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Lecture 41:

Parallelization on a cluster of 
distributed memory machines

Part 1: Introduction to MPI
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Shared memory

In the previous lecture:
● There was a single address space
● All parallel threads of execution have access to all data

Advantage:
● Makes parallelization simpler

Disadvantages:
● Problem size limited by

– number of cores on your machine
– amount of memory on your machine
– memory bandwidth

● Need synchronisation via locks
● Makes it too easy to avoid hard decisions
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Shared memory

Example:

● Only one Triangulation, DoFHandler, matrix, rhs vector

● Multiple threads work in parallel to
– assemble linear system
– perform matrix-vector products
– estimate the error per cell
– generate graphical output for each cell

● All threads access the same global objects

For examples, see several of the step-xx programs and the 
“Parallel computing with multiple processors accessing 
shared memory” documentation module
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Shared vs. distributed memory

This lecture:
● Multiple machines with their own address spaces
● No direct access to remote data
● Data has to be transported explicitly between machines

Advantage:
● (Almost) unlimited number of cores and memory
● Often scales better in practice

Disadvantages:
● Much more complicated programming model
● Requires entirely different way of thinking

● Practical difficulties debugging, profiling, ...
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Distributed memory

Example:

● One Triangulation, DoFHandler, matrix, rhs vector object 
per processor

● Union of these objects represent global object

● Multiple programs work in parallel to
– assemble their part of the linear system
– perform their part of the matrix-vector products
– estimate the error on their cells
– generate graphical output for each of their cells

● Each program only accesses their part of global objects

See step-40/32/42 and the “Parallel computing with multiple 
processors using distributed memory” module
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Distributed memory

There are many ways to do distributed memory 
computing:

● Message passing interface (MPI)

● Remote procedure calls (RPC)

● Partitioned global address space (PGAS) languages:
– Unified Parallel C (UPC – an extension to C)
– Coarray Fortran (part of Fortran 2008)
– Chapel, X10, Titanium
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Message Passing Interface (MPI)

MPI's model is simple:

● The “universe” consists of “processes”

● Typically:
– One single-threaded process per core
– One multi-threaded process per machine

● Processes can send “messages” to other processes… 

● …but nothing happens if the other side is not listening

Mental model: Sending letters through the mail system
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Message Passing Interface (MPI)

MPI's model implies:
● You can't “just access” data of another process

● Instead, option 1:
– you need to send a request message
– other side has to pick up message
– other side has to know what to do
– other side has to send a message with the data
– you have to pick up message

● Option 2:
– depending on phase of program, I know when someone
   else needs my data    send it→
– I will know who sent me data    go get it→
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Message Passing Interface (MPI)

MPI's model implies:
● You can't “just access” data of another process
● Instead...

This is bothersome to program. However:
● It exposes to the programmer what is happening
● Processes can do other things between sending a 

message and waiting for the next
● Has been shown to scale to >1M processes
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Message Passing Interface (MPI)

MPI implementations:
● MPI is defined as a set of

– functions
– data types
– constants
with bindings to C and Fortran

● Is not a language on its own
● Can be compiled by a standard C/Fortran compiler
● Is typically compiled using a specific compiler wrapper:

mpicc -c myprog.c -o myprog.o
mpiCC -c myprog.cc -o myprog.o
mpif90 -c myprog.f90 -o myprog.o

● Bindings to many other languages exist



http://www.dealii.org/    Wolfgang Bangerth

 

Message Passing Interface (MPI)

MPI's bottom layer:
● Send messages from one processor to others
● See if there is a message from any/one particular process
● Receive the message

Example (send on process 2 to process 13):

double d = foo();
MPI_Send (/*data=*/&d, /*count=*/1, /*type=*/MPI_DOUBLE,
                   /*dest=*/13, /*tag=*/42, 
                   /*universe=*/MPI_COMM_WORLD);                                 
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Message Passing Interface (MPI)

MPI's bottom layer:
● Send messages from one processor to others
● See if there is a message from any/one particular process
● Receive the message

Example (query for data from process 13):

Note: One can also specify “anywhere”/”any tag”.

MPI_Status status;
int                message_available;
MPI_Iprobe (/*source=*/13, /*tag=*/42, 
                     /*yesno=*/message_available, 
                     /*universe=*/MPI_COMM_WORLD, 
                     /*status=*/&status);                                                              



http://www.dealii.org/    Wolfgang Bangerth

 

Message Passing Interface (MPI)

MPI's bottom layer:
● Send messages from one processor to others
● See if there is a message from any/one particular process
● Receive the message

Example (receive on process 13):

Note: One can also specify “anywhere”/”any tag”.

double d;
MPI_Status status;
MPI_Recv (/*data=*/&d, /*count=*/1, /*type=*/MPI_DOUBLE,
                   /*source=*/2, /*tag=*/42, 
                   /*universe=*/MPI_COMM_WORLD, 
                   /*status=*/&status);                                                             



http://www.dealii.org/    Wolfgang Bangerth

 

Message Passing Interface (MPI)

MPI's bottom layer:
● Send messages from one processor to others
● See if there is a message from any/one particular process
● Receive the message

Notes:
● MPI_Send blocks the program: function only returns 

when the data is out the door
● MPI_Recv blocks the program: function only returns when

– a message has come in
– the data is in the final location

● There are also non-blocking start/end versions 
(MPI_Isend, MPI_Irecv, MPI_Wait)
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Message Passing Interface (MPI)

MPI's higher layers: Collective operations
● Internally implemented by sending messages
● Available operations:

– Barrier
– Broadcast (one item from one to all)
– Scatter (many items from one to all), 
– Gather (from all to one), AllGather (all to all)
– Reduce (e.g. sum from all), AllReduce 

Note: Collective operations lead to deadlocks if some 
processes do not participate!
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Message Passing Interface (MPI)

Example: Barrier use for timing (pseudocode)

Note: Different processes will compute different values.

… do something …
MPI_Barrier (MPI_COMM_WORLD);

std::time_point start = std::now();       // get current time
foo();                                                      // may contain MPI calls
std::time_point end_local = std::now(); // get current time

MPI_Barrier (MPI_COMM_WORLD);
std::time_point end_global = std::now(); // get current time

std::duration local_time   = end_local – start;
std::duration global_time = end_global – start;
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Message Passing Interface (MPI)

Example: Reduction

Note 1: Only the root (processor) gets the result.
Note 2: Implemented by (i) everyone sending the root a 
message, or (ii) hierarchical reduction on a tree

parallel::distributed::Triangulation<dim>  triangulation;
… create triangulation …

unsigned int my_cells = triangulation.n_locally_owned_cells();
unsigned int global_cells;

MPI_Reduce (&my_cells, &global_cells, MPI_UNSIGNED, 1,
                       /*operation=*/MPI_SUM,
                       /*root=*/0,
                       MPI_COMM_WORLD);
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Message Passing Interface (MPI)

Example: AllReduce

Note 1: All processors now get the result.
Note 2: Can be implemented by MPI_Reduce + 
MPI_Broadcast

parallel::distributed::Triangulation<dim>  triangulation;
… create triangulation …

unsigned int my_cells = triangulation.n_locally_owned_cells();
unsigned int global_cells;

MPI_Allreduce (&my_cells, &global_cells, MPI_UNSIGNED, 1,
                         /*operation=*/MPI_SUM,
                         MPI_COMM_WORLD);
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Message Passing Interface (MPI)

MPI's higher layers: Communicators
● MPI_COMM_WORLD denotes the “universe” of all MPI 

processes
● Corresponds to a “mail service” (a communicator)
● Addresses are the “ranks” of each process in a 

communicator

● One can form subsets of a communicator
● Forms the basis for collective operations among a subset 

of processes
● Useful if subsets of processors do different tasks
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Message Passing Interface (MPI)

MPI's higher layers: I/O
● Fact: There is a bottleneck if 1,000 machines write to the 

file system at the same time

● MPI provides ways to make this more efficient
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Message Passing Interface (MPI)

Also in MPI:
● “One-sided communication”: directly writing into and 

reading from another process's memory space
● Topologies: mapping network characteristics to MPI
● Starting additional MPI processes

More information on MPI:
 http://www.mpi-forum.org/
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An MPI example: MatVec

Situation:
● Multiply a large NxN matrix by a vector of size N
● Matrix is assumed to be dense

● Every one of P processors stores N/P rows of the matrix
● Every processor stores N/P elements of each vector

● For simplicity: N is a multiple of P
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An MPI example: MatVec

struct ParallelVector {
    unsigned int size;
    unsigned int my_elements_begin;
    unsigned int my_elements_end;
    double *elements;

    ParallelVector (unsigned int sz,MPI_Comm comm) {
        size = sz;
        int comm_size, my_rank;
        MPI_Comm_size (comm, &comm_size);
        MPI_Comm_rank (comm, &my_rank);
        my_elements_begin = size/comm_size*my_rank;
        my_elements_end = size/comm_size*(my_rank+1);
        elements = new double[my_elements_end-my_elements_begin];
    }
};
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An MPI example: MatVec

struct ParallelSquareMatrix {
    unsigned int size;
    unsigned int my_rows_begin;
    unsigned int my_rows_end;
    double *elements;

    ParallelSquareMatrix (unsigned int sz,MPI_Comm comm) {
        size = sz;
        int comm_size, my_rank;
        MPI_Comm_size (comm, &comm_size);
        MPI_Comm_rank (comm, &my_rank);
        my_rows_begin = size/comm_size*my_rank;
        my_rows_end = size/comm_size*(my_rank+1);
        elements = new double[(my_rows_end-my_rows_begin)*size];
    }
};
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An MPI example: MatVec

What does processor P need:
● Graphical representation of what P owns:

                A              x          y

● To compute the locally owned elements of y, processor P 
needs all elements of x
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An MPI example: MatVec

void vmult (A, x, y) {
     int comm_size=..., my_rank=...;
     for (row_block=0; row_block<comm_size; ++row_block)
         if (row_block == my_rank) {
             for (col_block=0; col_block<comm_size; ++col_block)
                 if (col_block == my_rank) {
                     for (i=A.my_rows_begin; i<A.my_rows_end; ++i)
                       for (j=A.size/comm_size*col_block; ...)
                          y.elements[i-y.my_rows_begin] = A[...i,j...] * x[...j...];
                 } else {
                     double *tmp = new double[A.size/comm_size];
                     MPI_Recv (tmp, …, row_block, …);
                     for (i=A.my_rows_begin; i<A.my_rows_end; ++i)
                       for (j=A.size/comm_size*col_block; ...)
                          y.elements[i-y.my_rows_begin] = A[...i,j...] * tmp[...j...];                      
                     delete tmp;
                 }
         } else {
             MPI_Send (x.elements, …, row_block, …);
         }
}
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An MPI example: MatVec

Analysis of this algorithm
● We only send data right when we need it:

– receiving processor has to wait
– has nothing to do in the meantime
A better algorithm would:
– send out its data to all other processors
– receive messages as needed (maybe already here)

● As a general rule:
– send data as soon as possible
– receive it as late as possible
– try to interleave computations between sends/receives

● We repeatedly allocate/deallocate memory – should set 
up buffer only once
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An MPI example: MatVec

void vmult (A, x, y) {
     int comm_size=..., my_rank=...;
     for (row_block=0; row_block<comm_size; ++row_block)
         if (row_block != my_rank)
             MPI_Send (x.elements, …, row_block, …);
  
    col_block = my_rank;
    for (i=A.my_rows_begin; i<A.my_rows_end; ++i)
       for (j=A.size/comm_size*col_block; ...)
          y.elements[i-y.my_rows_begin] = A[...i,j...] * x[...j...];

    double *tmp = new double[A.size/comm_size];
     for (col_block=0; col_block<comm_size; ++col_block)
         if (col_block != my_rank) {
             MPI_Recv (tmp, …, row_block, …);
             for (i=A.my_rows_begin; i<A.my_rows_end; ++i)
                  for (j=A.size/comm_size*col_block; ...)
                       y.elements[i-y.my_rows_begin] = A[...i,j...] * tmp[...j...];                      
         }
     delete tmp;
}
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Message Passing Interface (MPI)

Notes on using MPI:
● Usually, algorithms need data that resides elsewhere
● Communication needed

● Distributed computing lives in the conflict zone between
– trying to keep as much data available locally to avoid
   communication
– not creating a memory/CPU bottleneck

● MPI makes the flow of information explicit
● Forces programmer to design data structures/algorithms 

for communication

● Typical programs have relatively few MPI calls
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Message Passing Interface (MPI)

Alternatives to MPI:
● boost::mpi is nice, but doesn't buy much in practice

● Partitioned Global Address Space (PGAS) languages like 
Co-Array Fortran, UPC, Chapel, X10, …:

Pros:
– offer nicer syntax
– communication is part of the language
Cons:
– typically no concept of “communicators”
– communication is implicit
– encourages poor data structure/algorithm design
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