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Lecture 33.5:

Which quadrature formula to use
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The need for quadrature

Recall from lecture 4 and many example programs:

We compute

by mapping back to the reference cell...

...and quadrature:

Similarly for the right hand side F.

Aij=(∇ φ i ,∇ φ j)             F i=(φ i , f )

A ij  = (∇ φi ,∇ φ j)                                                          

     =  ∑K∫K
∇ φi(x)⋅∇ φ j(x)

     =  ∑K∫K̂
JK

−1
( x̂) ∇̂ φ̂i ( x̂ )  ⋅ J K

−1
( x̂)∇̂ φ̂ j( x̂)  ∣det JK ( x̂ )∣

A ij  ≈  ∑K ∑q=1

Q
J K

−1( x̂q)∇̂ φ̂i( x̂q)  ⋅ J K
−1( x̂q)∇̂ φ̂ j( x̂q)  ∣det JK ( x̂q)∣ wq⏟

=: JxW
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The need for quadrature

Question:

When approximating

by

how should we choose the points      and weights w
q
?

In other words: 

Which quadrature rule should we choose?

Aij=(∇ φi ,∇ φ j)

A ij  ≈  ∑K ∑q=1

Q
J K

−1( x̂q)∇̂ φ̂i( x̂q)  ⋅ J K
−1( x̂q)∇̂ φ̂ j( x̂q)  ∣det J ( x̂q)∣ wq

x̂q
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Considerations

Question: Which quadrature rule should we choose?

Goals:
● Efficient: Make Q as small as possible
● Accurate: Do not introduce unnecessary errors

About accuracy:

In particular, do nothing that affects
the convergence order!

A ij  ≈  ∑K ∑q=1

Q
J K

−1( x̂q)∇̂ φ̂i( x̂q)  ⋅ J K
−1( x̂q)∇̂ φ̂ j( x̂q)  ∣det J ( x̂q)∣ wq
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1d: The matrix

Question: Which quadrature rule should we choose?

Consider the 1d case:
● We use an element of polynomial degree k
● We use a linear mapping

Then:
●  are constant
●  is a polynomial of degree k-1
● The integrand has polynomial degree 2(k-1)

A ij  ≈  ∑K ∑q=1

Q
J K

−1( x̂q)∇̂ φ̂i( x̂q)  ⋅ J K
−1( x̂q)∇̂ φ̂ j( x̂q)  ∣det J K ( x̂q)∣ wq

J K , J K
−1 ,det J K

∇̂ φ̂ j( x̂q)
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1d: The matrix

Question: Which quadrature rule should we choose?

Consider the 1d case:
● The integrand has polynomial degree 2(k-1)
● Gauss quadrature with n points is exact for polynomials 

up to degree 2n-1

Consequence:

We can compute the integral                    
exactly via Gauss quadrature with n=k points!

A ij  = (∇ φi ,∇ φ j)

      ≈  ∑K ∑q=1

Q
J K

−1( x̂q) ∇̂ φ̂i( x̂q)  ⋅ J K
−1( x̂q) ∇̂ φ̂ j( x̂q)  ∣det J K ( x̂q)∣ wq

A ij=(∇ φi ,∇ φ j)
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1d: The right hand side

Question: How about the right hand side?

Consider the 1d case:
● We use an element of polynomial degree k
● We use a linear mapping

Then:
●  is constant
●  is a polynomial of degree k
●  is not in general a polynomial
● The integrand is not polynomial

F i  =  (φi , f )  ≈  ∑K ∑q=1

Q
φ̂i( x̂q)  f (xq)  ∣det J K ( x̂q)∣ wq

det J K

∇̂ φ̂ j( x̂q)

f (x)
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1d: The right hand side

Question: What to do here?

Consider Gauss integration with n points:
● Integrates polynomials of degree 2n-1 exactly
● For general f(x) essentially integrates 

where I
2n-k

f = f at the n quadrature points + n-k others

F i  =  (φi , f )  ≈  ∑K ∑q=1

Q
φ̂i( x̂q)  f (xq)  ∣det J K ( x̂q)∣ wq

F i  = (φi , f )  ≈ ∑K ∑q=1

Q
φ̂i( x̂q)  f (xq)  ∣det J K ( x̂q)∣ wq

                     ≈ (φi , I 2n−k f )
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1d: The right hand side

Consider Gauss integration with n points:
● Integrates polynomials of degree 2n-1 exactly
● For general f(x) essentially integrates 

where I
2n-k

f = f at the n quadrature points + n-k others 

on every cell

Consequence:

Inexact integration is equivalent to approximating
the solution of a slightly perturbed problem!

F i  =  (φi , f )  ≈  ∑K ∑q=1

Q
φ̂i( x̂q)  f (xq)  ∣det J K ( x̂q)∣ wq

                      = ∑K∫K
I 2n(φi f )  ≈  (φi , I 2n−k f )
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1d: The right hand side

Consider the original and perturbed problems:

Consequence:

We want the first term to be at least as good as the 
second. We need to choose n=k.

−Δu=f        in Ω
      u=0       on ∂Ω

−Δ ũ= f̃        in Ω
      u=0      on ∂Ω

∥u−ũh∥H 1  ≤  ∥u−ũ∥
H1⏟

≤C1∥f− f̃∥H−1≤C2h
2n−k+1

∥f∥H2n−k

+∥ũ−ũh∥H1⏟
≤C3h

k
∥ũ∥H k
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Higher dimensions: The matrix

Question: Which quadrature rule should we choose?

Consider the higher dimensional case:
● Use an element of polynomial degree k in each direction
● Use a d-linear mapping

Then:
●  are polynomials of degree k, kd

●        is a rational function
●  is a polynomial of degree dk-1
● The integrand is rational
● For linear mappings, it is of degree 2(dk-1)

A ij  ≈  ∑K ∑q=1

Q
J K

−1( x̂q)∇̂ φ̂i( x̂q)  ⋅ J K
−1( x̂q)∇̂ φ̂ j( x̂q)  ∣det J K ( x̂q)∣ wq

J K ,det J K

∇̂ φ̂ j( x̂q)

J K
−1
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Higher dimensions: The matrix

Question: Which quadrature rule should we choose?

Consider the higher dimensional case:
● The integrand is rational
● For linear mappings, it is of degree 2(dk-1)
● Gauss quadrature with n points per direction is exact for 

degree 2n-1 in each variable

Nevertheless, using the tensor product structure:

We need to use Gauss quadrature
with  n=k+1  points per direction.

A ij  ≈  ∑K ∑q=1

Q
J K

−1( x̂q)∇̂ φ̂i( x̂q)  ⋅ J K
−1( x̂q)∇̂ φ̂ j( x̂q)  ∣det J K ( x̂q)∣ wq
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Higher dimensions: The right hand side

Question: Which quadrature rule should we choose?

Similar considerations can be applied:

We need to use Gauss quadrature
with  n=k+1  points per direction.

F i  =  (φi , f )  ≈  ∑K ∑q=1

Q
φ̂i( x̂q)  f (xq)  ∣det J K ( x̂q)∣ wq
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Summary

As a general rule of thumb:
● Gauss quadrature with  n=k+1  points per direction is 

sufficient
– for the Laplace matrix
– for the mass matrix
– for the right hand side

● It is generally also sufficient with variable coefficients:

With n=k+1, the quadrature error does not dominate 
the overall error (if  a(x)  is smooth).

F i  =  (φi , f )
M ij  =  (φi ,φ j)

A ij  = (∇ φ i ,∇ φ j)

A ij  = (a(x) ∇ φi ,∇ φ j)
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Non-smooth coefficients

What to with non-smooth terms?
For example

where a(x) or f(x) are discontinuous.

Recall: Quadrature is equivalent to exact integration with 
an interpolated coefficient.

For discontinuous functions, interpolation
does not help very much: Quadrature
produces large errors.

F i  =  (φi , f )

A ij  = (a(x) ∇ φi ,∇ φ j)
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Non-smooth coefficients

What to with non-smooth terms?
For example

where a(x) or f(x) are discontinuous.

Before: 

Now: The interpolation step fails! We may only get

F i  =  (φi , f )

A ij  = (a(x) ∇ φi ,∇ φ j)

∥u−ũh∥H 1  ≤  ∥u−ũ∥
H1⏟

≤C1∥f− f̃∥H−1≤C2h
2n−k+1

∥f∥H2n−k

+∥ũ−ũh∥H1⏟
≤C3h

k
∥ũ∥H k

∥u−ũh∥H 1  ≤  ∥u−ũ∥
H1⏟

≤C1∥f− f̃∥H −1≤C2h
s+1

∥f∥H s

+∥ũ−ũh∥H 1⏟
≤C3 h

k
∥ũ∥H k
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Non-smooth coefficients

What to with non-smooth terms?
For example

where a(x) or f(x) are discontinuous.

Now: 

Solution: Subdivide the cell into L pieces so that 

This is what the QIterated class does.

F i  =  (φi , f )

A ij  = (a(x) ∇ φi ,∇ φ j)

∥u−ũh∥H 1  ≤  ∥u−ũ∥
H1⏟

≤C1∥f− f̃∥H −1≤C2h
s+1

∥f∥H s

+∥ũ−ũh∥H 1⏟
≤C3 h

k
∥ũ∥H k

C2( hL )
s+1

∥f∥
H s≈C3 h

k∥ũ∥
H k
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Special purpose quadratures

There are situations where we want quadrature 
rules other than Gauss:

● To affect stability properties of a discretization
– Underintegration for nearly incompressible elasticity
– Special purpose quadrature for mixed problems

● To improve sparsity of matrices
– Make some terms zero
– Make a matrix diagonal
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Sparsifying matrices

Using the trapezoidal rule for the Laplace matrix: 
Assume:

● Uniform mesh with square cells

● Q
1
 element with shape functions

and gradients

● Trapezoidal rule with integration points at the vertices

φ1=(1−x̂ )(1− ŷ) ,   φ2= x̂ (1− ŷ),
φ3=(1− x̂) ŷ ,           φ4= x̂ ŷ

∇̂ φ1=(−(1− ŷ)
−(1− x̂)) ,   ∇̂ φ2=((1− ŷ)

−x̂ )
∇̂ φ3=( − ŷ

1−x̂ ),           ∇̂ φ4=( ŷx̂ )
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Sparsifying matrices

Using the trapezoidal rule for the Laplace matrix: 

● Q
1
 element with shape gradients

● Trapezoidal rule with integration points at the vertices:

● At all vertices, we have

● Degrees of freedom diagonal across cells do not couple

∇̂ φ1=(−(1− ŷ)
−(1− x̂)) ,   ∇̂ φ2=((1− ŷ)

−x̂ )
∇̂ φ3=( − ŷ

1−x̂ ),           ∇̂ φ4=( ŷx̂ )

A ij  ≈  ∑K ∑q=1

Q
J K

−1( x̂q)∇̂ φ̂i( x̂q)  ⋅ J K
−1( x̂q)∇̂ φ̂ j( x̂q)  ∣det J K ( x̂q)∣ wq

∇̂ φ1⋅∇ φ3=0,     ∇̂ φ2⋅∇ φ4=0,
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Sparsifying matrices

Using the trapezoidal rule for the Laplace matrix: 
● Degrees of freedom diagonal across cells do not couple:

● A
40

=A
42

=A
46

=A
48

=0

● We can also show: A
41

=A
43

=A
45

=A
47

= -A
44

/4

● This is exactly the 5-point stencil (  finite differences)!→
● In 3d, this leads to the usual 7-point stencil
● This matrix is sparser than normal
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Diagonal mass matrices

Using the trapezoidal rule for the mass matrix: 

● Q
1
 element with shape values

● Trapezoidal rule with integration points at the vertices:

● At all vertices, we have                             and thus

● This mass matrix is diagonal!

M ij  ≈  ∑K ∑q=1

Q
φ̂i( x̂q)  φ̂ j( x̂q)  ∣det J K ( x̂q)∣ wq

φ̂i( x̂q) φ̂ j ( x̂q)=δijδiq

φ1=(1−x̂ )(1− ŷ) ,   φ2= x̂ (1− ŷ),
φ3=(1− x̂) ŷ ,           φ4= x̂ ŷ

M ij  ≈  ∑K (∑q=1

Q
∣det J K ( x̂q)∣ wq)δij  =  ∑K

∣K∩supp φi∣δij
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Diagonal mass matrices

Using the trapezoidal rule for the mass matrix: 

● This results in a diagonal mass matrix

● This is useful in explicit time stepping schemes

● Generalized to arbitrary elements by choosing 
quadrature points at nodal interpolation points
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Summary

General rule:

● Use Gaussian quadrature with n=k+1 per coordinate 
direction where k is the highest polynomial degree in 
your finite element

● Think about the implications if you have non-smooth 
coefficients

● Only use quadrature rules other than Gaussian if you 
know why.
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