Switched symplectic graphs and their 2-rank

Aida Abiad

joint work with Willem H. Haemers

Tilburg University

A church, a graph, and its adjacency matrix

$$
A=\left(\begin{array}{llllllllll}
0 & 1 & 0 & 0 & 1 & 0 & 1 & 0 & 0 & 0 \\
1 & 0 & 1 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 1 & 0 & 1 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 & 1 & 0 & 0 & 0 & 0 & 1 \\
1 & 0 & 0 & 1 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & 1 & 1 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 \\
0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 & 0 & 1 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 1 & 1 & 0 & 0
\end{array}\right)
$$

spectrum: $3,1,1,1,1,1,-2,-2,-2,-2$

Godsil-McKay switching

regularity in the switching set

0 , all, or half

Godsil-McKay switching

regularity in the switching set

0 , all, or other half

Godsil-McKay switching

Godsil-McKay switching

Godsil-McKay switching

D

Godsil-McKay switching

Godsil-McKay switching

Godsil-McKay switching

Switched symplectic graphs and their 2-ranks

Aida Abiad and Willem H. Haemers
Department of Econometrics and Operations Research, Tilburg University, Tilburg, The Netherlands

The 2-rank of a graph is the rank of its adjacency matrix over the finite field \mathbb{F}_{2}.

Godsil-McKay switching and its 2-rank behaviour

Godsil-McKay switching and its 2-rank behaviour

$$
A^{\prime}=A+S \quad(\bmod 2)
$$

Godsil-McKay switching and its 2-rank behaviour

Godsil-McKay switching and its 2-rank behaviour

Lemma

The 2-rank of a symmetric integral matrix with zero diagonal is even.

Godsil-McKay switching and its 2-rank behaviour

Lemma

The 2-rank of a symmetric integral matrix with zero diagonal is even.

Proposition [Abiad and Haemers, 2015]
Suppose 2-rank $(A)=r$, then r is even and 2-rank $\left(A^{\prime}\right)=r-2, r$ or $r+2$.

Strongly regular graph (SRG)
A regular graph or order n and degree k is strongly regular with parameters (n, k, λ, μ) if

Strongly regular graph (SRG)
A regular graph or order n and degree k is strongly regular with parameters (n, k, λ, μ) if
i Any two adjacent vertices have exactly λ common neighbours

Strongly regular graph (SRG)
A regular graph or order n and degree k is strongly regular with parameters (n, k, λ, μ) if
i Any two adjacent vertices have exactly λ common neighbours
ii Any two nonadjacent vertices have exactly μ common neighbours

Strongly regular graph (SRG)
A regular graph or order n and degree k is strongly regular with parameters (n, k, λ, μ) if
i Any two adjacent vertices have exactly λ common neighbours
ii Any two nonadjacent vertices have exactly μ common neighbours

Example: Petersen graph is $\operatorname{SRG}(10,3,0,1)$

G: SRG

G^{\prime} : graph obtained from G by Godsil-McKay switching
G, G^{\prime} same spectrum

G: SRG

G^{\prime} : graph obtained from G by Godsil-McKay switching
G, G^{\prime} same spectrum

If G^{\prime} is a graph with the same spectrum as G

G: SRG

G^{\prime} : graph obtained from G by Godsil-McKay switching
G, G^{\prime} same spectrum

If G^{\prime} is a graph with the same spectrum as G

G: SRG

G^{\prime} : graph obtained from G by Godsil-McKay switching
G, G^{\prime} same spectrum

If G^{\prime} is a graph with the same spectrum as G

G^{\prime} is also SRG with the same parameters as G

Godsil-McKay switching can be used to construct new SRG from known ones

Godsil-McKay switching can be used to construct new SRG from known ones

HOWEVER

Godsil-McKay switching can be used to construct new SRG from known ones

HOWEVER

NO guarantee that the switched graph is nonisomorphic with the original SRG

Godsil-McKay switching can be used to construct new SRG from known ones

HOWEVER

NO guarantee that the switched graph is nonisomorphic with the original SRG

OUR TOOL: 2-rank

Symplectic graph over $\mathbb{F}_{2}: \quad S p(2 \nu, 2)$

Symplectic graph over $\mathbb{F}_{2}: \quad S p(2 \nu, 2)$

$$
V=\mathbb{F}_{2}^{2 \nu} \backslash\{0\}
$$

Symplectic graph over $\mathbb{F}_{2}: \quad S p(2 \nu, 2)$

$$
\begin{aligned}
& V=\mathbb{F}_{2}^{2 \nu} \backslash\{0\} \\
& v=\left[\begin{array}{lll}
v_{1} & \cdots & v_{2 \nu}
\end{array}\right]^{\top} \sim \quad w=\left[\begin{array}{lll}
w_{1} & \cdots & w_{2 \nu}
\end{array}\right]^{\top} \text { iff }
\end{aligned}
$$

Symplectic graph over $\mathbb{F}_{2}: \quad \operatorname{Sp}(2 \nu, 2)$

$$
\begin{aligned}
& V=\mathbb{F}_{2}^{2 \nu} \backslash\{0\} \\
& v=\left[v_{1} \cdots v_{2 \nu}\right]^{\top} \sim \quad w=\left[w_{1} \cdots w_{2 \nu}\right]^{\top} \text { iff } \\
& \left(v_{1} w_{2}+v_{2} w_{1}\right)+\left(v_{3} w_{4}+v_{4} w_{3}\right)+\cdots=1 \mathrm{iff}
\end{aligned}
$$

Symplectic graph over $\mathbb{F}_{2}: \quad \operatorname{Sp}(2 \nu, 2)$

$$
\begin{aligned}
& V=\mathbb{F}_{2}^{2 \nu} \backslash\{0\} \\
& v=\left[v_{1} \cdots v_{2 \nu}\right]^{\top} \sim \quad w=\left[w_{1} \cdots w_{2 \nu}\right]^{\top} \text { iff } \\
& \left(v_{1} w_{2}+v_{2} w_{1}\right)+\left(v_{3} w_{4}+v_{4} w_{3}\right)+\cdots=1 \mathrm{iff} \\
& v^{\top} K w=1 \text { where }
\end{aligned}
$$

The symplectic graph $\operatorname{Sp}(2 \nu, 2)$ is a SRG with parameters

$$
\left(2^{2 \nu}-1,2^{2 \nu-1}, 2^{2 \nu-2}, 2^{2 \nu-2}\right) .
$$

The symplectic graph $\operatorname{Sp}(2 \nu, 2)$ is a SRG with parameters

$$
\left(2^{2 \nu}-1,2^{2 \nu-1}, 2^{2 \nu-2}, 2^{2 \nu-2}\right) .
$$

Theorem [Peeters, 1995]
$\operatorname{Sp}(2 \nu, 2)$ is characterized by its parameters and the minimality of its 2 -rank, which equals 2ν.

Godsil-McKay switching set

$$
v_{1}=\left[\begin{array}{l}
1 \\
0 \\
1 \\
0 \\
1 \\
0 \\
z
\end{array}\right], v_{2}=\left[\begin{array}{l}
1 \\
0 \\
0 \\
1 \\
0 \\
1 \\
z
\end{array}\right], v_{3}=\left[\begin{array}{l}
0 \\
1 \\
1 \\
0 \\
0 \\
1 \\
z
\end{array}\right], v_{4}=\left[\begin{array}{l}
0 \\
1 \\
0 \\
1 \\
1 \\
0 \\
z
\end{array}\right]
$$

where $z \in \mathbb{F}_{2}^{2 \nu-6}$.

Godsil-McKay switching set

$$
v_{1}=\left[\begin{array}{l}
1 \\
0 \\
1 \\
0 \\
1 \\
0 \\
z
\end{array}\right], v_{2}=\left[\begin{array}{l}
1 \\
0 \\
0 \\
1 \\
0 \\
1 \\
z
\end{array}\right], v_{3}=\left[\begin{array}{l}
0 \\
1 \\
1 \\
0 \\
0 \\
1 \\
z
\end{array}\right], v_{4}=\left[\begin{array}{l}
0 \\
1 \\
0 \\
1 \\
1 \\
0 \\
z
\end{array}\right]
$$

where $z \in \mathbb{F}_{2}^{2 \nu-6}$.
Proposition [Abiad and Haemers, 2015]
The set $B=\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}$ is a Godsil-McKay switching set of $S p(2 \nu, 2)$ for $\nu \geq 3$.

Proof

Proof

1.

Any two vertices from B are nonadjacent

 \Downarrowsubgraph induced by B is a coclique
\Downarrow
regular

Proof

1. Any two vertices from B are nonadjacent
\Downarrow
subgraph induced by B is a coclique
\Downarrow
regular
2. Consider $x \notin B$. Then
$x^{\top} K v_{1}+x^{\top} K v_{2}+x^{\top} K v_{3}+x^{\top} K v_{4}=x^{\top} K\left(v_{1}+v_{2}+v_{3}+v_{4}\right)=x^{\top} K 0=0$.

Theorem [Abiad and Haemers, 2015]
For $\nu \geq 3$, the graph G^{\prime} obtained from $\operatorname{Sp}(2 \nu, 2)$ by switching with respect to the switching set B given above, is strongly regular with the same parameters as $\operatorname{Sp}(2 \nu, 2)$, but with 2 -rank equal to $2 \nu+2$.

Sketch of the proof

- A adjacency matrix of $S p(2 \nu, 2)$.

Sketch of the proof

- A adjacency matrix of $\operatorname{Sp}(2 \nu, 2)$.
- The sum of any two rows of A is again a row of A.

Sketch of the proof

- A adjacency matrix of $\operatorname{Sp}(2 \nu, 2)$.
- The sum of any two rows of A is again a row of A.

- Before switching: $r_{1}+r_{2}+r_{3}=00000 \ldots 0$.

Sketch of the proof

- A adjacency matrix of $\operatorname{Sp}(2 \nu, 2)$.
- The sum of any two rows of A is again a row of A.

- Before switching: $r_{1}+r_{2}+r_{3}=00000 \ldots 0$.
- After switching: $r_{1}^{\prime}+r_{2}^{\prime}+r_{3}^{\prime}=11110 \ldots 0$.

Repeated switching in $\operatorname{Sp}(6,2)$ gives ≥ 1000 nonisomorphic

 SRG $(63,32,16,16)$ with 2-ranks:$6,8, \ldots, 18$.

Steve Butler is running an exhaustive search of repeated switching in $\operatorname{Sp}(6,2)$ and has found ≥ 6000000 nonisomorphic $\operatorname{SRG}(63,32,16,16)$ with 2-ranks:

$$
6,8, \ldots, 24
$$

Remark

Theoretical upper bound for the 2-rank of $S p(6,2)$ is 26 .

Hadamard matrix H of order n :

$$
H H^{\top}=n l
$$

Example:

$$
H=\left[\begin{array}{cccc}
1 & 1 & 1 & 1 \\
1 & 1 & - & - \\
1 & - & 1 & - \\
1 & - & - & 1
\end{array}\right]
$$

Hadamard matrix H of order n :

$$
H H^{\top}=n l
$$

Example:

$$
H=\left[\begin{array}{cccc}
1 & 1 & 1 & 1 \\
1 & 1 & - & - \\
1 & - & 1 & - \\
1 & - & - & 1
\end{array}\right]
$$

Normalized Hadamard matrix: first row and first column is all ones.

Hadamard matrix H of order n :

$$
H H^{\top}=n l
$$

Example:

$$
H=\left[\begin{array}{cccc}
1 & 1 & 1 & 1 \\
1 & 1 & - & - \\
1 & - & 1 & - \\
1 & - & - & 1
\end{array}\right]
$$

Normalized Hadamard matrix: first row and first column is all ones.
Graphical Hadamard matrix: symmetric and constant diagonal.

For a Hadamard matrix $H: \quad A_{H}=\frac{1}{2}(J-H)$.

If H is normalized and $n>4$,

$$
H=\left[\begin{array}{ccccc}
1 & 1 & \cdots & 1 & 1 \\
1 & 1 & & & \\
\vdots & & \ddots & & \\
1 & & & 1 & \\
1 & & & & 1
\end{array}\right] \quad A=\left[\begin{array}{ccccc}
0 & 0 & \cdots & 0 & 0 \\
0 & 0 & & & \\
\vdots & & \ddots & & \\
0 & & & 0 & \\
0 & & & & 0
\end{array}\right]
$$

and A corresponds to a $\operatorname{SRG}\left(n-1, \frac{n}{2}, \frac{n}{4}, \frac{n}{4}\right)$.
H_{1}, H_{2} Hadamard matrices $\Longrightarrow H_{1} \otimes H_{2}$ Hadamard matrix.

Lemma [Abiad and Haemers, 2015]
Let H_{1} and H_{2} be Hadamard matrices, and let $\rho(H)=2-\operatorname{rank}\left(A_{H}\right)$. Then,

$$
\rho\left(H_{1} \otimes H_{2}\right) \leq \rho\left(H_{1}\right)+\rho\left(H_{2}\right),
$$

with equality if H_{1} and H_{2} are normalized.

Alternative description of $\operatorname{Sp}(2 \nu, 2)$ by using a recursive construction

Take

$$
H=\left[\begin{array}{cccc}
1 & 1 & 1 & 1 \\
1 & 1 & - & - \\
1 & - & 1 & - \\
1 & - & - & 1
\end{array}\right], \quad \text { then } \quad A=\left[\begin{array}{llll}
0 & 0 & 0 & 0 \\
0 & 0 & 1 & 1 \\
0 & 1 & 0 & 1 \\
0 & 1 & 1 & 0
\end{array}\right] \Longleftarrow S p(2,2)
$$

Alternative description of $\operatorname{Sp}(2 \nu, 2)$ by using a recursive construction

Take

$$
H=\left[\begin{array}{cccc}
1 & 1 & 1 & 1 \\
1 & 1 & - & - \\
1 & - & 1 & - \\
1 & - & - & 1
\end{array}\right], \quad \text { then } \quad A=\left[\begin{array}{llll}
0 & 0 & 0 & 0 \\
0 & 0 & 1 & 1 \\
0 & 1 & 0 & 1 \\
0 & 1 & 1 & 0
\end{array}\right] \Longleftarrow S p(2,2)
$$

with $2-\operatorname{rank}(A)=2$. We define

Alternative description of $\operatorname{Sp}(2 \nu, 2)$ by using a recursive construction
Take

$$
H=\left[\begin{array}{cccc}
1 & 1 & 1 & 1 \\
1 & 1 & - & - \\
1 & - & 1 & - \\
1 & - & - & 1
\end{array}\right], \quad \text { then } \quad A=\left[\begin{array}{llll}
0 & 0 & 0 & 0 \\
0 & 0 & 1 & 1 \\
0 & 1 & 0 & 1 \\
0 & 1 & 1 & 0
\end{array}\right] \Longleftarrow S p(2,2)
$$

with $2-\operatorname{rank}(A)=2$. We define

$$
H^{\otimes \nu}=H \otimes H \otimes \cdots \otimes H \quad(\nu \text { times })
$$

which is a normalized graphical Hadamard matrix of order 4^{ν} and $2-\operatorname{rank}\left(A_{H \otimes \nu}\right)=2 \nu$.

Alternative description of $\operatorname{Sp}(2 \nu, 2)$ by using a recursive construction

Take

$$
H=\left[\begin{array}{cccc}
1 & 1 & 1 & 1 \\
1 & 1 & - & - \\
1 & - & 1 & - \\
1 & - & - & 1
\end{array}\right], \quad \text { then } \quad A=\left[\begin{array}{llll}
0 & 0 & 0 & 0 \\
0 & 0 & 1 & 1 \\
0 & 1 & 0 & 1 \\
0 & 1 & 1 & 0
\end{array}\right] \Longleftarrow S p(2,2)
$$

with $2-\operatorname{rank}(A)=2$. We define

$$
H^{\otimes \nu}=H \otimes H \otimes \cdots \otimes H \quad(\nu \text { times })
$$

which is a normalized graphical Hadamard matrix of order 4^{ν} and $2-\operatorname{rank}\left(A_{H \otimes \nu}\right)=2 \nu$.

$\sqrt{\text { Theorem [Peeters, 1995] }}$| Sp $2 \nu, 2)$ is characterized by its parameters |
| :--- |
| and the minimality of its 2 -rank, which equals 2ν. |

Alternative description of $\operatorname{Sp}(2 \nu, 2)$ by using a recursive construction

Take

$$
H=\left[\begin{array}{llll}
1 & 1 & 1 & 1 \\
1 & 1 & - & - \\
1 & - & 1 & - \\
1 & - & - & 1
\end{array}\right], \quad \text { then } \quad A=\left[\begin{array}{llll}
0 & 0 & 0 & 0 \\
0 & 0 & 1 & 1 \\
0 & 1 & 0 & 1 \\
0 & 1 & 1 & 0
\end{array}\right] \Longleftarrow S p(2,2)
$$

with $2-\operatorname{rank}(A)=2$. We define

$$
H^{\otimes \nu}=H \otimes H \otimes \cdots \otimes H \quad(\nu \text { times })
$$

which is a normalized graphical Hadamard matrix of order 4^{ν} and $2-\operatorname{rank}\left(A_{H \otimes \nu}\right)=2 \nu$.

Theorem [Peeters, 1995]
$S p(2 \nu, 2)$ is characterized by its parameters and the minimality of its 2 -rank, which equals 2ν.

The SRG associated with $H^{\otimes \nu}$ is $\operatorname{Sp}(2 \nu, 2)$

In $H^{\otimes \nu}$, we can replace any $H \otimes H \otimes H$ by any other regular graphical Hadamard matrix of order 64 coming from the SRG of order 63 found by computer (with 2-ranks $6,8,10,12,14,16,18$).

In $H^{\otimes \nu}$, we can replace any $H \otimes H \otimes H$ by any other regular graphical Hadamard matrix of order 64 coming from the SRG of order 63 found by computer (with 2-ranks $6,8,10,12,14,16,18$).

Theorem [Abiad and Haemers, 2015]
Using the above recursive construction we get SRG with the parameters of $\operatorname{Sp}(2 \nu, 2)$ and 2 -ranks:

$$
2 \nu, 2 \nu+2, \ldots, 2 \nu+12\lfloor\nu / 3\rfloor .
$$

Twisted symplectic polar graphs and Gordon-Mills-Welch difference sets

Akihiro Munemasa ${ }^{1}$ (joint work with Frédéric Vanhove)
${ }^{1}$ Graduate School of Information Sciences Tohoku University

February 28, 2014
Colloquium on Galois Geometry
to the memory of
Frédéric Vanhove (1984-2013)
Ghent University

Twisted symplectic polar graphs and Gordon-Mills-Welch difference sets

Akihiro Munemasa ${ }^{1}$
(joint work with Frédéric Vanhove)
${ }^{1}$ Graduate School of Information Sciences Tohoku University
February 28, 2014
Colloquium on Galois Geometry
to the memory of
Frédéric Vanhove (1984-2013)
Ghent University

A different construction of graphs with the same parameters as $S p(2 \nu, 2)$ was given by Munemasa and Vanhove in 2014. The construction admits a cyclic difference set, and using a result by Qing et al., it follows that the 2-rank of their graphs is at least 4ν

Twisted symplectic polar graphs and Gordon-Mills-Welch difference sets

Akihiro Munemasa ${ }^{1}$
(joint work with Frédéric Vanhove)
${ }^{1}$ Graduate School of Information Sciences Tohoku University
February 28, 2014
Colloquium on Galois Geometry
to the memory of
Frédéric Vanhove (1984-2013)
Ghent University

A different construction of graphs with the same parameters as $S p(2 \nu, 2)$ was given by Munemasa and Vanhove in 2014. The construction admits a cyclic difference set, and using a result by Qing et al., it follows that the 2-rank of their graphs is at least 4ν

Twisted symplectic polar graphs and Gordon-Mills-Welch difference sets

Akihiro Munemasa ${ }^{1}$
(joint work with Frédéric Vanhove)
${ }^{1}$ Graduate School of Information Sciences Tohoku University
February 28, 2014
Colloquium on Galois Geometry
to the memory of
Frédéric Vanhove (1984-2013)
Ghent University

A different construction of graphs with the same parameters as $\operatorname{Sp}(2 \nu, 2)$ was given by Munemasa and Vanhove in 2014. The construction admits a cyclic difference set, and using a result by Qing et al., it follows that the 2-rank of their graphs is at least 4ν

Nonisomorphic to our switched symplectic graphs, which have 2-rank $2 \nu+2$

Summary

- We find Godsil-McKay switching sets in $\operatorname{Sp}(2 \nu, 2)$ and we prove that the 2-rank increases after switching
- Repeated switching in $\operatorname{Sp}(6,2)$
- Recursive construction method for $\operatorname{Sp}(2 \nu, 2)$ from Hadamard matrices

Summary

- We find Godsil-McKay switching sets in $\operatorname{Sp}(2 \nu, 2)$ and we prove that the 2-rank increases after switching
- Repeated switching in $\operatorname{Sp}(6,2)$
- Recursive construction method for $\operatorname{Sp}(2 \nu, 2)$ from Hadamard matrices

New SRG with the same parameters as $\operatorname{Sp}(2 \nu, 2)$, but different 2-ranks

- Are there superexponentially many switched symplectic graphs obtained by repeated Godsil-McKay switching on $\operatorname{Sp}(2 \nu, 2)$?
- Are there superexponentially many switched symplectic graphs obtained by repeated Godsil-McKay switching on $\operatorname{Sp}(2 \nu, 2)$?
- Are the twisted symplectic polar graphs (with 2-rank at least 4ν) related to the switched symplectic graphs (with 2-rank $2 \nu+2$)?

Thank you for your attention.

Thank you for your attention. And thanks to the organizer!

