MATH 676

Finite element methods in scientific computing

Wolfgang Bangerth, Texas A&M University

http://www.dealii.org/

Lecture 33:

Which element to use Part 1: "Simple" problems

http://www.dealii.org/

Elements

What we've seen so far:

- Steps 1 6 (Laplace):
 - scalar equation
 - Q1 or Q2 elements
 - easy to change
- Step 20 (mixed Laplace):
 - vector-valued equation
 - Raviart-Thomas element for the velocity
 - piecewise constants for pressure (or higher order DG)
 - pairing needs to satisfy certain conditions
- Step 22 (Stokes):
 - vector-valued equation
 - Q2 element for the velocity
 - Q2 for pressure
 - pairing needs to satisfy certain conditions

http://www.dealii.org/

Elements

There is a zoo of elements for different purposes:

- Continuous Lagrange
- Discontinuous Lagrange
- Raviart-Thomas
- Nedelec
- Rannacher-Turek
- Brezzi-Douglas-Marini (BDM)
- Brezzi-Douglas-Duran-Marini (BDDM)
- Hermite (Argyris)
- Crouzeix-Raviart
- Arnold-Falk-Winther
- Arnold-Boffi-Falk (ABF)
- Hybridized elements
- Penalized discontinuous elements

http://www.dealii.org/

Elements

There is a zoo of elements for different purposes:

- Continuous Lagrange
- Discontinuous Lagrange
- Raviart-Thomas
- Nedelec
- Rannacher-Turek
- Brezzi-Douglas-Marini (BDM)
- Brezzi-Douglas-Duran-Marini (BDDM)
- Hermite (Argyris)
- Crouzeix-Raviart
- Arnold-Falk-Winther
- Arnold-Boffi-Falk (ABF)
- Hybridized elements
- Penalized discontinuous elements

http://www.dealii.org/

FE_Q FE_DGQ, FE_DGP FE_RaviartThomas FE_Nedelec

FE ABF

FE BDM

FE_FaceQ/TraceQ

Scalar problems

For scalar problems like the Laplace equation:

- Q_p elements are generally the right choice
- Higher *p* yield higher convergence order for elliptic problems: $\|u-u_h\|_{H^1} \leq Ch^p |u|_{H^{p+1}} \qquad \|u-u_h\|_{L_2} \leq Ch^{p+1} |u|_{H^{p+1}}$
- Number of degrees of freedom grows as:

$$N \simeq \frac{|\Omega|}{(h/p)^d} = p^d \frac{|\Omega|}{h^d} \rightarrow h \simeq p \left(\frac{|\Omega|}{N}\right)^{1/d}$$

• Error as function of *N*:

$$\|u - u_h\|_{H^1} \simeq p^p N^{-p/d} \qquad \|u - u_h\|_{L_2} \simeq p^{p+1} N^{-(p+1)/d}$$

Consequence: This suggests high order elements!

http://www.dealii.org/

Scalar problems

For scalar problems like the Laplace equation:

- Q elements are generally the right choice
- Better convergence only if u smooth: $||u-u_h||_{H^1} \leq Ch^p |u|_{H^{p+1}}$
- Higher *p* also requires more work:
 - more computations to assemble matrix: $O(p^d)$
 - more entries per row in the matrix: $O(p^d)$
 - good preconditioners are difficult to construct for high p

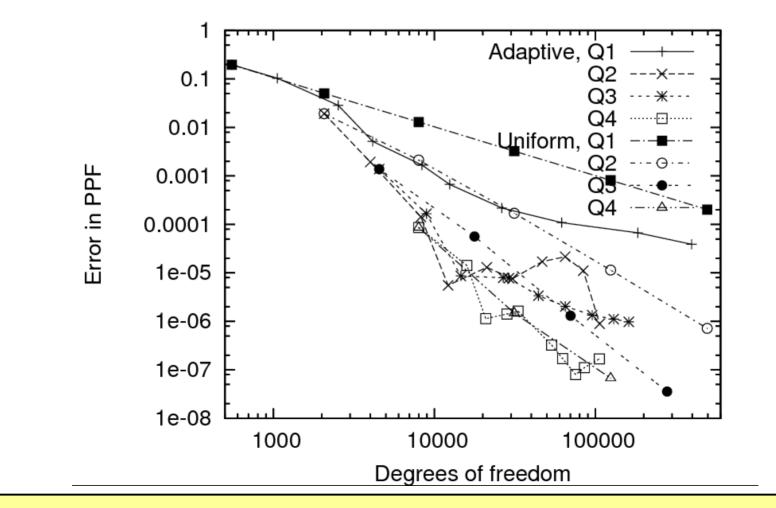
Consequence: This suggests low order elements!

Together: It is a trade-off!

http://www.dealii.org/

Practical experience

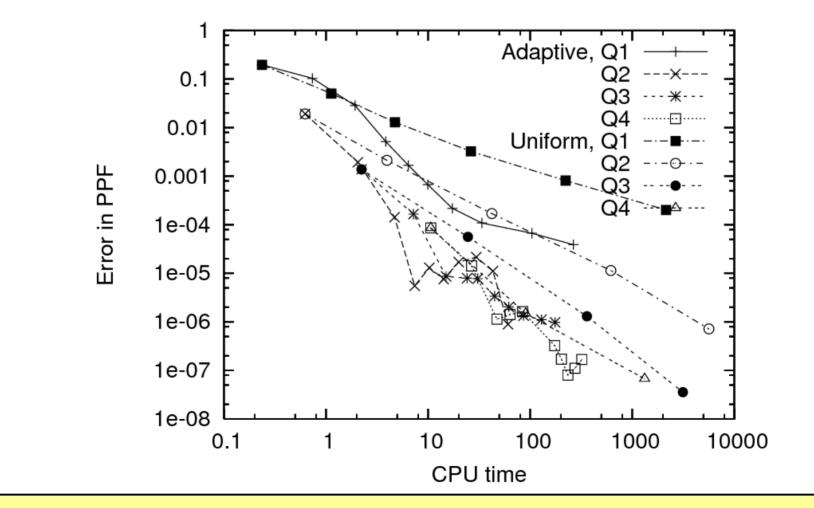
Prototypical 2d example from Wang, Bangerth, Ragusa (2007, Progress in Nuclear Energy):



http://www.dealii.org/

Practical experience

Prototypical 2d example from Wang, Bangerth, Ragusa (2007, Progress in Nuclear Energy):



http://www.dealii.org/

Wolfgang Bangerth

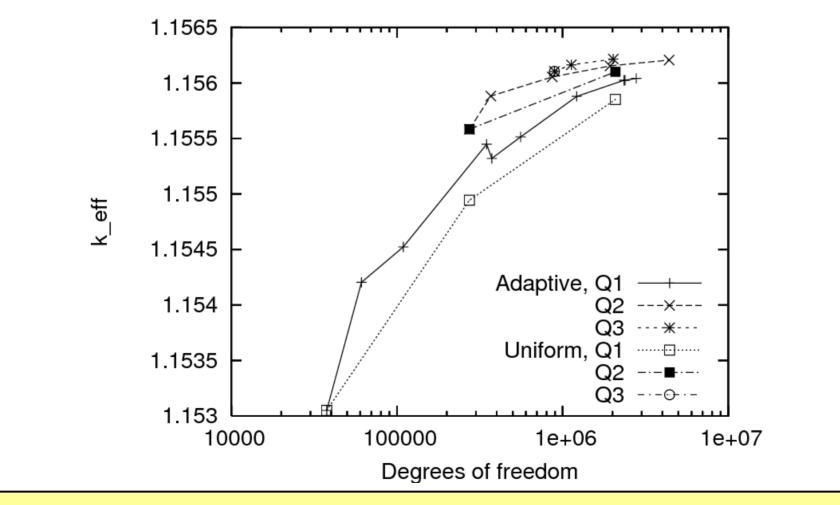
Prototypical 2d example from Wang, Bangerth, Ragusa (2007, Progress in Nuclear Energy):

Conclusions:

- Higher *p* gives better error-per-dof
- Not so clear any more for error-per-CPU-second
- Sweat spot maybe around p=3 or p=4 in 2d

Practical experience

Prototypical 3d example from Wang, Bangerth, Ragusa (2007, Progress in Nuclear Energy):

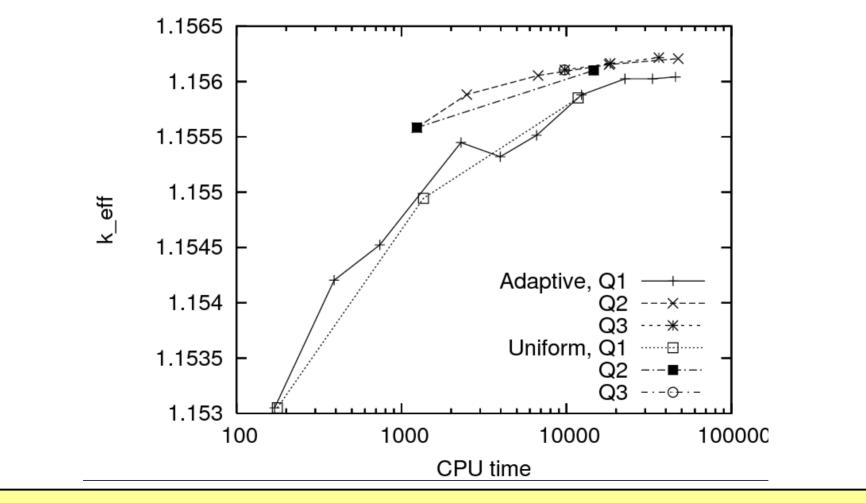


http://www.dealii.org/

Wolfgang Bangerth

Practical experience

Prototypical 3d example from Wang, Bangerth, Ragusa (2007, Progress in Nuclear Energy):



http://www.dealii.org/

Wolfgang Bangerth

Prototypical 3d example from Wang, Bangerth, Ragusa (2007, Progress in Nuclear Energy):

Conclusions:

- Higher *p* gives better error-per-dof
- Not so clear any more for error-per-CPU-second
- Sweat spot maybe around p=2 or p=3 in 3d

Conclusions for scalar problems:

- There is a trade-off between faster convergence and more work
- A good compromise is:
 - Q3 or Q4 in 2d
 - Q2 or Q3 in 3d

A simple vector-valued equation:

• Consider the Maxwell equations:

curl
$$B = j + \frac{\partial E}{\partial t}$$

div $B = 0$
curl $E = -\frac{\partial B}{\partial t}$
div $E = q$

• If j=0, q=0, we can decouple these equations:

$$\frac{\partial^2 B}{\partial t^2} + \text{curl curl } B = 0$$

div $B = 0$
$$\frac{\partial^2 E}{\partial t^2} + \text{curl curl } E = 0$$

div $E = 0$

http://www.dealii.org/

The source-free Maxwell equations:

In the equations

$$\frac{\partial^2 B}{\partial t^2} + \text{curl curl } B = 0$$

div B=0
$$\frac{\partial^2 E}{\partial t^2} + \text{curl curl } E = 0$$

div E=0

each variable $u \in \{E, B\}$ satisfies an equation of the form

$$\frac{\partial^2 u}{\partial t^2} + \text{curl curl } u = 0$$

div $u = 0$

http://www.dealii.org/

The source-free Maxwell equations:

Consider the time-independent case for simplicity:

 $\begin{array}{c} \text{curl curl } u=0\\ \text{div } u=0 \end{array}$

The "simplest" variational formulation would use the weak form

 $(\operatorname{curl} v, \operatorname{curl} u) + (\operatorname{div} v, \operatorname{div} u) = 0 \quad \forall v$

This requires solutions $u \in \underbrace{H_{\text{curl}} \cap H_{\text{div}}}_{=:V} \supset H^1$

http://www.dealii.org/

The source-free Maxwell equations:

One might think that we can approximate solutions of

 $(\operatorname{curl} v, \operatorname{curl} u) + (\operatorname{div} v, \operatorname{div} u) = 0 \qquad \forall v$

using the usual Lagrange (Q_p) elements.

However, not so:

- The Lagrange (Q_p) element space is $V_h \subset H^1 \subset V$
- H_1 is not dense in V with respect to the norm $\|\cdot\|_V = \|\cdot\|_{H_{curl} \cap H_{div}}$
- We may not converge to the correct solution

[Lack of denseness: Costabel 1991]

The source-free Maxwell equations:

One might think that we can approximate solutions of

 $(\operatorname{curl} v, \operatorname{curl} u) + (\operatorname{div} v, \operatorname{div} u) = 0 \qquad \forall v$

using the usual Lagrange (Q_p) elements.

Alternative:

- Use Nedelec finite elements where $V_h \notin H^1$, $V_h \subset V$
- $\lim_{h \to 0} V_h$ is dense in V with respect to the norm $\|\cdot\|_V$
- We converge to the correct solution

Source-free Maxwell equations summary:

Use Nedelec finite elements (FE_Nedelec)

- In practice, people typically use lowest order elements
- This may be a mistake:
 - Probably better performance for k=2...4
 - Higher order Nedelec elements difficult to implement

MATH 676

Finite element methods in scientific computing

Wolfgang Bangerth, Texas A&M University

http://www.dealii.org/