
http://www.dealii.org/ Wolfgang Bangerth

MATH 676

–

Finite element methods in
scientific computing

Wolfgang Bangerth, Texas A&M University

http://www.dealii.org/ Wolfgang Bangerth

Lecture 41:

Parallelization on a cluster of
distributed memory machines

Part 1: Introduction to MPI

http://www.dealii.org/ Wolfgang Bangerth

Shared memory

In the previous lecture:
● There was a single address space
● All parallel threads of execution have access to all data

Advantage:
● Makes parallelization simpler

Disadvantages:
● Problem size limited by

– number of cores on your machine
– amount of memory on your machine
– memory bandwidth

● Need synchronisation via locks
● Makes it too easy to avoid hard decisions

http://www.dealii.org/ Wolfgang Bangerth

Shared memory

Example:

● Only one Triangulation, DoFHandler, matrix, rhs vector

● Multiple threads work in parallel to
– assemble linear system
– perform matrix-vector products
– estimate the error per cell
– generate graphical output for each cell

● All threads access the same global objects

For examples, see several of the step-xx programs and the
“Parallel computing with multiple processors accessing
shared memory” documentation module

http://www.dealii.org/ Wolfgang Bangerth

Shared vs. distributed memory

This lecture:
● Multiple machines with their own address spaces
● No direct access to remote data
● Data has to be transported explicitly between machines

Advantage:
● (Almost) unlimited number of cores and memory
● Often scales better in practice

Disadvantages:
● Much more complicated programming model
● Requires entirely different way of thinking

● Practical difficulties debugging, profiling, ...

http://www.dealii.org/ Wolfgang Bangerth

Distributed memory

Example:

● One Triangulation, DoFHandler, matrix, rhs vector object
per processor

● Union of these objects represent global object

● Multiple programs work in parallel to
– assemble their part of the linear system
– perform their part of the matrix-vector products
– estimate the error on their cells
– generate graphical output for each of their cells

● Each program only accesses their part of global objects

See step-40/32/42 and the “Parallel computing with multiple
processors using distributed memory” module

http://www.dealii.org/ Wolfgang Bangerth

Distributed memory

There are many ways to do distributed memory
computing:

● Message passing interface (MPI)

● Remote procedure calls (RPC)

● Partitioned global address space (PGAS) languages:
– Unified Parallel C (UPC – an extension to C)
– Coarray Fortran (part of Fortran 2008)
– Chapel, X10, Titanium

http://www.dealii.org/ Wolfgang Bangerth

Message Passing Interface (MPI)

MPI's model is simple:

● The “universe” consists of “processes”

● Typically:
– One single-threaded process per core
– One multi-threaded process per machine

● Processes can send “messages” to other processes…

● …but nothing happens if the other side is not listening

Mental model: Sending letters through the mail system

http://www.dealii.org/ Wolfgang Bangerth

Message Passing Interface (MPI)

MPI's model implies:
● You can't “just access” data of another process

● Instead, option 1:
– you need to send a request message
– other side has to pick up message
– other side has to know what to do
– other side has to send a message with the data
– you have to pick up message

● Option 2:
– depending on phase of program, I know when someone
 else needs my data send it→
– I will know who sent me data go get it→

http://www.dealii.org/ Wolfgang Bangerth

Message Passing Interface (MPI)

MPI's model implies:
● You can't “just access” data of another process
● Instead...

This is bothersome to program. However:
● It exposes to the programmer what is happening
● Processes can do other things between sending a

message and waiting for the next
● Has been shown to scale to >1M processes

http://www.dealii.org/ Wolfgang Bangerth

Message Passing Interface (MPI)

MPI implementations:
● MPI is defined as a set of

– functions
– data types
– constants
with bindings to C and Fortran

● Is not a language on its own
● Can be compiled by a standard C/Fortran compiler
● Is typically compiled using a specific compiler wrapper:

mpicc -c myprog.c -o myprog.o
mpiCC -c myprog.cc -o myprog.o
mpif90 -c myprog.f90 -o myprog.o

● Bindings to many other languages exist

http://www.dealii.org/ Wolfgang Bangerth

Message Passing Interface (MPI)

MPI's bottom layer:
● Send messages from one processor to others
● See if there is a message from any/one particular process
● Receive the message

Example (send on process 2 to process 13):

double d = foo();
MPI_Send (/*data=*/&d, /*count=*/1, /*type=*/MPI_DOUBLE,
 /*dest=*/13, /*tag=*/42,
 /*universe=*/MPI_COMM_WORLD);

http://www.dealii.org/ Wolfgang Bangerth

Message Passing Interface (MPI)

MPI's bottom layer:
● Send messages from one processor to others
● See if there is a message from any/one particular process
● Receive the message

Example (query for data from process 13):

Note: One can also specify “anywhere”/”any tag”.

MPI_Status status;
int message_available;
MPI_Iprobe (/*source=*/13, /*tag=*/42,
 /*yesno=*/message_available,
 /*universe=*/MPI_COMM_WORLD,
 /*status=*/&status);

http://www.dealii.org/ Wolfgang Bangerth

Message Passing Interface (MPI)

MPI's bottom layer:
● Send messages from one processor to others
● See if there is a message from any/one particular process
● Receive the message

Example (receive on process 13):

Note: One can also specify “anywhere”/”any tag”.

double d;
MPI_Status status;
MPI_Recv (/*data=*/&d, /*count=*/1, /*type=*/MPI_DOUBLE,
 /*source=*/2, /*tag=*/42,
 /*universe=*/MPI_COMM_WORLD,
 /*status=*/&status);

http://www.dealii.org/ Wolfgang Bangerth

Message Passing Interface (MPI)

MPI's bottom layer:
● Send messages from one processor to others
● See if there is a message from any/one particular process
● Receive the message

Notes:
● MPI_Send blocks the program: function only returns

when the data is out the door
● MPI_Recv blocks the program: function only returns when

– a message has come in
– the data is in the final location

● There are also non-blocking start/end versions
(MPI_Isend, MPI_Irecv, MPI_Wait)

http://www.dealii.org/ Wolfgang Bangerth

Message Passing Interface (MPI)

MPI's higher layers: Collective operations
● Internally implemented by sending messages
● Available operations:

– Barrier
– Broadcast (one item from one to all)
– Scatter (many items from one to all),
– Gather (from all to one), AllGather (all to all)
– Reduce (e.g. sum from all), AllReduce

Note: Collective operations lead to deadlocks if some
processes do not participate!

http://www.dealii.org/ Wolfgang Bangerth

Message Passing Interface (MPI)

Example: Barrier use for timing (pseudocode)

Note: Different processes will compute different values.

… do something …
MPI_Barrier (MPI_COMM_WORLD);

std::time_point start = std::now(); // get current time
foo(); // may contain MPI calls
std::time_point end_local = std::now(); // get current time

MPI_Barrier (MPI_COMM_WORLD);
std::time_point end_global = std::now(); // get current time

std::duration local_time = end_local – start;
std::duration global_time = end_global – start;

http://www.dealii.org/ Wolfgang Bangerth

Message Passing Interface (MPI)

Example: Reduction

Note 1: Only the root (processor) gets the result.
Note 2: Implemented by (i) everyone sending the root a
message, or (ii) hierarchical reduction on a tree

parallel::distributed::Triangulation<dim> triangulation;
… create triangulation …

unsigned int my_cells = triangulation.n_locally_owned_cells();
unsigned int global_cells;

MPI_Reduce (&my_cells, &global_cells, MPI_UNSIGNED, 1,
 /*operation=*/MPI_SUM,
 /*root=*/0,
 MPI_COMM_WORLD);

http://www.dealii.org/ Wolfgang Bangerth

Message Passing Interface (MPI)

Example: AllReduce

Note 1: All processors now get the result.
Note 2: Can be implemented by MPI_Reduce +
MPI_Broadcast

parallel::distributed::Triangulation<dim> triangulation;
… create triangulation …

unsigned int my_cells = triangulation.n_locally_owned_cells();
unsigned int global_cells;

MPI_Allreduce (&my_cells, &global_cells, MPI_UNSIGNED, 1,
 /*operation=*/MPI_SUM,
 MPI_COMM_WORLD);

http://www.dealii.org/ Wolfgang Bangerth

Message Passing Interface (MPI)

MPI's higher layers: Communicators
● MPI_COMM_WORLD denotes the “universe” of all MPI

processes
● Corresponds to a “mail service” (a communicator)
● Addresses are the “ranks” of each process in a

communicator

● One can form subsets of a communicator
● Forms the basis for collective operations among a subset

of processes
● Useful if subsets of processors do different tasks

http://www.dealii.org/ Wolfgang Bangerth

Message Passing Interface (MPI)

MPI's higher layers: I/O
● Fact: There is a bottleneck if 1,000 machines write to the

file system at the same time

● MPI provides ways to make this more efficient

http://www.dealii.org/ Wolfgang Bangerth

Message Passing Interface (MPI)

Also in MPI:
● “One-sided communication”: directly writing into and

reading from another process's memory space
● Topologies: mapping network characteristics to MPI
● Starting additional MPI processes

More information on MPI:
 http://www.mpi-forum.org/

http://www.dealii.org/ Wolfgang Bangerth

An MPI example: MatVec

Situation:
● Multiply a large NxN matrix by a vector of size N
● Matrix is assumed to be dense

● Every one of P processors stores N/P rows of the matrix
● Every processor stores N/P elements of each vector

● For simplicity: N is a multiple of P

http://www.dealii.org/ Wolfgang Bangerth

An MPI example: MatVec

struct ParallelVector {
 unsigned int size;
 unsigned int my_elements_begin;
 unsigned int my_elements_end;
 double *elements;

 ParallelVector (unsigned int sz,MPI_Comm comm) {
 size = sz;
 int comm_size, my_rank;
 MPI_Comm_size (comm, &comm_size);
 MPI_Comm_rank (comm, &my_rank);
 my_elements_begin = size/comm_size*my_rank;
 my_elements_end = size/comm_size*(my_rank+1);
 elements = new double[my_elements_end-my_elements_begin];
 }
};

http://www.dealii.org/ Wolfgang Bangerth

An MPI example: MatVec

struct ParallelSquareMatrix {
 unsigned int size;
 unsigned int my_rows_begin;
 unsigned int my_rows_end;
 double *elements;

 ParallelSquareMatrix (unsigned int sz,MPI_Comm comm) {
 size = sz;
 int comm_size, my_rank;
 MPI_Comm_size (comm, &comm_size);
 MPI_Comm_rank (comm, &my_rank);
 my_rows_begin = size/comm_size*my_rank;
 my_rows_end = size/comm_size*(my_rank+1);
 elements = new double[(my_rows_end-my_rows_begin)*size];
 }
};

http://www.dealii.org/ Wolfgang Bangerth

An MPI example: MatVec

What does processor P need:
● Graphical representation of what P owns:

 A x y

● To compute the locally owned elements of y, processor P
needs all elements of x

http://www.dealii.org/ Wolfgang Bangerth

An MPI example: MatVec

void vmult (A, x, y) {
 int comm_size=..., my_rank=...;
 for (row_block=0; row_block<comm_size; ++row_block)
 if (row_block == my_rank) {
 for (col_block=0; col_block<comm_size; ++col_block)
 if (col_block == my_rank) {
 for (i=A.my_rows_begin; i<A.my_rows_end; ++i)
 for (j=A.size/comm_size*col_block; ...)
 y.elements[i-y.my_rows_begin] = A[...i,j...] * x[...j...];
 } else {
 double *tmp = new double[A.size/comm_size];
 MPI_Recv (tmp, …, row_block, …);
 for (i=A.my_rows_begin; i<A.my_rows_end; ++i)
 for (j=A.size/comm_size*col_block; ...)
 y.elements[i-y.my_rows_begin] = A[...i,j...] * tmp[...j...];
 delete tmp;
 }
 } else {
 MPI_Send (x.elements, …, row_block, …);
 }
}

http://www.dealii.org/ Wolfgang Bangerth

An MPI example: MatVec

Analysis of this algorithm
● We only send data right when we need it:

– receiving processor has to wait
– has nothing to do in the meantime
A better algorithm would:
– send out its data to all other processors
– receive messages as needed (maybe already here)

● As a general rule:
– send data as soon as possible
– receive it as late as possible
– try to interleave computations between sends/receives

● We repeatedly allocate/deallocate memory – should set
up buffer only once

http://www.dealii.org/ Wolfgang Bangerth

An MPI example: MatVec

void vmult (A, x, y) {
 int comm_size=..., my_rank=...;
 for (row_block=0; row_block<comm_size; ++row_block)
 if (row_block != my_rank)
 MPI_Send (x.elements, …, row_block, …);

 col_block = my_rank;
 for (i=A.my_rows_begin; i<A.my_rows_end; ++i)
 for (j=A.size/comm_size*col_block; ...)
 y.elements[i-y.my_rows_begin] = A[...i,j...] * x[...j...];

 double *tmp = new double[A.size/comm_size];
 for (col_block=0; col_block<comm_size; ++col_block)
 if (col_block != my_rank) {
 MPI_Recv (tmp, …, row_block, …);
 for (i=A.my_rows_begin; i<A.my_rows_end; ++i)
 for (j=A.size/comm_size*col_block; ...)
 y.elements[i-y.my_rows_begin] = A[...i,j...] * tmp[...j...];
 }
 delete tmp;
}

http://www.dealii.org/ Wolfgang Bangerth

Message Passing Interface (MPI)

Notes on using MPI:
● Usually, algorithms need data that resides elsewhere
● Communication needed

● Distributed computing lives in the conflict zone between
– trying to keep as much data available locally to avoid
 communication
– not creating a memory/CPU bottleneck

● MPI makes the flow of information explicit
● Forces programmer to design data structures/algorithms

for communication

● Typical programs have relatively few MPI calls

http://www.dealii.org/ Wolfgang Bangerth

Message Passing Interface (MPI)

Alternatives to MPI:
● boost::mpi is nice, but doesn't buy much in practice

● Partitioned Global Address Space (PGAS) languages like
Co-Array Fortran, UPC, Chapel, X10, …:

Pros:
– offer nicer syntax
– communication is part of the language
Cons:
– typically no concept of “communicators”
– communication is implicit
– encourages poor data structure/algorithm design

http://www.dealii.org/ Wolfgang Bangerth

MATH 676

–

Finite element methods in
scientific computing

Wolfgang Bangerth, Texas A&M University

	Slide 547
	Slide 548
	Slide 549
	Slide 550
	Slide 551
	Slide 552
	Slide 553
	Slide 554
	Slide 555
	Slide 556
	Slide 557
	Slide 558
	Slide 559
	Slide 560
	Slide 561
	Slide 562
	Slide 563
	Slide 564
	Slide 565
	Slide 566
	Slide 567
	Slide 568
	Slide 569
	Slide 570
	Slide 571
	Slide 572
	Slide 573
	Slide 574
	Slide 575
	Slide 576
	Slide 577
	Slide 578

