MATH 676

Finite element methods in scientific computing

Wolfgang Bangerth, Texas A\&M University

Lecture 31.65:

Nonlinear problems

Part 4: Fixed point/Picard iteration for the minimal surface equation

The minimal surface equation

Consider the minimal surface equation:

$$
\begin{aligned}
-\nabla \cdot\left(\frac{A}{\sqrt{1+|\nabla u|^{2}}} \nabla u\right) & =f & & \text { in } \Omega \\
u & =g & & \text { on } \partial \Omega
\end{aligned}
$$

where we choose

$$
\Omega=B_{1}(0) \subset \mathbb{R}^{2}, \quad f=0, \quad g=\sin (2 \pi(x+y))
$$

Goal: Solve this numerically with a Picard iteration method.

Picard iteration

General approach: To solve

$$
L(u)=f
$$

by Picard iteration, we need to rewrite $L(u)$ as

$$
L(u)=G(u) u
$$

and then repeatedly solve

$$
G\left(u_{k}\right) u_{k+1}=f
$$

Note 1: Here, $G(u)$ is in general a differential operator. Note 2: This is a linear problem in u_{k+1}.

Picard iteration

Here: To solve

$$
\begin{aligned}
-\nabla \cdot\left(\frac{A}{\sqrt{1+|\nabla u|^{2}}} \nabla u\right) & =f & & \text { in } \Omega \\
u & =g & & \text { on } \partial \Omega
\end{aligned}
$$

by Picard iteration, we need to repeatedly solve

$$
\begin{aligned}
-\nabla \cdot\left(\frac{A}{\sqrt{1+\left|\nabla u_{k}\right|^{2}}} \nabla u_{k+1}\right) & =f & & \text { in } \Omega \\
u_{k+1} & =g & & \text { on } \partial \Omega
\end{aligned}
$$

Note: This is a linear problem in u_{k+1}.

Picard iteration

Question: With

$$
L(u)=-\nabla \cdot\left(\frac{A}{\sqrt{1+|\nabla u|^{2}}} \nabla u\right)
$$

why choose

$$
G(u) w=-\nabla \cdot\left(\frac{A}{\sqrt{1+|\nabla u|^{2}}} \nabla w\right)
$$

? We could also choose

$$
G(u)_{w}=\frac{L(u)}{u} w=\left[-\nabla \cdot\left(\frac{A}{\sqrt{1+|\nabla u|^{2}}} \nabla u\right)\right] \frac{w}{u}
$$

Answer: Yes, but this is no differential equation in w. It may or may not converge.

Picard iteration

Question: With

$$
L(u)=-\nabla \cdot\left(\frac{A}{\sqrt{1+|\nabla u|^{2}}} \nabla u\right)
$$

why choose

$$
G(u)_{w}=-\nabla \cdot\left(\frac{A}{\sqrt{1+|\nabla u|^{2}}} \nabla w\right)
$$

? We could also choose

$$
G(u) w=-\nabla \cdot\left(\frac{A}{\sqrt{1+\nabla u \cdot \nabla w}} \nabla u\right)
$$

Answer: Yes, but this is not linear in w. We don't know how to solve $G(u) w=f$.

Picard iteration

Question: How to choose $G(u)$?

Answers:

- We often have different choices for $G(u)$
- We choose so that
- G(u) is linear
- The equation $G(u) w=f$ is a well-posed PDE
- The operator $G(u)$ has a "convenient" structure
- There is often an element of "experience" involved

Picard iteration

Remember: To solve

$$
\begin{aligned}
-\nabla \cdot\left(\frac{A}{\left.\sqrt{1+|\nabla u|^{2}} \nabla u\right)}\right. & =f & & \text { in } \Omega \\
u & =g & & \text { on } \partial \Omega
\end{aligned}
$$

by Picard iteration, we need to repeatedly solve

$$
\begin{aligned}
-\nabla \cdot\left(\frac{A}{\sqrt{1+\left|\nabla u_{k}\right|^{2}}} \nabla u_{k+1}\right) & =f & & \text { in } \Omega \\
u_{k+1} & =g & & \text { on } \partial \Omega
\end{aligned}
$$

Notes: (i) This is linear u_{k+1}. (ii) It is well-posed if the coefficient is bounded from below.
(iii) It is "like" the Poisson equation.

Picard iteration

Picard iteration: Repeatedly solve

$$
\begin{aligned}
-\nabla \cdot\left(\frac{A}{\sqrt{1+\left|\nabla u_{k}\right|^{2}}} \nabla u_{k+1}\right) & =f & & \text { in } \Omega \\
u_{k+1} & =g & & \text { on } \partial \Omega
\end{aligned}
$$

Question: What should our initial guess u_{0} be?

Answers:

- As close as possible to the exact solution!
- Here, $u_{0}=0$ will suffice (even though this doesn't satisfy boundary conditions).

Picard iteration

Picard iteration: Repeatedly solve

$$
\begin{aligned}
-\nabla \cdot\left(\frac{A}{\sqrt{1+\left|\nabla u_{k}\right|^{2}}} \nabla u_{k+1}\right) & =f & & \text { in } \Omega \\
u_{k+1} & =g & & \text { on } \partial \Omega
\end{aligned}
$$

Question: Wouldn't the solution of
be better?

$$
\begin{array}{rlrl}
-\nabla \cdot\left(A \nabla u_{0}\right) & =f & \text { in } \Omega \\
u_{0} & =g & & \text { on } \partial \Omega
\end{array}
$$

Answer: Yes! But if $u_{0}=0$ then u_{1} satisfies

$$
\begin{aligned}
-\nabla \cdot\left(\frac{A}{\sqrt{1+0^{2}}} \nabla u_{1}\right) & =f & & \text { in } \Omega \\
u_{1} & =g & & \text { on } \partial \Omega
\end{aligned}
$$

Picard iteration

Remember: To solve

$$
\begin{aligned}
-\nabla \cdot\left(\frac{A}{\left.\sqrt{1+|\nabla u|^{2}} \nabla u\right)}\right. & =f & & \text { in } \Omega \\
u & =g & & \text { on } \partial \Omega
\end{aligned}
$$

by Picard iteration, we need to repeatedly solve

$$
\begin{aligned}
-\nabla \cdot\left(\frac{A}{\sqrt{1+\left|\nabla u_{k}\right|^{2}}} \nabla u_{k+1}\right) & =f & & \text { in } \Omega \\
u_{k+1} & =g & & \text { on } \partial \Omega
\end{aligned}
$$

Let's see if we can morph step-6 to do this for us.

MATH 676

Finite element methods in scientific computing

Wolfgang Bangerth, Texas A\&M University

