nearest to v.

Near polygons

A near $2 d$-gon is a graph of diameter d in which for every maximal clique C and every vertex v there exists a unique vertex $\pi_{C}(v)$ in C that is nearest to v.
It is a point-line geometry \mathcal{N} that satisfies the following properties:
(NP1) The collinearity graph of \mathcal{N} is connected and has diameter d.
(NP2) For every point x and every line L there exists a unique point $\pi_{L}(x)$ incident with L that is nearest to x.

Hyperplanes of point-line geometries

A set H of points is called a hyperplane if for every line L, either $L \cap H$ is a singleton or L is contained in H. If no line is contained in H, then it is called an ovoid (or a 1-ovoid). In a near $2 d$-gon, the set H_{x} of points that are distance $<d$ from a point x form a hyperplane, known as a singular hyperplane.

Hyperplanes of point-line geometries

A set H of points is called a hyperplane if for every line L, either $L \cap H$ is a singleton or L is contained in H. If no line is contained in H, then it is called an ovoid (or a 1-ovoid). In a near $2 d$-gon, the set H_{x} of points that are distance $<d$ from a point x form a hyperplane, known as a singular hyperplane.

A singular hyperplane

An ovoid

Motivation

Let \mathcal{N} be a near polygon isometrically embedded in another near polygon \mathcal{N}^{\prime}. For every point x of \mathcal{N}^{\prime} the set $H_{x}=\{y \in \mathcal{P}: \mathrm{d}(x, y)<m\}$ forms a hyperplane of \mathcal{N}, where $m:=\max \{\mathrm{d}(x, y): y \in \mathcal{P}\}$.

Isometric embeddings of near polygons

$W(2)$ with a grid $G Q(2,1)$

Isometric embeddings of near polygons

$W(2)$ with a grid $G Q(2,1)$

Isometric embeddings of near polygons

$W(2)$ with a grid $G Q(2,1)$

Main Problem

Given a near polygon \mathcal{N} of order (s, t) with automorphism group G, compute all hyperplanes of \mathcal{N} up to equivalence under the action of G.

Main Problem

Given a near polygon \mathcal{N} of order (s, t) with automorphism group G, compute all hyperplanes of \mathcal{N} up to equivalence under the action of G.

The notion of 1 -ovoids is equivalent to exact hitting sets in a hypergraph. Therefore, computing 1 -ovoids is equivalent to computing exact covers, which is known to be NP-hard.

Slim geometries

If M is the incidence matrix of \mathcal{N} with rows indexed by lines and columns by points, then a hyperplane corresponds to a $0-1$ vector x such that $M x \in\{1, s+1\}^{n}$.

Slim geometries

If M is the incidence matrix of \mathcal{N} with rows indexed by lines and columns by points, then a hyperplane corresponds to a $0-1$ vector x such that $M x \in\{1, s+1\}^{n}$.

Let \mathcal{S} be a point-line geometry with three points on each line (i.e., a 3-uniform hypergraph).

Slim geometries

If M is the incidence matrix of \mathcal{N} with rows indexed by lines and columns by points, then a hyperplane corresponds to a $0-1$ vector x such that $M x \in\{1, s+1\}^{n}$.

Let \mathcal{S} be a point-line geometry with three points on each line (i.e., a 3 -uniform hypergraph).

A set H intersects every line in 1 or 3 points $\Longleftrightarrow H^{c}$ intersects every line in 0 or 2 points \Longleftrightarrow the characteristic vector v of H^{c} satisfies $M v=0$ over \mathbb{F}_{2}.

Algorithm for three points on each line

Let U be the null space of M over \mathbb{F}_{2}. Then $2^{\operatorname{dim} U}-1$ is the total number of hyperplanes.

Algorithm 1 pseudocode for computing hyperplanes
Initiate $N:=2^{\operatorname{dim} U}-1$ and Hyperplanes := dictionary().
while $N \neq 0$ do
Pick a non-zero vector v in U and let H be the corresponding hyperplane.
Let $H^{\prime}:=$ SmallestImageSet (H).
if H^{\prime} not in Hyperplanes then
Add H^{\prime} to Hyperplanes and put $N:=N-\operatorname{Size}\left(\operatorname{Orbit}_{G}(H)\right)$.
end if
end while

A big improvement

Let S be the set of all singular hyperplanes and assume that $\langle S\rangle=U$. Define index i for a hyperplane H to be the minimum number of singular hyperplanes whose "sum" is equal to H. Adding hyperplanes in the increasing order of i gives us a big improvement!

A big improvement

Let S be the set of all singular hyperplanes and assume that $\langle S\rangle=U$. Define index i for a hyperplane H to be the minimum number of singular hyperplanes whose "sum" is equal to H. Adding hyperplanes in the increasing order of i gives us a big improvement!

Let x be a point, H_{x} its corresponding singular hyperplane. Define $S_{1}:=\left\{H_{x}\right\}$. Inductively, S_{i+1} is obtained from S_{i} by computing sums of all pairs from $S_{i} \times S$.

A big improvement

Let S be the set of all singular hyperplanes and assume that $\langle S\rangle=U$. Define index i for a hyperplane H to be the minimum number of singular hyperplanes whose "sum" is equal to H. Adding hyperplanes in the increasing order of i gives us a big improvement!

Let x be a point, H_{x} its corresponding singular hyperplane. Define $S_{1}:=\left\{H_{x}\right\}$. Inductively, S_{i+1} is obtained from S_{i} by computing sums of all pairs from $S_{i} \times S$.

- To check if a candidate H for S_{i+1} is new, it suffices to compare it with elements of S_{i-1}, S_{i} and S_{i+1} !

A big improvement

Let S be the set of all singular hyperplanes and assume that $\langle S\rangle=U$. Define index i for a hyperplane H to be the minimum number of singular hyperplanes whose "sum" is equal to H. Adding hyperplanes in the increasing order of i gives us a big improvement!

Let x be a point, H_{x} its corresponding singular hyperplane. Define $S_{1}:=\left\{H_{x}\right\}$. Inductively, S_{i+1} is obtained from S_{i} by computing sums of all pairs from $S_{i} \times S$.

- To check if a candidate H for S_{i+1} is new, it suffices to compare it with elements of S_{i-1}, S_{i} and S_{i+1} !
- For a fixed $H \in S_{i}$, we can restrict to elements of S corresponding to the point representatives of the action of $\operatorname{Stab}_{G}(H)$.

Test Case: Hall-Janko Near Octagon

The Hall-Janko (or the Cohen-Tits near octagon) is a near octagon of order $(2,4)$ with its full automorphism group of size 1209600 isomorphic to $J_{2}: 2$. It is a regular near octagon giving rise to a distance-regular graph with intersection array $\{10,8,8,2 ; 1,1,4,5\}$, which uniquely determines the graph.

Test Case: Hall-Janko Near Octagon

The Hall-Janko (or the Cohen-Tits near octagon) is a near octagon of order $(2,4)$ with its full automorphism group of size 1209600 isomorphic to $J_{2}: 2$. It is a regular near octagon giving rise to a distance-regular graph with intersection array $\{10,8,8,2 ; 1,1,4,5\}$, which uniquely determines the graph.

Computational Results: It has $2^{28}-1$ hyperplanes partitioned into 470 equivalence classes under the action of $J_{2}: 2$ ($\approx 60 \mathrm{mins}$ after all improvements*).
Remark: This gives rise to a binary $[315,28,64]$ code with automorphism group $J_{2}: 2$, originally discovered by J. D. Key and J. Moori in 2002.

* using RepresentativeAction instead of SmallestImageSet!!!

$G_{2}(4)$ Near Octagon

There exists a near octagon of order $(2,10)$ which contains the Hall-Janko near octagon isometrically embedded in it and that has the group $G_{2}(4): 2$ as its full automorphism group.

It can be constructed using the conjugacy class of 4095 central involutions of the group $G_{2}(4): 2$.

Reference: A. Bishnoi and B. De Bruyn. A new near octagon and the Suzuki tower. http://arxiv.org/abs/1501.04119.

Generalized Polygons

Generalized Polygons

A generalized $2 d$-gon can be viewed as a near $2 d$-gon which satisfies the following additional properties:
(GH1) Every point is incident with at least two lines.
(GH2) Given any two points x, y at distance i from each other, there is a unique neighbour of y that is at distance $i-1$ from x.

A near 4-gon is a (possibly degenerate) generalized 4-gon, aka, generalized quadrangle.

The incidence graph of a generalized n-gon has a diameter n and girth $2 n$. Therefore, it is a (bipartite) Moore graph. The collinearity graph is a distance regular graph. By Feit and Higman, generalized n-gons exist only for $n=3,4,6,8$ and 12 .

Generalized Hexagons

They are near 6-gons in which every pair of points at distance 2 have a unique common neighbour. All known generalized hexagons have order $(q, 1),(1, q),(q, q),\left(q, q^{3}\right)$ or $\left(q^{3}, q\right)$ for prime power q.

Generalized Hexagons

They are near 6 -gons in which every pair of points at distance 2 have a unique common neighbour. All known generalized hexagons have order $(q, 1),(1, q),(q, q),\left(q, q^{3}\right)$ or $\left(q^{3}, q\right)$ for prime power q.

GH of order $(q, 1)$ is obtained from the incidence graph of $P G(2, q)$.

Generalized Hexagons

They are near 6 -gons in which every pair of points at distance 2 have a unique common neighbour. All known generalized hexagons have order $(q, 1),(1, q),(q, q),\left(q, q^{3}\right)$ or $\left(q^{3}, q\right)$ for prime power q.

GH of order $(q, 1)$ is obtained from the incidence graph of $P G(2, q)$.

Split Cayley hexagons $H(q)$ of order (q, q) are generalized hexagons with the group $G_{2}(q)$ of order $q^{6}\left(q^{6}-1\right)\left(q^{2}-1\right)$ as an automorphism group.

Known 1-ovoids in generalized hexagons

Every $G H(q, 1)$ has 1 -ovoids (since the incidence graph of $P G(2, q)$ has a perfect matching). No $G H\left(s, s^{3}\right)$ can have 1-ovoids (De Bruyn - Vanhove, 2013).

- $H(2)$ has 36 1-ovoids, all isomorphic under the action of $G_{2}(2)$, while its point-line dual $H^{D}(2)$ has none.
- $H(3) \cong H(3)^{D}$ has 3888 1-ovoids, all isomorphic under the action of $G_{2}(3)$.
- $H(4)$ has two non-isomorphic 1 -ovoids.

See "Ovoids and Spreads of Finite Classical Generalized Hexagons and Applications" by An De Wispelaere (PhD Thesis).

New Result

Theorem (A. B. and F. Ihringer)
 The dual split Cayley hexagon of order 4 has no 1-ovoids.

New Result

Theorem (A. B. and F. Ihringer)
 The dual split Cayley hexagon of order 4 has no 1-ovoids.

For $H(4)$, Pech and Reichard proved that examples given by An are the only ones in "Enumerating Set Orbits". Exhaustive search with symmetry breaking doesn't seem to work for $H(4)^{D}$.

Main Idea: Since $H(4,1)$ is a full subgeometry of $H(4)^{D}$, every 1 -ovoid of $H(4)^{D}$ gives rise to a 1-ovoid of $H(4,1)$.
So, fix a subgeometry $\mathcal{H} \cong H(4,1)$ of $H(4)^{D}$, compute all 1-ovoids of \mathcal{H} up to equivalence under the action of $\operatorname{Stab}(\mathcal{H})$, show that none of them extends to a 1 -ovoid of $H(4)^{D}$.

Main Idea: Since $H(4,1)$ is a full subgeometry of $H(4)^{D}$, every 1 -ovoid of $H(4)^{D}$ gives rise to a 1-ovoid of $H(4,1)$.
So, fix a subgeometry $\mathcal{H} \cong H(4,1)$ of $H(4)^{D}$, compute all 1-ovoids of \mathcal{H} up to equivalence under the action of $\operatorname{Stab}(\mathcal{H})$, show that none of them extends to a 1 -ovoid of $H(4)^{D}$.

To list 1-ovoids, use the Dancing Links algorithm by Knuth for finding exact covers. Every 1 -ovoid of $H(4,1)$ corresponds to a perfect matching in the incidence graph of $P G(2,4)$ and hence there are 18534400 of them in total.

Main Idea: Since $H(4,1)$ is a full subgeometry of $H(4)^{D}$, every 1 -ovoid of $H(4)^{D}$ gives rise to a 1-ovoid of $H(4,1)$.
So, fix a subgeometry $\mathcal{H} \cong H(4,1)$ of $H(4)^{D}$, compute all 1-ovoids of \mathcal{H} up to equivalence under the action of $\operatorname{Stab}(\mathcal{H})$, show that none of them extends to a 1 -ovoid of $H(4)^{D}$.

To list 1 -ovoids, use the Dancing Links algorithm by Knuth for finding exact covers. Every 1 -ovoid of $H(4,1)$ corresponds to a perfect matching in the incidence graph of $P G(2,4)$ and hence there are 18534400 of them in total.

There are 350 different 1 -ovoids ($\approx 44 \mathrm{~min}$), none of them extends to an ovoid of $H(4)^{D}(\approx 1 \mathrm{~min}$ using LP solvers).

Semi-finite generalized polygons

Is there a generalized polygon of order (s, ∞) ?
GQ's of order (s, ∞) do not exist for $s=2,3$ and 4 (Cameron, Brouwer/Kantor, Cherlin).

Semi-finite generalized polygons

Is there a generalized polygon of order (s, ∞) ?
GQ's of order (s, ∞) do not exist for $s=2,3$ and 4 (Cameron, Brouwer/Kantor, Cherlin).

Let \mathcal{G} be a generalized hexagon of order (q, q) contained in a generalized hexagon \mathcal{G}^{\prime} as a full subgeometry Then points of \mathcal{G}^{\prime} are at distance 0,1 or 2 from \mathcal{G} giving rise to three different types of hyperplanes.

Theorem

If a generalized hexagon doesn't have 1-ovoids, then it cannot be contained in any semi-finite generalized hexagon as a full subgeometry.

Semi-finite hexagons

Theorem (A. B. and B. De Bruyn)

A semi-finite generalized hexagon of order $(2, \infty)$ doesn't contain any subhexagons of order $(2,2)$.

Lemma (A. B. and B. De Bruyn)

Let L be a line of \mathcal{G}^{\prime} that doesnt intersect \mathcal{G}. Then there exists an integer c_{L} such that for any distinct points x, y on L we have $\left|H_{x} \cap H_{y}\right|=q+1-c_{L}$.

Using this and some computations we can also handle $H(3)$ and $H(4)$.

Open Problems

(1) Classify 1 -ovoids in $H(5)$ and its dual.
(2) For $\operatorname{char}\left(\mathbb{F}_{q}\right) \neq 3$, are there any 1 -ovoids in $H(q)^{D}$?
(3) Are there any semi-finite hexagons containing a subhexagon of order q ? (solved for $q=2,3,4$)
(9) Are there any spreads in $G Q\left(q^{2}, q^{3}\right)$ obtained from the Hermitian variety $H\left(4, q^{2}\right)$? (solved for $q=2$)
(3) Are there any 1 -ovoids in Ree-Tits octagons? (solved for order $(2,4)$)

