MATH 676

Finite element methods in scientific computing

Wolfgang Bangerth, Texas A\&M University

Lecture 33.25:

Which element to use Part 2: Saddle point problems

Stokes

Consider the stationary Stokes equations:

$$
\begin{array}{ll}
-\Delta u+\nabla p & =f \\
\nabla \cdot u & =0
\end{array}
$$

This can equivalently be considered as a minimization problem:

$$
\begin{array}{ll}
\min _{u \in H^{1}(\Omega)^{d}} & \frac{1}{2}\|\nabla u\|^{2}-(f, u) \\
\text { such that } & \nabla \cdot u=0
\end{array}
$$

Let us consider the constraint in variational form:

$$
\begin{array}{ll}
\min _{u \in V=H^{1}(\Omega)^{d}} & \frac{1}{2}\|\nabla u\|^{2}-(f, u) \\
\text { such that } & (q, \nabla \cdot u)=0 \quad \forall q \in Q=L^{2}
\end{array}
$$

Stokes

Consider the stationary Stokes equations:

$$
\begin{array}{ll}
-\Delta u+\nabla p & =f \\
\nabla \cdot u & =0
\end{array}
$$

The discrete formulation for this seeks $u_{h} \in V_{h} \subset V, p_{h} \in Q_{h} \subset Q$:

$$
\left(\nabla v_{h}, \nabla u_{h}\right)-\left(\nabla \cdot v_{h}, p_{h}\right)-\left(q_{h}, \nabla \cdot u_{h}\right)=\left(v_{h}, f\right) \quad \forall v_{h} \in V_{h}, q_{h} \in Q_{h}
$$

This corresponds to the finite dimensional minimization problem

$$
\begin{array}{ll}
\min _{u_{n} \in V_{n}} & \frac{1}{2}\left\|\nabla u_{h}\right\|^{2}-\left(f, u_{h}\right) \\
\text { such that } & \left(q_{h}, \nabla \cdot u_{h}\right)=0 \quad \forall q_{h} \in Q_{h}
\end{array}
$$

Stokes

Consider the discrete Stokes equations:

$$
\begin{array}{ll}
\min _{u_{h} \in V_{h}} & \frac{1}{2}\left\|\nabla u_{h}\right\|^{2}-\left(f, u_{h}\right) \\
\text { such that } & \left(q_{h}, \nabla \cdot u_{h}\right)=0 \quad \forall q_{h} \in Q_{h}
\end{array}
$$

Here, we have $\operatorname{dim} Q_{h}$ constraints on the velocity u_{h}.
Intuitively, if (asymptotically) Q_{h} is "too large" compared to $V_{h^{\prime}}$ then:

- we have too many constraints on the velocity
- the velocity does not have enough degrees of freedom.

In this case the discrete solution may not converge.

Stokes

Consider the discrete Stokes equations:

We only get convergence of discrete solutions of

$$
\left(\nabla v_{h}, \nabla u_{h}\right)-\left(\nabla \cdot v_{h}, p_{h}\right)-\left(q_{h}, \nabla \cdot u_{h}\right)=\left(v_{h}, f\right) \quad \forall v_{h} \in V_{h}, q_{h} \in Q_{h}
$$

or equivalently

$$
\begin{array}{ll}
\min _{u_{u} \in V_{n}} & \frac{1}{2}\left\|\nabla u_{\|}\right\|^{2}-\left(f, u_{h}\right) \\
\text { such that } & \left(q_{h}, \nabla \cdot u_{h}\right)=0 \quad \forall q_{h} \in Q_{h}
\end{array}
$$

if the inf-sup/Babuska-Brezzi/LBB condition is satisfied:
There exists a constant c independent of h so that

$$
\sup _{v_{v, k} \in V_{n}} \frac{\left(\nabla \cdot v_{h}, q_{h}\right)}{\left\|v_{h}\right\|_{V}} \geq c\left\|q_{h}\right\|_{Q} \quad \forall q_{h} \in Q_{h}
$$

Note: $V=H^{1}, Q=L_{\text {, }}$.

Stokes

The inf-sup condition:

We can write the condition either as:
There exists a constant c independent of h so that

$$
\sup _{v_{v} \in V_{n}} \frac{\left(\nabla \cdot v_{h}, q_{h}\right)}{\left\|v_{h}\right\|_{V}} \geq c\left\|q_{h}\right\|_{Q} \quad \forall q_{h} \in Q_{h}
$$

Or as:
There exists a constant cindependent of h so that

$$
\inf _{q_{n} \in Q_{h}} \sup _{v_{n} \in \in v_{r}} \frac{\left(\nabla \cdot v_{h}, q_{h}\right)}{\left\|v_{h}\right\|_{v}}\left\|q_{h}\right\|_{Q} \geq c
$$

Stokes

The inf-sup condition:

The condition...
There exists a constant c independent of h so that

$$
\sup _{v_{h} \in V_{h}} \frac{\left(\nabla \cdot v_{h}, q_{h}\right)}{\left\|v_{h}\right\|_{V}} \geq c\left\|q_{h}\right\|_{Q} \quad \forall q_{h} \in Q_{h}
$$

...can be satisfied by making

- the velocity space V_{h} large enough
- the pressure space Q_{h} small enough

Typical choices (the "Taylor-Hood element"):

- $V_{h}=P_{k+1}, Q_{h}=P_{k}$
on triangles/tetrahedra
- $V_{h}=Q_{k+1}, Q_{h}=Q_{k} \quad$ on quadrilaterals/hexahedra

Stokes

Why Taylor-Hood ($P_{k+1} / P_{\boldsymbol{k}}$ or $\boldsymbol{Q}_{\boldsymbol{k}+1} / \boldsymbol{Q}_{\boldsymbol{k}}$):

- P_{K} / P_{k} or Q_{k} / Q_{k} is not stable:
- the constant c goes to zero as $h \rightarrow 0$
- the matrix has a near-nullspace
- the pressure develops a "checkerboard pattern":

(using step-22 with equal order elements)
Consequence: We need to make the velocity space larger or the pressure space smaller!

Stokes

Why Taylor-Hood (P_{k+1} / P_{k} or $\left.Q_{k+1} / Q_{k}\right)$:

- P_{k+1} / P_{k} or Q_{k+1} / Q_{k} is stable:
- there is a constant $c>0$
- the matrix remains regular
- the pressure is stable

(using step-22 with non-equal order elements)
Consequence: This works!

Stokes

Why Taylor-Hood (P_{k+1} / P_{k} or Q_{k+1} / Q_{k}):

- P_{k+2} / P_{k} or Q_{k+2} / Q_{k} is stable:
- there is a constant $c>0$
- the matrix remains regular
- the pressure is stable

(using step-22 with non-equal order elements)
- accuracy is now limited by the low-order pressure

Consequence: This choice is wasteful!

Stokes

Why Taylor-Hood (P_{k+1} / P_{k} or Q_{k+1} / Q_{k}):

- P_{k} / P_{k} or Q_{k} / Q_{k} doesn't work
- P_{k+1} / P_{k} or Q_{k+1} / Q_{k} works
- Can we find something in between?

Option 1: With a slightly smaller velocity space.

- We can't take away shape functions without either
- violating unisolvency
- making the shape functions discontinuous (which would make the element non-conforming)
- This option doesn't work

Stokes

Why Taylor-Hood $\left(P_{k+1} / P_{k}\right.$ or $\left.Q_{k+1} / Q_{k}\right)$:

- P_{k} / P_{k} or Q_{k} / Q_{k} doesn't work
- P_{k+1} / P_{k} or Q_{k+1} / Q_{k} works
- Can we find something in between?

Option 2a: With a slightly larger pressure space.

- Recall the bilinear form:

$$
\left(\nabla v_{h}, \nabla u_{h}\right)-\left(\nabla \cdot v_{h}, p_{h}\right)-\left(q_{h}, \nabla \cdot u_{h}\right)=\left(v_{h}, f\right)
$$

- We don't actually need continuity of the pressure
- We could try $Q_{k+1} / Q_{k}+D G Q_{0}$
- This actually works!

Stokes

Why Taylor-Hood $\left(P_{k+1} / P_{k}\right.$ or $\left.Q_{k+1} / Q_{k}\right)$:

- P_{k} / P_{k} or Q_{k} / Q_{k} doesn't work
- P_{k+1} / P_{k} or Q_{k+1} / Q_{k} works
- Can we find something in between?

Option 2b: With an even larger pressure space.

- Recall the bilinear form:

$$
\left(\nabla v_{h}, \nabla u_{h}\right)-\left(\nabla \cdot v_{h}, p_{h}\right)-\left(q_{h}, \nabla \cdot u_{h}\right)=\left(v_{h}, f\right)
$$

- We don't actually need continuity of the pressure
- We could try $Q_{k+1} / D G Q_{k}$
- This doesn't work, too many pressure degrees of freedom

Stokes

Choosing a polynomial degree:

We could choose either

- P_{k+1} / P_{k} or Q_{k+1} / Q_{k}
- $Q_{k+1} / Q_{k}+D G Q_{0}$

In practice one typically chooses $\boldsymbol{k}=1$:

- There are $2 * 3^{2}+2^{2}=22\left(3^{*} 3^{3}+2^{3}=89\right)$ degrees of freedom per cell in 2d (3d)
- On a uniform mesh, matrix rows may have up to ${ }_{*}^{*}$
$-2 * 5^{2}+3^{2}=59$
$-3 * 5^{3}+3^{3}=402$
entries

- $k>1$ yields better accuracy, but matrix starts to get full

Mixed Laplace

Consider the mixed Laplace equations:

$$
\begin{aligned}
& u+\nabla p=0 \\
& \nabla \cdot u=f
\end{aligned}
$$

This can equivalently be considered as a minimization problem:

$$
\begin{array}{ll}
\min _{u \in H^{\prime}(\Omega)} & \frac{1}{2}\|u\|^{2} \\
\text { such that } & \nabla \cdot u=f
\end{array}
$$

Let us consider the constraint in variational form:

$$
\begin{array}{ll}
\min _{u \in V=H^{1}(\Omega)^{d}} & \frac{1}{2}\|u\|^{2} \\
\text { such that } & (q, \nabla \cdot u)=(q, f) \quad \forall q \in Q=L^{2}
\end{array}
$$

Mixed Laplace

Consider the mixed Laplace equations:

$$
\begin{aligned}
& u+\nabla p=0 \\
& \nabla \cdot u=f
\end{aligned}
$$

The discrete formulation for this seeks $u_{h} \in V_{h} \subset V, p_{h} \in Q_{h} \subset Q$:

$$
\left(v_{h}, u_{h}\right)-\left(\nabla \cdot v_{h}, p_{h}\right)-\left(q_{h}, \nabla \cdot u_{h}\right)=-\left(q_{h}, f\right) \quad \forall v_{h} \in V_{h}, q_{h} \in Q_{h}
$$

This corresponds to the finite dimensional minimization problem

$$
\begin{array}{ll}
\min _{u_{n} \in V_{h}} & \frac{1}{2}\left\|u_{h}\right\|^{2} \\
\text { such that } & \left(q_{h}, \nabla \cdot u_{h}\right)=\left(q_{h}, f\right) \quad \forall q_{h} \in Q_{h}
\end{array}
$$

Mixed Laplace

Consider the discrete mixed Laplace equations:

We only get convergence of discrete solutions of

$$
\left(v_{h}, u_{h}\right)-\left(\nabla \cdot v_{h}, p_{h}\right)-\left(q_{h}, \nabla \cdot u_{h}\right)=-\left(q_{h}, f\right) \quad \forall v_{h} \in V_{h}, q_{h} \in Q_{h}
$$

or equivalently

$$
\begin{array}{ll}
\min _{u_{h} \in V_{h}} & \frac{1}{2}\left\|u_{h}\right\|^{2} \\
\text { such that } & \left(q_{h}, \nabla \cdot u_{h}\right)=\left(q_{h}, f\right) \quad \forall q_{h} \in Q_{h}
\end{array}
$$

if the inf-sup/Babuska-Brezzi/LBB condition is satisfied:
There exists a constant c independent of h so that

$$
\sup _{v_{v, k} \in V_{n}} \frac{\left(\nabla \cdot v_{h}, q_{h}\right)}{\left\|v_{h}\right\|_{V}} \geq c\left\|q_{h}\right\|_{Q} \quad \forall q_{h} \in Q_{h}
$$

Note: $V=H(d i v), Q=L_{2}$.

Mixed Laplace

We have the same situation as before:

The condition...
There exists a constant cindependent of h so that

$$
\sup _{v_{v_{k}} \in v_{h}} \frac{\left(\nabla \cdot v_{h}, q_{h}\right)}{\left\|v_{h}\right\|_{V}} \geq c\left\|q_{h}\right\|_{Q} \quad \forall q_{h} \in Q_{h}
$$

...can be satisfied by making

- the velocity space V_{h} large enough
- the pressure space Q_{h} small enough

Mixed Laplace

One common choice:

- $V_{h}=P_{k+1}, Q_{h}=P_{k} \quad$ on triangles/tetrahedra
- $V_{h}=Q_{k+1}, Q_{h}=Q_{k} \quad$ on quadrilaterals/hexahedra

This is again the Taylor-Hood element. It is stable

We can play the same game:

- Can we make the velocity space smaller? (Less numerical effort with essentially same accuracy.)
- Can we make the pressure space larger?
(Better accuracy with only slightly more work.)

Mixed Laplace

Option 1: Make velocity space smaller.

- $V_{h}=Q_{k+1}, Q_{h}=Q_{k}$ works
- V_{h} consists of continuous functions so that we can take the (weak) gradient, which we needed for Stokes:

$$
\left(\nabla v_{h}, \nabla u_{h}\right)-\left(\nabla \cdot v_{h}, p_{h}\right)-\left(q_{h}, \nabla \cdot u_{h}\right)=\left(v_{h}, f\right) \quad \forall v_{h} \in V_{h}, q_{h} \in Q_{h}
$$

- But we don't need this for mixed Laplace:

$$
\left(v_{h}, u_{h}\right)-\left(\nabla \cdot v_{h}, p_{h}\right)-\left(q_{h}, \nabla \cdot u_{h}\right)=-\left(q_{h}, f\right) \quad \forall v_{h} \in V_{h}, q_{h} \in Q_{h}
$$

- All we need is that the divergence is defined.

Mixed Laplace

Option 1: Make velocity space smaller.

We need: An element with continuous normal vector component but possibly discontinuous tangential component.

This is the Raviart-Thomas element.

This works: Replace

- $V_{h}=Q_{k+1}, Q_{h}=Q_{k}$
by
- $V_{h}=$ Raviart-Thomas(k), $Q_{h}=Q_{k} \quad$ if $k>0$
- $V_{h}=$ Raviart-Thomas(0), $Q_{h}=D G Q_{0}$ if $k=0$

Mixed Laplace

Option 2: Make pressure space larger.

 Recall the bilinear form:$$
\left(v_{h}, u_{h}\right)-\left(\nabla \cdot v_{h}, p_{h}\right)-\left(q_{h}, \nabla \cdot u_{h}\right)=-\left(q_{h}, f\right) \quad \forall v_{h} \in V_{h}, q_{h} \in Q_{h}
$$

We don't need a continuous pressure.

This works: Replace

- $V_{h}=$ Raviart-Thomas(k), $Q_{h}=Q_{k} \quad$ if $k>0$
- $V_{h}=$ Raviart-Thomas(0), $Q_{h}=D G Q_{0}$ if $k=0$ by
- $V_{h}=$ Raviart-Thomas(k), $Q_{h}=D G Q_{k} \quad$ (see step-20)

Mixed Laplace

Option 3: Alternatives

There are any number of alternatives to the Raviart-Thomas element:

- Brezzi-Douglas-Marini (BDM)
- Arnold-Falk-Winther
- Most of these use piecewise constant pressures at lowest order
- This leads to very slow convergence $(O(h))$
- For practical applications: use higher orders
- Elements are relatively "sparse", i.e., not too many DoFs

MATH 676

Finite element methods in scientific computing

Wolfgang Bangerth, Texas A\&M University

