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Lecture 33:

Which element to use

Part 1: “Simple” problems
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Elements

What we've seen so far:
● Steps 1 – 6 (Laplace):

– scalar equation
– Q1 or Q2 elements
– easy to change

● Step 20 (mixed Laplace):
– vector-valued equation
– Raviart-Thomas element for the velocity
– piecewise constants for pressure (or higher order DG)
– pairing needs to satisfy certain conditions

● Step 22 (Stokes):
– vector-valued equation
– Q2 element for the velocity
– Q2 for pressure
– pairing needs to satisfy certain conditions
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Elements

There is a zoo of elements for different purposes:
● Continuous Lagrange
● Discontinuous Lagrange
● Raviart-Thomas
● Nedelec
● Rannacher-Turek
● Brezzi-Douglas-Marini (BDM)
● Brezzi-Douglas-Duran-Marini (BDDM)
● Hermite (Argyris)
● Crouzeix-Raviart
● Arnold-Falk-Winther
● Arnold-Boffi-Falk (ABF)

…
● Hybridized elements
● Penalized discontinuous elements
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Elements

There is a zoo of elements for different purposes:
● Continuous Lagrange FE_Q
● Discontinuous Lagrange FE_DGQ, FE_DGP
● Raviart-Thomas FE_RaviartThomas
● Nedelec FE_Nedelec
● Rannacher-Turek
● Brezzi-Douglas-Marini (BDM) FE_BDM
● Brezzi-Douglas-Duran-Marini (BDDM)
● Hermite (Argyris)
● Crouzeix-Raviart
● Arnold-Falk-Winther
● Arnold-Boffi-Falk (ABF) FE_ABF

...
● Hybridized elements FE_FaceQ/TraceQ
● Penalized discontinuous elements
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Scalar problems

For scalar problems like the Laplace equation:

● Q
p
 elements are generally the right choice

● Higher p yield higher convergence order for elliptic 
problems:

● Number of degrees of freedom grows as:

● Error as function of N:

Consequence: This suggests high order elements!

∥u−uh∥H1  ≤  Ch p∣u∣
H p+1             ∥u−uh∥L2

 ≤ Ch p+1∣u∣
H p+1

N  ≃ 
∣Ω∣

(h/ p)
d  = pd∣Ω∣

hd            →            h  ≃ p(∣Ω∣

N )
1/d

∥u−uh∥H1  ≃  pp N−p/d             ∥u−uh∥L2
 ≃ pp+1 N−(p+1)/d
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Scalar problems

For scalar problems like the Laplace equation:
● Q

p
 elements are generally the right choice

● Better convergence only if u smooth:

● Higher p also requires more work:
– more computations to assemble matrix:  O(pd)
– more entries per row in the matrix:  O(pd)
– good preconditioners are difficult to construct for high p

Consequence: This suggests low order elements!

Together: It is a trade-off!

∥u−uh∥H1  ≤  Ch p∣u∣
H p+1
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Practical experience

Prototypical 2d example from Wang, Bangerth, 
Ragusa (2007, Progress in Nuclear Energy):
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Practical experience

Prototypical 2d example from Wang, Bangerth, 
Ragusa (2007, Progress in Nuclear Energy):
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Practical experience

Prototypical 2d example from Wang, Bangerth, 
Ragusa (2007, Progress in Nuclear Energy):

Conclusions:
● Higher p gives better error-per-dof
● Not so clear any more for error-per-CPU-second

● Sweat spot maybe around  p=3  or  p=4  in 2d
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Practical experience

Prototypical 3d example from Wang, Bangerth, 
Ragusa (2007, Progress in Nuclear Energy):
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Practical experience

Prototypical 3d example from Wang, Bangerth, 
Ragusa (2007, Progress in Nuclear Energy):
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Practical experience

Prototypical 3d example from Wang, Bangerth, 
Ragusa (2007, Progress in Nuclear Energy):

Conclusions:
● Higher p gives better error-per-dof
● Not so clear any more for error-per-CPU-second

● Sweat spot maybe around  p=2  or  p=3  in 3d
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Practical experience

Conclusions for scalar problems:
● There is a trade-off between faster convergence and 

more work

● A good compromise is:
– Q3 or Q4 in 2d
– Q2 or Q3 in 3d
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Electromagnetics

A simple vector-valued equation:
● Consider the Maxwell equations:

● If  j=0, q=0, we can decouple these equations:

curl B= j+
∂E
∂ t

 div B=0

curl E=−
∂B
∂ t

 div E=q

∂2 B

∂ t2
+curl curl B=0

 div B=0
∂

2 E

∂ t 2 +curl curl E=0

 div E=0
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Electromagnetics

The source-free Maxwell equations:
In the equations

each variable               satisfies an equation of the form

∂2 B

∂ t2
+curl curl B=0

 div B=0
∂

2 E

∂ t 2 +curl curl E=0

 div E=0

∂2u

∂ t 2
+curl curl u=0

 div u=0

u∈{E ,B }
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Electromagnetics

The source-free Maxwell equations:

Consider the time-independent case for simplicity:

The “simplest” variational formulation would use the weak 
form 

This requires solutions

curl curl u=0
         div u=0

u  ∈ H curl∩H div⏟
=:V

 ⊃ H 1

(curl v ,curl u)+(div v ,div u)=0         ∀ v



http://www.dealii.org/    Wolfgang Bangerth

 

Electromagnetics

The source-free Maxwell equations:

One might think that we can approximate solutions of

using the usual Lagrange (Q
p
) elements.

However, not so:
● The Lagrange (Q

p
) element space is 

● H
1
 is not dense in V with respect to the norm

● We may not converge to the correct solution
 [Lack of denseness: Costabel 1991]

∥⋅∥V=∥⋅∥H curl∩H div

(curl v ,curl u)+(div v ,div u)=0         ∀ v

V h⊂H 1⊂V
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Electromagnetics

The source-free Maxwell equations:

One might think that we can approximate solutions of

using the usual Lagrange (Q
p
) elements.

Alternative:
● Use Nedelec finite elements where 
● lim

h 0  →
V

h
  is dense in V with respect to the norm

● We converge to the correct solution

∥⋅∥V

(curl v ,curl u)+(div v ,div u)=0         ∀ v

V h∉H 1 ,   V h⊂V
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Electromagnetics

Source-free Maxwell equations summary:
● Use Nedelec finite elements (FE_Nedelec)

● In practice, people typically use lowest order elements
● This may be a mistake:

– Probably better performance for k=2…4
– Higher order Nedelec elements difficult to implement
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