MATH 676

Finite element methods in scientific computing

Wolfgang Bangerth, Texas A&M University

http://www.dealii.org/

Lecture 30.25:

Time discretizations for advectiondiffusion and other problems:

IMEX, operator splitting, and other ideas

http://www.dealii.org/

Explicit vs implicit time stepping

Recall (lectures 26-28):

• Parabolic problems, e.g. heat equation:

$$\frac{\partial u}{\partial t} - \Delta u = f$$

 2nd order hyperbolic problems, e.g. wave equation:

$$\frac{\partial^2 u}{\partial t^2} - \Delta u = f$$

 1st order hyperbolic problems, e.g. transport equation:

$$\frac{\partial u}{\partial t} + \vec{\beta} \cdot \nabla u = f$$

Implicit time stepping!

Explicit time stepping!

Explicit time stepping!

Wolfgang Bangerth

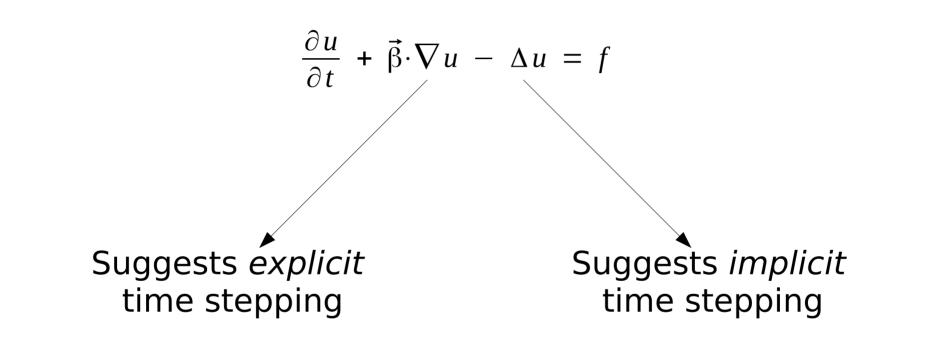
Questions

Questions for this lecture:

- What do we do for problems that do not fall into these neat categories?
- What are common approaches?

Explicit vs implicit time stepping

Example: What to do with advection-diffusion problems?



Note: Advection-diffusion equations describe processes where material/energy is transported and diffuses (water, atmosphere, etc). Diffusion is often small.

IMEX schemes

Example: What to do with advection-diffusion problems?

Answer 1: Implicit/explicit (IMEX) schemes

- treat transport explicitly
- treat diffusion implicitly

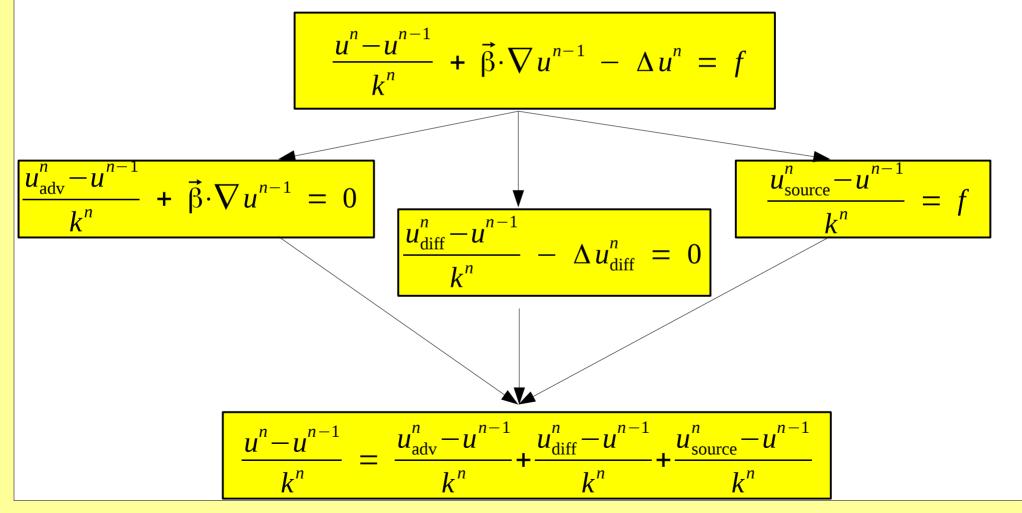
$$\frac{\partial u}{\partial t} + \vec{\beta} \cdot \nabla u - \Delta u = f$$

$$\frac{u^n - u^{n-1}}{k^n} + \vec{\beta} \cdot \nabla u^{n-1} - \Delta u^n = f \qquad (k^n = t^n - t^{n-1})$$

$$u^n - k^n \Delta u^n = u^{n-1} - k^n \vec{\beta} \cdot \nabla u^{n-1} + k^n f$$

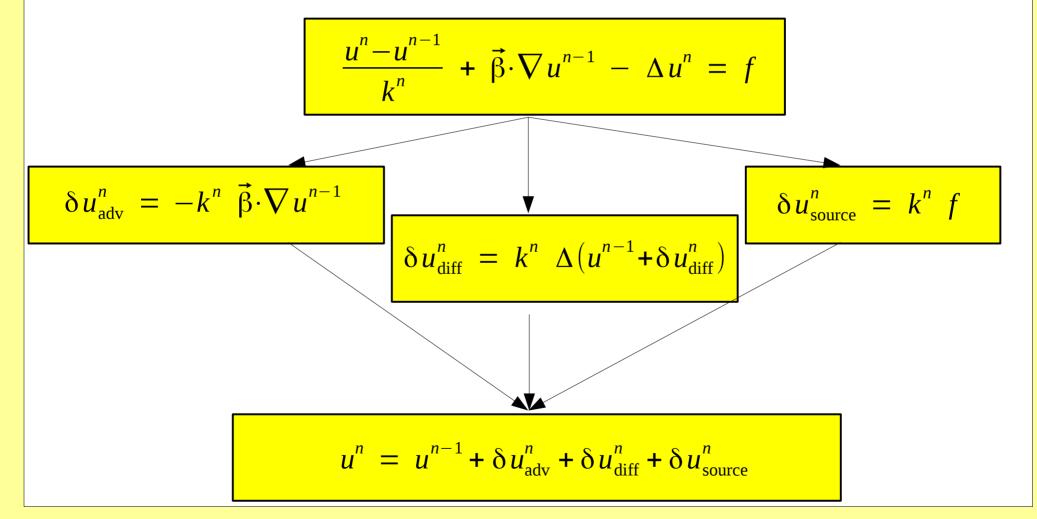
Wolfgang Bangerth

Reformulation: Such schemes are often *approximated* in a way that separate the physical effects:



Wolfgang Bangerth

Reformulation: Such schemes are often *approximated* in a way that separate the physical effects:



http://www.dealii.org/

Reformulation: Such schemes are often *approximated* in a way that separate the physical effects:

$$u^n = u^{n-1} + \delta u^n_{adv} + \delta u^n_{diff} + \delta u^n_{source}$$

- Computing increments can be done independently:
 - concurrently (in parallel)
 - by separate codes
- Source contribution may be included into the other solves
- Scheme can be generalized to higher order

Example: What to do with advection-diffusion problems?

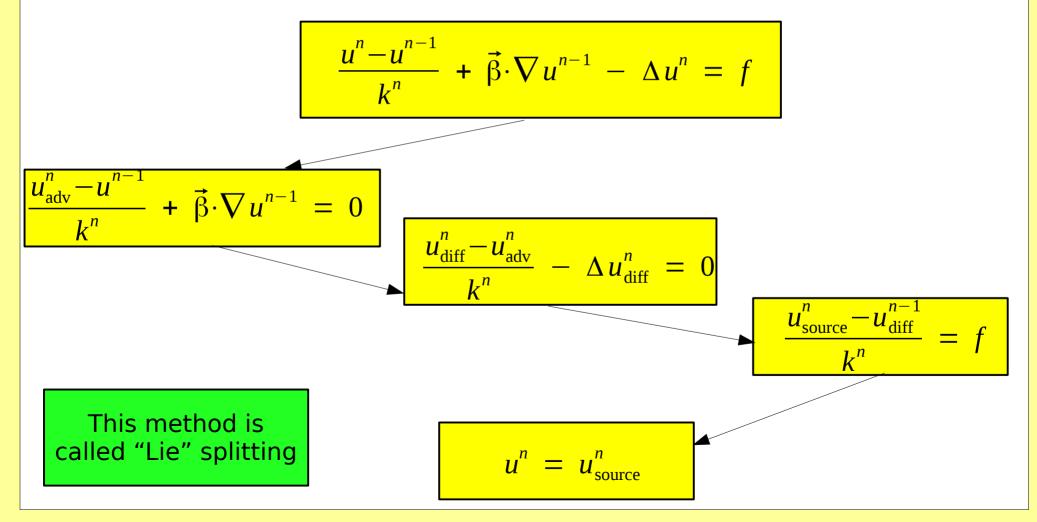
Answer 2: Operator splitting schemes solve for one physical effect *after* the other.

With operator splitting, we can also

- treat transport explicitly
- treat diffusion implicitly

Note: IMEX treats terms concurrently, operator splitting sequentially.

Formulation: Operator splitting schemes separate the physical effects:



http://www.dealii.org/

Formulation: Operator splitting schemes separate the physical effects.

- Computing 3 increments can be done
 - independently
 - by separate codes
- Source contribution may be included into the other solves
- The Lie scheme is only first order in k^n
- Scheme can be generalized to second order ("Strang splitting")

Example: Consider the reaction of 3 species

$$A + B \rightarrow C$$

in a reactor. A simple model would be

- Solution variable: $u(x,t) = [u_A(x,t), u_B(x,t), u_C(x,t)]$
- Equation: •

$$\frac{\partial \vec{u}}{\partial t} - \Delta \vec{u} = \vec{f}(\vec{u})$$

Reaction terms: • $\vec{f}(\vec{u}) = \begin{pmatrix} -ku_A u_B \\ -ku_A u_B \\ +ku_A u_B \end{pmatrix}$

http://www.dealii.org/

Example: Consider the equation

$$\frac{\partial \vec{u}}{\partial t} - \Delta \vec{u} = \vec{f}(\vec{u})$$

Here:

- One term is a spatial process (diffusion, a PDE)
- One term is a local process (reaction, an ODE)
- We may have different codes that are specialized in each process

Example: Consider the equation

$$\frac{\partial \vec{u}}{\partial t} - \Delta \vec{u} = \vec{f}(\vec{u})$$

First order operator splitting ("Lie splitting"):

• First account for the effect of one time step's worth of diffusion (implicit):

$$\frac{\vec{u}^* - \vec{u}^{n-1}}{k^n} - \Delta \vec{u}^* = 0$$

• Then account for one time step's worth of reactions (local ODE):

$$\frac{\partial \vec{u}^{**}}{\partial t} = \vec{f}(\vec{u}^{**}), \quad \vec{u}^{**}(t_{n-1}) = \vec{u}^{*} \quad \Rightarrow \quad \vec{u}^{n} = \vec{u}^{**}(t_{n})$$

The order could of course be reversed.

http://www.dealii.org/

Example: Consider the equation

$$\frac{\partial \vec{u}}{\partial t} - \Delta \vec{u} = \vec{f}(\vec{u})$$

Second order operator splitting ("Strang splitting"):

Half diffusion step:

$$\frac{\vec{u}^* - \vec{u}^{n-1}}{k^n/2} - \Delta \vec{u}^* = 0$$

• Full reaction step:

$$\frac{\partial \vec{u}^{**}}{\partial t} = \vec{f}(\vec{u}^{**}), \quad \vec{u}^{**}(t_{n-1}) = \vec{u}^{*} \quad \Rightarrow \text{ solve for } \vec{u}^{**}(t_{n})$$

• Half diffusion step:

$$\frac{d^n - \vec{u}^{**}(t_n)}{k^n/2} - \Delta \vec{u}^n = 0$$

• The order of sub-steps can be reversed.

http://www.dealii.org/

Background, part 1: Both IMEX and Operator Splitting schemes need to discretize the time derivative

 $\frac{\partial \vec{u}}{\partial t}$

This can be done in many ways, for example:

• Simplest approximation (Euler, BDF-1, ...)

$$\frac{\partial u}{\partial t} \approx \frac{u^n - u^{n-1}}{k}$$

• BDF-2

$$\frac{\partial u}{\partial t} \approx \frac{\frac{3}{2}u^n - 2u^{n-1} + \frac{1}{2}u^{n-2}}{k}$$

Background, part 2: We need to approximate *explicit terms* in equations such as

$$\frac{\partial u}{\partial t} + \vec{\beta} \cdot \nabla u - \Delta u = f$$

This can be done in many ways, for example:

• Explicit Euler

$$\frac{u^n - u^{n-1}}{k^n} + \vec{\beta} \cdot \nabla u^{n-1} - \Delta u^n = f$$

• Two-step (explicit) extrapolation

$$\frac{u^{n}-u^{n-1}}{k^{n}} + \vec{\beta} \cdot \nabla \left(u^{n-1} + k^{n} \frac{u^{n-1}-u^{n-2}}{k^{n-1}} \right) - \Delta u^{n} = f$$

http://www.dealii.org/

Summary

Many important, time-dependent equations are not purely

- parabolic
- Hyperbolic.

For these equations, one often wants to treat

- some terms explicitly
- some terms implicitly
- treat different physical effects separately.

There are many ways of doing this (e.g., IMEX, Operator Splitting) and many variations to achieve higher order accuracy.

MATH 676

Finite element methods in scientific computing

Wolfgang Bangerth, Texas A&M University

http://www.dealii.org/