MATH 676

Finite element methods in scientific computing

Wolfgang Bangerth, Texas A\&M University

Lecture 33.5:

Which quadrature formula to use

The need for quadrature

Recall from lecture 4 and many example programs:

We compute

$$
A_{i j}=\left(\nabla \phi_{i}, \nabla \phi_{j}\right) \quad F_{i}=\left(\phi_{i}, f\right)
$$

by mapping back to the reference cell...

$$
\begin{aligned}
& A_{i j}=\left(\nabla \phi_{i}, \nabla \phi_{j}\right) \\
& \quad=\sum_{K} \int_{K} \nabla \phi_{i}(x) \cdot \nabla \phi_{j}(x) \\
& \quad=\sum_{K} \int_{\hat{K}} J_{K}^{-1}(\hat{x}) \hat{\nabla} \hat{\phi}_{i}(\hat{x}) \cdot J_{K}^{-1}(\hat{x}) \hat{\nabla} \hat{\phi}_{j}(\hat{x})\left|\operatorname{det} J_{K}(\hat{x})\right|
\end{aligned}
$$

...and quadrature:

$$
A_{i j} \approx \sum_{K} \sum_{q=1}^{Q} J_{K}^{-1}\left(\hat{x}_{q}\right) \hat{\nabla} \hat{\phi}_{i}\left(\hat{x}_{q}\right) \cdot J_{K}^{-1}\left(\hat{x}_{q}\right) \hat{\nabla} \hat{\phi}_{j}\left(\hat{x}_{q}\right) \underbrace{\left|\operatorname{det} J_{K}\left(\hat{x}_{q}\right)\right| w_{q}}_{=: J \mathrm{JW}}
$$

Similarly for the right hand side F.

The need for quadrature

Question:

When approximating

$$
A_{i j}=\left(\nabla \phi_{i}, \nabla \phi_{j}\right)
$$

by

$$
A_{i j} \approx \sum_{K} \sum_{q=1}^{Q} J_{K}^{-1}\left(\hat{x}_{q}\right) \hat{\nabla} \hat{\phi}_{i}\left(\hat{x}_{q}\right) \cdot J_{K}^{-1}\left(\hat{x}_{q}\right) \hat{\nabla} \hat{\phi}_{j}\left(\hat{x}_{q}\right)\left|\operatorname{det} J\left(\hat{x}_{q}\right)\right| w_{q}
$$

how should we choose the points \hat{x}_{q} and weights w_{q} ?

In other words:

Which quadrature rule should we choose?

Considerations

Question: Which quadrature rule should we choose?

$$
A_{i j} \approx \sum_{K} \sum_{q=1}^{Q} J_{K}^{-1}\left(\hat{x}_{q}\right) \hat{\nabla} \hat{\phi}_{i}\left(\hat{x}_{q}\right) \cdot J_{K}^{-1}\left(\hat{x}_{q}\right) \hat{\nabla} \hat{\phi}_{j}\left(\hat{x}_{q}\right)\left|\operatorname{det} J\left(\hat{x}_{q}\right)\right| w_{q}
$$

Goals:

- Efficient: Make Q as small as possible
- Accurate: Do not introduce unnecessary errors

About accuracy:

In particular, do nothing that affects the convergence order!

1d: The matrix

Question: Which quadrature rule should we choose?

$$
A_{i j} \approx \sum_{K} \sum_{q=1}^{Q} J_{K}^{-1}\left(\hat{x}_{q}\right) \hat{\nabla} \hat{\phi}_{i}\left(\hat{x}_{q}\right) \cdot J_{K}^{-1}\left(\hat{x}_{q}\right) \hat{\nabla} \hat{\phi}_{j}\left(\hat{x}_{q}\right)\left|\operatorname{det} J_{K}\left(\hat{x}_{q}\right)\right| w_{q}
$$

Consider the 1d case:

- We use an element of polynomial degree k
- We use a linear mapping

Then:

- J_{K}, J_{K}^{-1}, $\operatorname{det} J_{K}$ are constant
- $\nabla \hat{\phi}_{j}\left(\hat{x}_{q}\right) \quad$ is a polynomial of degree $k-1$
- The integrand has polynomial degree 2(k-1)

1d: The matrix

Question: Which quadrature rule should we choose?

$$
\begin{aligned}
A_{i j} & =\left(\nabla \phi_{i}, \nabla \phi_{j}\right) \\
& \approx \sum_{K} \sum_{q=1}^{Q} J_{K}^{-1}\left(\hat{x}_{q}\right) \hat{\nabla} \hat{\phi}_{i}\left(\hat{x}_{q}\right) \cdot J_{K}^{-1}\left(\hat{x_{q}}\right) \hat{\nabla} \hat{\phi}_{j}\left(\hat{x}_{q}\right)\left|\operatorname{det} J_{K}\left(\hat{x}_{q}\right)\right| w_{q}
\end{aligned}
$$

Consider the 1d case:

- The integrand has polynomial degree $2(k-1)$
- Gauss quadrature with n points is exact for polynomials up to degree $2 n-1$

Consequence:
We can compute the integral $A_{i j}=\left(\nabla \phi_{i}, \nabla \phi_{j}\right)$ exactly via Gauss quadrature with $n=k$ points!

1d: The right hand side

Question: How about the right hand side?

$$
F_{i}=\left(\phi_{i}, f\right) \approx \sum_{K} \sum_{q=1}^{Q} \hat{\phi}_{i}\left(\hat{x}_{q}\right) f\left(x_{q}\right)\left|\operatorname{det} J_{K}\left(\hat{x}_{q}\right)\right| w_{q}
$$

Consider the 1d case:

- We use an element of polynomial degree k
- We use a linear mapping

Then:

- $\operatorname{det} J_{K} \quad$ is constant
- $\nabla \hat{\phi}_{j}\left(\hat{x}_{q}\right) \quad$ is a polynomial of degree k
- $f(x)$ is not in general a polynomial
- The integrand is not polynomial

1d: The right hand side

Question: What to do here?

$$
F_{i}=\left(\phi_{i}, f\right) \approx \sum_{K} \sum_{q=1}^{Q} \hat{\phi}_{i}\left(\hat{x}_{q}\right) f\left(x_{q}\right)\left|\operatorname{det} J_{K}\left(\hat{x}_{q}\right)\right| w_{q}
$$

Consider Gauss integration with n points:

- Integrates polynomials of degree $2 n-1$ exactly
- For general $f(x)$ essentially integrates

$$
\begin{aligned}
F_{i}=\left(\phi_{i}, f\right) & \approx \sum_{K} \sum_{q=1}^{Q} \hat{\phi}_{i}\left(\hat{x}_{q}\right) f\left(x_{q}\right)\left|\operatorname{det} J_{K}\left(\hat{x}_{q}\right)\right| w_{q} \\
& \approx\left(\phi_{i}, I_{2 \mathrm{n}-k} f\right)
\end{aligned}
$$

where $I_{2 n-k} f=f$ at the n quadrature points $+n-k$ others

1d: The right hand side

Consider Gauss integration with n points:

- Integrates polynomials of degree $2 n-1$ exactly
- For general $f(x)$ essentially integrates

$$
\begin{aligned}
F_{i}=\left(\phi_{i}, f\right) & \approx \sum_{K} \sum_{q=1}^{Q} \hat{\phi}_{i}\left(\hat{x}_{q}\right) f\left(x_{q}\right)\left|\operatorname{det} J_{K}\left(\hat{x}_{q}\right)\right| w_{q} \\
& =\sum_{K} \int_{K} I_{2 \mathrm{n}}\left(\phi_{i} f\right) \approx\left(\phi_{i}, I_{2 \mathrm{n}-k} f\right)
\end{aligned}
$$

where $I_{2 n-k} f=f$ at the n quadrature points $+n-k$ others on every cell

Consequence:
Inexact integration is equivalent to approximating the solution of a slightly perturbed problem!

1d: The right hand side

Consider the original and perturbed problems:

$$
\begin{aligned}
-\Delta u=f & \text { in } \Omega & -\Delta \tilde{u}=\tilde{f} & \text { in } \Omega \\
u=0 & \text { on } \partial \Omega & u=0 & \text { on } \partial \Omega
\end{aligned}
$$

Consequence:

$$
\left\|u-\tilde{u}_{h}\right\|_{H^{1}} \leq \underbrace{\|u-\tilde{u}\|_{1^{1}}}_{\leq C_{1}\|f-\tilde{f}\|_{H^{1}} \leq C_{2} h^{2 n^{2-k+1}}\|f\|_{H^{R^{n-k}}}}+\underbrace{\left\|\tilde{u}-\tilde{u}_{h}\right\|_{H^{1}}}_{\leq C_{3} h^{h}\|\tilde{u}\|_{H^{k}}}
$$

We want the first term to be at least as good as the second. We need to choose $n=k$.

Higher dimensions: The matrix

Question: Which quadrature rule should we choose?

$$
A_{i j} \approx \sum_{K} \sum_{q=1}^{Q} J_{K}^{-1}\left(\hat{x}_{q}\right) \hat{\nabla} \hat{\phi}_{i}\left(\hat{x}_{q}\right) \cdot J_{K}^{-1}\left(\hat{x}_{q}\right) \hat{\nabla} \hat{\phi}_{j}\left(\hat{x}_{q}\right)\left|\operatorname{det} J_{K}\left(\hat{x}_{q}\right)\right| w_{q}
$$

Consider the higher dimensional case:

- Use an element of polynomial degree k in each direction
- Use a d-linear mapping

Then:

- J_{K}, det $J_{K} \quad$ are polynomials of degree k, k^{d}
- $J_{K}^{-1} \quad$ is a rational function
- $\nabla \hat{\phi}_{j}\left(\hat{x}_{q}\right) \quad$ is a polynomial of degree $d k-1$
- The integrand is rational
- For linear mappings, it is of degree $2(d k-1)$

Higher dimensions: The matrix

Question: Which quadrature rule should we choose?

$$
A_{i j} \approx \sum_{K} \sum_{q=1}^{Q} J_{K}^{-1}\left(\hat{x}_{q}\right) \hat{\nabla} \hat{\phi}_{i}\left(\hat{x}_{q}\right) \cdot J_{K}^{-1}\left(\hat{x}_{q}\right) \hat{\nabla} \hat{\phi}_{j}\left(\hat{x}_{q}\right)\left|\operatorname{det} J_{K}\left(\hat{x}_{q}\right)\right| w_{q}
$$

Consider the higher dimensional case:

- The integrand is rational
- For linear mappings, it is of degree $2(d k-1)$
- Gauss quadrature with n points per direction is exact for degree $2 n-1$ in each variable

Nevertheless, using the tensor product structure:
We need to use Gauss quadrature with $n=k+1$ points per direction.

Higher dimensions: The right hand side

Question: Which quadrature rule should we choose?

$$
F_{i}=\left(\phi_{i}, f\right) \approx \sum_{K} \sum_{q=1}^{Q} \hat{\phi}_{i}\left(\hat{x}_{q}\right) f\left(x_{q}\right)\left|\operatorname{det} J_{K}\left(\hat{x}_{q}\right)\right| w_{q}
$$

Similar considerations can be applied:

We need to use Gauss quadrature with $n=k+1$ points per direction.

Summary

As a general rule of thumb:

- Gauss quadrature with $n=k+1$ points per direction is sufficient
- for the Laplace matrix $\quad A_{i j}=\left(\nabla \phi_{i}, \nabla \phi_{j}\right)$
- for the mass matrix $\quad M_{i j}=\left(\phi_{i}, \phi_{j}\right)$
- for the right hand side $\quad F_{i}=\left(\phi_{i}, f\right)$
- It is generally also sufficient with variable coefficients:

$$
A_{i j}=\left(a(x) \nabla \phi_{i}, \nabla \phi_{j}\right)
$$

With $n=k+1$, the quadrature error does not dominate the overall error (if $a(x)$ is smooth).

Non-smooth coefficients

What to with non-smooth terms?

For example

$$
\begin{aligned}
A_{i j} & =\left(a(x) \nabla \phi_{i}, \nabla \phi_{j}\right) \\
F_{i} & =\left(\phi_{i}, f\right)
\end{aligned}
$$

where $a(x)$ or $f(x)$ are discontinuous.

Recall: Quadrature is equivalent to exact integration with an interpolated coefficient.

For discontinuous functions, interpolation does not help very much: Quadrature produces large errors.

Non-smooth coefficients

What to with non-smooth terms?

For example

$$
\begin{aligned}
A_{i j} & =\left(a(x) \nabla \phi_{i}, \nabla \phi_{j}\right) \\
F_{i} & =\left(\phi_{i}, f\right)
\end{aligned}
$$

where $a(x)$ or $f(x)$ are discontinuous.

Now: The interpolation step fails! We may only get

Non-smooth coefficients

What to with non-smooth terms?

For example

$$
\begin{aligned}
A_{i j} & =\left(a(x) \nabla \phi_{i}, \nabla \phi_{j}\right) \\
F_{i} & =\left(\phi_{i}, f\right)
\end{aligned}
$$

where $a(x)$ or $f(x)$ are discontinuous.

Now: $\quad\left\|u-\tilde{u}_{h}\right\|_{H^{1}} \leq \underbrace{\|u-\tilde{u}\|_{H^{1}}}_{\leq c_{1}\|f-\tilde{f}\|_{H^{\prime}} \leq C_{2} h^{+1}\| \| f \|_{H^{r}}}+\underbrace{\left\|\tilde{u}-\tilde{u}_{h}\right\|_{H^{1}}}_{\leq c_{3} h^{h}\|\tilde{u}\|_{H^{+}}}$
Solution: Subdivide the cell into L pieces so that

$$
C_{2}\left(\frac{h}{L}\right)^{s+1}\|f\|_{H^{\approx}} \approx C_{3} h^{k}\|\tilde{u}\|_{H^{k}}
$$

This is what the QIterated class does.

Special purpose quadratures

There are situations where we want quadrature rules other than Gauss:

- To affect stability properties of a discretization
- Underintegration for nearly incompressible elasticity
- Special purpose quadrature for mixed problems
- To improve sparsity of matrices
- Make some terms zero
- Make a matrix diagonal

Sparsifying matrices

Using the trapezoidal rule for the Laplace matrix: Assume:

- Uniform mesh with square cells
- Q_{1} element with shape functions

$$
\begin{array}{ll}
\phi_{1}=(1-\hat{x})(1-\hat{y}), & \phi_{2}=\hat{x}(1-\hat{y}), \\
\phi_{3}=(1-\hat{x}) \hat{y}, & \phi_{4}=\hat{x} \hat{y}
\end{array}
$$

and gradients

$$
\begin{array}{ll}
\hat{\nabla} \phi_{1}=\binom{-(1-\hat{y})}{-(1-\hat{x})}, & \hat{\nabla} \phi_{2}=\binom{(1-\hat{y})}{-\hat{x}} \\
\hat{\nabla} \phi_{3}=\binom{-\hat{y}}{1-\hat{x}}, & \hat{\nabla} \phi_{4}=\binom{\hat{y}}{\hat{x}}
\end{array}
$$

- Trapezoidal rule with integration points at the vertices

Sparsifying matrices

Using the trapezoidal rule for the Laplace matrix:

- Q_{1} element with shape gradients

$$
\begin{aligned}
& \hat{\nabla} \phi_{1}=\binom{-(1-\hat{y})}{-(1-\hat{x})}, \quad \hat{\nabla} \phi_{2}=\binom{(1-\hat{y})}{-\hat{x}} \\
& \hat{\nabla} \phi_{3}=\binom{-\hat{y}}{1-\hat{x}},
\end{aligned} \quad \hat{\nabla} \phi_{4}=\binom{\hat{y}}{\hat{x}}
$$

- Trapezoidal rule with integration points at the vertices:

$$
A_{i j} \approx \sum_{K} \sum_{q=1}^{Q} J_{K}^{-1}\left(\hat{x}_{q}\right) \hat{\nabla} \hat{\phi}_{i}\left(\hat{x}_{q}\right) \cdot J_{K}^{-1}\left(\hat{x}_{q}\right) \hat{\nabla} \hat{\phi}_{j}\left(\hat{x}_{q}\right)\left|\operatorname{det} J_{K}\left(\hat{x}_{q}\right)\right| w_{q}
$$

- At all vertices, we have

$$
\nabla \phi_{1} \cdot \nabla \phi_{3}=0, \quad \nabla \phi_{2} \cdot \nabla \phi_{4}=0,
$$

- Degrees of freedom diagonal across cells do not couple

Sparsifying matrices

Using the trapezoidal rule for the Laplace matrix:

- Degrees of freedom diagonal across cells do not couple:
- $\mathrm{A}_{40}=\mathrm{A}_{42}=\mathrm{A}_{46}=\mathrm{A}_{48}=0$

- We can also show: $A_{41}=A_{43}=A_{45}=A_{47}=-A_{44} / 4$
- This is exactly the 5-point stencil (\rightarrow finite differences)!
- In 3d, this leads to the usual 7-point stencil
- This matrix is sparser than normal

Diagonal mass matrices

Using the trapezoidal rule for the mass matrix:

- Q_{1} element with shape values

$$
\begin{array}{ll}
\phi_{1}=(1-\hat{x})(1-\hat{y}), & \phi_{2}=\hat{x}(1-\hat{y}) \\
\phi_{3}=(1-\hat{x}) \hat{y}, & \phi_{4}=\hat{x} \hat{y}
\end{array}
$$

- Trapezoidal rule with integration points at the vertices:

$$
M_{i j} \approx \sum_{K} \sum_{q=1}^{Q} \hat{\phi}_{i}\left(\hat{x}_{q}\right) \hat{\phi}_{j}\left(\hat{x}_{q}\right)\left|\operatorname{det} J_{K}\left(\hat{x}_{q}\right)\right| w_{q}
$$

- At all vertices, we have $\hat{\phi}_{i}\left(\hat{x}_{q}\right) \hat{\phi}_{j}\left(\hat{x}_{q}\right)=\delta_{i j} \delta_{i q}$ and thus

$$
M_{i j} \approx \sum_{K}\left(\sum_{q=1}^{Q}\left|\operatorname{det} J_{K}\left(\hat{x}_{q}\right)\right| w_{q}\right) \delta_{i j}=\sum_{K}\left|K \cap \operatorname{supp} \phi_{i}\right| \delta_{i j}
$$

- This mass matrix is diagonal!

Diagonal mass matrices

Using the trapezoidal rule for the mass matrix:

- This results in a diagonal mass matrix
- This is useful in explicit time stepping schemes
- Generalized to arbitrary elements by choosing quadrature points at nodal interpolation points

Summary

General rule:

- Use Gaussian quadrature with $n=k+1$ per coordinate direction where k is the highest polynomial degree in your finite element
- Think about the implications if you have non-smooth coefficients
- Only use quadrature rules other than Gaussian if you know why.

MATH 676

Finite element methods in scientific computing

Wolfgang Bangerth, Texas A\&M University

