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Lecture 33.25:

Which element to use

Part 2: Saddle point problems



http://www.dealii.org/    Wolfgang Bangerth

 

Stokes

Consider the stationary Stokes equations:

This can equivalently be considered as a minimization 
problem:

Let us consider the constraint in variational form:

−Δu+∇ p  = f
∇⋅u            = 0

minu∈H1(Ω)d
   

1
2
∥∇ u∥2

−(f , u)

such that      ∇⋅u  = 0

minu∈V =H 1(Ω)d
   

1
2
∥∇ u∥2

−(f ,u)

such that          (q ,∇⋅u)  =  0    ∀q∈Q=L2
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Stokes

Consider the stationary Stokes equations:

The discrete formulation for this seeks                             : 

This corresponds to the finite dimensional minimization 
problem

−Δu+∇ p  = f
∇⋅u            = 0

(∇ vh ,∇ uh)−(∇⋅vh , ph)−(qh ,∇⋅uh)  = (vh , f )     ∀ vh∈V h ,  qh∈Qh

minuh∈V h
    

1
2
∥∇ uh∥

2
−( f ,uh)

such that    (qh ,∇⋅uh)  = 0    ∀ qh∈Qh

uh∈V h⊂V ,  ph∈Qh⊂Q
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Stokes

Consider the discrete Stokes equations:

Here, we have  dim Q
h 
 constraints on the velocity u

h
.

Intuitively, if (asymptotically) Q
h
 is “too  large” compared to 

V
h
, then:

● we have too many constraints on the velocity
● the velocity does not have enough degrees of freedom.

In this case the discrete solution may not converge.

minuh∈V h
    

1
2
∥∇ uh∥

2
−( f ,uh)

such that    (qh ,∇⋅uh)  = 0    ∀ qh∈Qh
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Stokes

Consider the discrete Stokes equations:
We only get convergence of discrete solutions of

or equivalently

if the inf-sup/Babuska-Brezzi/LBB condition is satisfied:

There exists a constant c independent of h so that

Note: V=H1, Q=L
2
.

minuh∈V h
    

1
2
∥∇ uh∥

2
−( f ,uh)

such that    (qh ,∇⋅uh)  = 0    ∀ qh∈Qh

(∇ vh ,∇ uh)−(∇⋅vh , ph)−(qh ,∇⋅uh)  = (vh , f )          ∀ vh∈V h ,  qh∈Qh

supvh∈V h

(∇⋅vh , qh)

∥vh∥V

 ≥ c∥qh∥Q           ∀ qh∈Qh
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Stokes

The inf-sup condition:
We can write the condition either as:

There exists a constant c independent of h so that

Or as:

There exists a constant c independent of h so that

supvh∈V h

(∇⋅vh , qh)

∥vh∥V

 ≥ c∥qh∥Q           ∀ qh∈Qh

infqh∈Qh
supvh∈V h

(∇⋅vh , qh)

∥vh∥V  ∥qh∥Q

 ≥ c
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Stokes

The inf-sup condition:
The condition...

There exists a constant c independent of h so that

...can be satisfied by making
● the velocity space V

h
 large enough

● the pressure space Q
h
 small enough

Typical choices (the “Taylor-Hood element”):
● V

h
 = P

k+1 
,  Q

h
 = P

k
 on triangles/tetrahedra

● V
h
 = Q

k+1 
,  Q

h
 = Q

k
 on quadrilaterals/hexahedra

supvh∈V h

(∇⋅vh , qh)

∥vh∥V

 ≥ c∥qh∥Q           ∀ qh∈Qh
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Stokes

Why Taylor-Hood (P
k+1

/P
k
 or  Q

k+1
/Q

k
):

● P
k
/P

k
 or  Q

k
/Q

k
 is not stable:

– the constant c goes to zero as  h 0→
– the matrix has a near-nullspace
– the pressure develops a “checkerboard pattern”:

(using step-22 with equal order elements)

Consequence: We need to make the velocity space 
larger or the pressure space smaller!
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Stokes

Why Taylor-Hood (P
k+1

/P
k
 or  Q

k+1
/Q

k
):

● P
k+1

/P
k
 or  Q

k+1
/Q

k
 is stable:

– there is a constant c>0
– the matrix remains regular
– the pressure is stable

(using step-22 with non-equal order elements)

Consequence: This works!
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Stokes

Why Taylor-Hood (P
k+1

/P
k
 or  Q

k+1
/Q

k
):

● P
k+2

/P
k
 or  Q

k+2
/Q

k
 is stable:

– there is a constant c>0
– the matrix remains regular
– the pressure is stable

(using step-22 with non-equal order elements)

– accuracy is now limited by the low-order pressure

Consequence: This choice is wasteful!
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Stokes

Why Taylor-Hood (P
k+1

/P
k
 or  Q

k+1
/Q

k
):

● P
k
/P

k
 or  Q

k
/Q

k
 doesn't work

● P
k+1

/P
k
 or  Q

k+1
/Q

k
 works

● Can we find something in between?

Option 1: With a slightly smaller velocity space.
● We can't take away shape functions without either

– violating unisolvency
– making the shape functions discontinuous
   (which would make the element non-conforming)

● This option doesn't work
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Stokes

Why Taylor-Hood (P
k+1

/P
k
 or  Q

k+1
/Q

k
):

● P
k
/P

k
 or  Q

k
/Q

k
 doesn't work

● P
k+1

/P
k
 or  Q

k+1
/Q

k
 works

● Can we find something in between?

Option 2a: With a slightly larger pressure space.
● Recall the bilinear form:

● We don't actually need continuity of the pressure
● We could try  Q

k+1
/Q

k
+DGQ

0

● This actually works!

(∇ vh ,∇ uh)−(∇⋅vh , ph)−(qh ,∇⋅uh)  = (vh , f )
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Stokes

Why Taylor-Hood (P
k+1

/P
k
 or  Q

k+1
/Q

k
):

● P
k
/P

k
 or  Q

k
/Q

k
 doesn't work

● P
k+1

/P
k
 or  Q

k+1
/Q

k
 works

● Can we find something in between?

Option 2b: With an even larger pressure space.
● Recall the bilinear form:

● We don't actually need continuity of the pressure
● We could try  Q

k+1
/DGQ

k

● This doesn't work, too many pressure degrees of freedom

(∇ vh ,∇ uh)−(∇⋅vh , ph)−(qh ,∇⋅uh)  = (vh , f )
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Stokes

Choosing a polynomial degree:
We could choose either

● P
k+1

/P
k
 or  Q

k+1
/Q

k

● Q
k+1

/Q
k
+DGQ

0

In practice one typically chooses k=1:
● There are 2*32+22=22 (3*33+23=89) degrees of freedom 

per cell in 2d (3d)
● On a uniform mesh, matrix rows may have up to

– 2*52+32 = 59
– 3*53+33 = 402
entries

● k>1 yields better accuracy, but matrix starts to get full
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Mixed Laplace

Consider the mixed Laplace equations:

This can equivalently be considered as a minimization 
problem:

Let us consider the constraint in variational form:

u+∇ p  =  0
∇⋅u      = f

minu∈H1(Ω)d
   

1
2
∥u∥2

such that      ∇⋅u  = f

minu∈V =H 1(Ω)d
   

1
2
∥u∥2

such that          (q ,∇⋅u)  =  (q , f )          ∀q∈Q=L2
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Mixed Laplace

Consider the mixed Laplace equations:

The discrete formulation for this seeks                             : 

This corresponds to the finite dimensional minimization 
problem

(vh ,uh)−(∇⋅vh , ph)−(qh ,∇⋅uh)  =  −(qh , f )     ∀ vh∈V h ,  qh∈Qh

minuh∈V h
    

1
2
∥uh∥

2

such that    (qh ,∇⋅uh)  = (qh , f )           ∀ qh∈Qh

uh∈V h⊂V ,  ph∈Qh⊂Q

u+∇ p  =  0
∇⋅u      = f
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Mixed Laplace

Consider the discrete mixed Laplace equations:
We only get convergence of discrete solutions of

or equivalently

if the inf-sup/Babuska-Brezzi/LBB condition is satisfied:

There exists a constant c independent of h so that

Note: V=H(div), Q=L
2
.

supvh∈V h

(∇⋅vh , qh)

∥vh∥V

 ≥ c∥qh∥Q           ∀ qh∈Qh

(vh ,uh)−(∇⋅vh , ph)−(qh ,∇⋅uh)  =  −(qh , f )     ∀ vh∈V h ,  qh∈Qh

minuh∈V h
    

1
2
∥uh∥

2

such that    (qh ,∇⋅uh)  = (qh , f )           ∀ qh∈Qh
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Mixed Laplace

We have the same situation as before:

The condition...

There exists a constant c independent of h so that

...can be satisfied by making

● the velocity space V
h
 large enough

● the pressure space Q
h
 small enough

supvh∈V h

(∇⋅vh , qh)

∥vh∥V

 ≥ c∥qh∥Q           ∀ qh∈Qh
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Mixed Laplace

One common choice:
● V

h
 = P

k+1 
,  Q

h
 = P

k
 on triangles/tetrahedra

● V
h
 = Q

k+1 
,  Q

h
 = Q

k
 on quadrilaterals/hexahedra

This is again the Taylor-Hood element. It is stable

We can play the same game:
● Can we make the velocity space smaller?

(Less numerical effort with essentially same accuracy.)
● Can we make the pressure space larger?

(Better accuracy with only slightly more work.)
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Mixed Laplace

Option 1: Make velocity space smaller.

● V
h
 = Q

k+1 
,  Q

h
 = Q

k
 works

● V
h
 consists of continuous functions so that we can take 

the (weak) gradient, which we needed for Stokes:

● But we don't need this for mixed Laplace:

● All we need is that the divergence is defined.

(vh ,uh)−(∇⋅vh , ph)−(qh ,∇⋅uh)  =  −(qh , f )                ∀ vh∈V h ,  qh∈Qh

(∇ vh ,∇ uh)−(∇⋅vh , ph)−(qh ,∇⋅uh)  = (vh , f )          ∀ vh∈V h ,  qh∈Qh
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Mixed Laplace

Option 1: Make velocity space smaller.
We need: An element with continuous normal vector 
component but possibly discontinuous tangential  
component.

This is the Raviart-Thomas element.

This works: Replace
● V

h
 = Q

k+1 
,  Q

h
 = Q

k

by
● V

h
 = Raviart-Thomas(k),  Q

h
 = Q

k
if k>0

● V
h
 = Raviart-Thomas(0),  Q

h
 = DGQ

0
if k=0
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Mixed Laplace

Option 2: Make pressure space larger.

Recall the bilinear form:

We don't need a continuous pressure.

This works: Replace
● V

h
 = Raviart-Thomas(k),  Q

h
 = Q

k
if k>0

● V
h
 = Raviart-Thomas(0),  Q

h
 = DGQ

0
if k=0

by
● V

h
 = Raviart-Thomas(k),  Q

h
 = DGQ

k
(see step-20)

(vh ,uh)−(∇⋅vh , ph)−(qh ,∇⋅uh)  =  −(qh , f )                ∀ vh∈V h ,  qh∈Qh
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Mixed Laplace

Option 3: Alternatives
There are any number of alternatives to the Raviart-Thomas 
element:

● Brezzi-Douglas-Marini (BDM)
● Arnold-Falk-Winther
● … 

● Most of these use piecewise constant pressures at lowest 
order

● This leads to very slow convergence (O(h))
● For practical applications: use higher orders
● Elements are relatively “sparse”, i.e., not too many DoFs
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