MATH 676

Finite element methods in scientific computing

Wolfgang Bangerth, Texas A&M University

http://www.dealii.org/

Lecture 31.65:

Nonlinear problems

Part 4: Fixed point/Picard iteration for the minimal surface equation

http://www.dealii.org/

The minimal surface equation

Consider the minimal surface equation:

$$-\nabla \cdot \left(\frac{A}{\sqrt{1+|\nabla u|^2}} \nabla u\right) = f \quad \text{in } \Omega$$
$$u = g \quad \text{on } \partial \Omega$$

where we choose

$$\Omega = B_1(0) \subset \mathbb{R}^2$$
, $f = 0$, $g = \sin(2\pi(x+y))$

Goal: Solve this numerically with a Picard iteration method.

http://www.dealii.org/

General approach: To solve

$$L(u) = f$$

by Picard iteration, we need to rewrite L(u) as

L(u) = G(u)u

and then repeatedly solve

 $G(u_k)u_{k+1}=f$

Note 1: Here, G(u) is in general a differential operator. **Note 2:** This is a linear problem in u_{k+1} .

http://www.dealii.org/

Here: To solve $-\nabla \cdot \left(\frac{A}{\sqrt{1+|\nabla u|^2}}\nabla u\right) = f \quad \text{in } \Omega$ u = q on $\partial \Omega$ by Picard iteration, we need to repeatedly solve $-\nabla \cdot \left(\frac{A}{\sqrt{1+|\nabla u_k|^2}} \nabla u_{k+1}\right) = f \quad \text{in } \Omega$ $u_{k+1} = q$ on $\partial \Omega$

Note: This is a linear problem in u_{k+1} .

http://www.dealii.org/

Question: With

$$L(u) = -\nabla \cdot \left(\frac{A}{\sqrt{1 + |\nabla u|^2}} \nabla u \right)$$

why choose

$$G(u)w = -\nabla \cdot \left(\frac{A}{\sqrt{1+|\nabla u|^2}}\nabla w\right)$$

? We could also choose

$$G(u)w = \frac{L(u)}{u}w = \left[-\nabla \cdot \left(\frac{A}{\sqrt{1+|\nabla u|^2}}\nabla u\right)\right]\frac{w}{u}$$

Answer: Yes, but this is no differential equation in *w*. It may or may not converge.

http://www.dealii.org/

Question: With

$$L(u) = -\nabla \cdot \left(\frac{A}{\sqrt{1 + |\nabla u|^2}} \nabla u \right)$$

why choose

$$G(u)w = -\nabla \cdot \left(\frac{A}{\sqrt{1+|\nabla u|^2}}\nabla w\right)$$

? We could also choose

$$G(u)w = -\nabla \cdot \left(\frac{A}{\sqrt{1+\nabla u \cdot \nabla w}} \nabla u\right)$$

Answer: Yes, but this is not linear in *w*. We don't know how to solve G(u)w = f.

http://www.dealii.org/

Question: How to choose *G(u)* ?

Answers:

- We often have different choices for *G(u)*
- We choose so that
 - G(u) is linear
 - The equation G(u) w = f is a well-posed PDE
 - The operator G(u) has a "convenient" structure
- There is often an element of "experience" involved

Remember: To solve

$$-\nabla \cdot \left(\frac{A}{\sqrt{1+|\nabla u|^2}} \nabla u\right) = f \quad \text{in } \Omega$$
$$u = g \quad \text{on } \partial \Omega$$

by Picard iteration, we need to repeatedly solve

$$-\nabla \cdot \left(\frac{A}{\sqrt{1+|\nabla u_k|^2}} \nabla u_{k+1}\right) = f \quad \text{in } \Omega$$
$$u_{k+1} = g \quad \text{on } \partial \Omega$$

Notes: (i) This is linear u_{k+1} . (ii) It is well-posed if the coefficient is bounded from below. (iii) It is "like" the Poisson equation.

http://www.dealii.org/

Picard iteration: Repeatedly solve

$$-\nabla \cdot \left(\frac{A}{\sqrt{1+|\nabla u_k|^2}} \nabla u_{k+1}\right) = f \quad \text{in } \Omega$$
$$u_{k+1} = g \quad \text{on } \partial \Omega$$

Question: What should our initial guess u_o be?

Answers:

- As close as possible to the exact solution!
- Here, $u_0 = 0$ will suffice (even though this doesn't satisfy boundary conditions).

Picard iteration: Repeatedly solve

$$-\nabla \cdot \left(\frac{A}{\sqrt{1+|\nabla u_k|^2}} \nabla u_{k+1}\right) = f \quad \text{in } \Omega$$
$$u_{k+1} = g \quad \text{on } \partial \Omega$$

Question: Wouldn't the solution of

be better?
$$-\nabla \cdot (A \nabla u_0) = f \quad \text{in } \Omega$$
$$u_0 = g \quad \text{on } \partial \Omega$$

Answer: Yes! But if $u_0 = 0$ then u_1 satisfies $-\nabla \cdot \left(\frac{A}{\sqrt{1+0^2}} \nabla u_1\right) = f$ in Ω $u_1 = g$ on $\partial \Omega$

http://www.dealii.org/

Remember: To solve

$$-\nabla \cdot \left(\frac{A}{\sqrt{1+|\nabla u|^2}} \nabla u\right) = f \quad \text{in } \Omega$$
$$u = g \quad \text{on } \partial \Omega$$

by Picard iteration, we need to repeatedly solve

$$-\nabla \cdot \left(\frac{A}{\sqrt{1+|\nabla u_k|^2}} \nabla u_{k+1}\right) = f \quad \text{in } \Omega$$
$$u_{k+1} = g \quad \text{on } \partial \Omega$$

Let's see if we can morph step-6 to do this for us.

http://www.dealii.org/

MATH 676

Finite element methods in scientific computing

Wolfgang Bangerth, Texas A&M University

http://www.dealii.org/