MATH 676

Finite element methods in scientific computing

Wolfgang Bangerth, Texas A\&M University

Lecture 30.25:

Time discretizations for advectiondiffusion and other problems:

IMEX, operator splitting, and other ideas

Explicit vs implicit time stepping

Recall (lectures 26-28):

- Parabolic problems, e.g. heat equation:

$$
\frac{\partial u}{\partial t}-\Delta u=f
$$

Implicit time stepping!

Explicit

 time stepping!
Explicit

 time stepping!
Questions

Questions for this lecture:

- What do we do for problems that do not fall into these neat categories?
- What are common approaches?

Explicit vs implicit time stepping

Example: What to do with advection-diffusion problems?

$$
\frac{\partial u}{\partial t}+\vec{\beta} \cdot \nabla u-\Delta u=f
$$

Suggests éxplicit
time stepping

Suggests implicit time stepping

Note: Advection-diffusion equations describe processes where material/energy is transported and diffuses (water, atmosphere, etc). Diffusion is often small.

IMEX schemes

Example: What to do with advection-diffusion problems?

Answer 1: Implicit/explicit (IMEX) schemes

- treat transport explicitly
- treat diffusion implicitly

$$
\begin{aligned}
\frac{\partial u}{\partial t}+\vec{\beta} \cdot \nabla u-\Delta u & =f \\
\frac{u^{n}-u^{n-1}}{k^{n}}+\vec{\beta} \cdot \nabla u^{n-1}-\Delta u^{n} & =f \\
u^{n}-k^{n} \Delta u^{n} & =u^{n-1}-k^{n} \vec{\beta} \cdot \nabla u^{n-1}+k^{n} f
\end{aligned}
$$

IMEX schemes

Reformulation: Such schemes are often approximated in a way that separate the physical effects:

IMEX schemes

Reformulation: Such schemes are often approximated in a way that separate the physical effects:

$$
\frac{u^{n}-u^{n-1}}{k^{n}}+\vec{\beta} \cdot \nabla u^{n-1}-\Delta u^{n}=f
$$

$$
\delta u_{\mathrm{adv}}^{n}=-k^{n} \vec{\beta} \cdot \nabla u^{n-1}
$$

$$
\delta u_{\text {source }}^{n}=k^{n} f
$$

$$
\delta u_{\mathrm{diff}}^{n}=k^{n} \Delta\left(u^{n-1}+\delta u_{\mathrm{diff}}^{n}\right)
$$

$$
u^{n}=u^{n-1}+\delta u_{\mathrm{adv}}^{n}+\delta u_{\mathrm{diff}}^{n}+\delta u_{\text {source }}^{n}
$$

IMEX schemes

Reformulation: Such schemes are often approximated in a way that separate the physical effects:

$$
u^{n}=u^{n-1}+\delta u_{\mathrm{adv}}^{n}+\delta u_{\mathrm{diff}}^{n}+\delta u_{\text {source }}^{n}
$$

- Computing increments can be done independently: - concurrently (in parallel)
- by separate codes
- Source contribution may be included into the other solves
- Scheme can be generalized to higher order

Operator splitting schemes

Example: What to do with advection-diffusion problems?
Answer 2: Operator splitting schemes solve for one physical effect after the other.

With operator splitting, we can also

- treat transport explicitly
- treat diffusion implicitly

Note: IMEX treats terms concurrently, operator splitting sequentially.

Operator splitting schemes

Formulation: Operator splitting schemes separate the physical effects:

$$
\frac{u^{n}-u^{n-1}}{k^{n}}+\vec{\beta} \cdot \nabla u^{n-1}-\Delta u^{n}=f
$$

$$
\frac{u_{\mathrm{adv}}^{n}-u^{n-1}}{k^{n}}+\vec{\beta} \cdot \nabla u^{n-1}=0
$$

$$
-\frac{u_{\text {diff }}^{n}-u_{\text {adv }}^{n}}{k^{n}}-\Delta u_{\text {diff }}^{n}=0
$$

This method is called "Lie" splitting

$$
u^{n}=u_{\text {source }}^{n}
$$

Operator splitting schemes

Formulation: Operator splitting schemes separate the physical effects.

- Computing 3 increments can be done
- independently
- by separate codes
- Source contribution may be included into the other solves
- The Lie scheme is only first order in k^{n}
- Scheme can be generalized to second order ("Strang splitting")

Operator splitting schemes

Example: Consider the reaction of 3 species

$$
A+B \rightarrow C
$$

in a reactor. A simple model would be

- Solution variable:

$$
u(x, t)=\left\{u_{A}(x, t), u_{B}(x, t), u_{C}(x, t)\right\}
$$

- Equation:

$$
\frac{\partial \vec{u}}{\partial t}-\Delta \vec{u}=\vec{f}(\vec{u})
$$

- Reaction terms:

$$
\vec{f}(\vec{u})=\left(\begin{array}{l}
-k u_{A} u_{B} \\
-k u_{A} u_{B} \\
+k u_{A} u_{B}
\end{array}\right)
$$

Operator splitting schemes

Example: Consider the equation

$$
\frac{\partial \vec{u}}{\partial t}-\Delta \vec{u}=\vec{f}(\vec{u})
$$

Here:

- One term is a spatial process (diffusion, a PDE)
- One term is a local process (reaction, an ODE)
- We may have different codes that are specialized in each process

Operator splitting schemes

Example: Consider the equation

$$
\frac{\partial \vec{u}}{\partial t}-\Delta \vec{u}=\vec{f}(\vec{u})
$$

First order operator splitting ("Lie splitting"):

- First account for the effect of one time step's worth of diffusion (implicit):

$$
\frac{\vec{u}^{*}-\vec{u}^{n-1}}{k^{n}}-\Delta \vec{u}^{*}=0
$$

- Then account for one time step's worth of reactions (local ODE):

$$
\frac{\partial \vec{u}^{* *}}{\partial t}=\vec{f}\left(\vec{u}^{* *}\right), \quad \vec{u}^{* *}\left(t_{n-1}\right)=\vec{u}^{*} \quad \rightarrow \quad \vec{u}^{n}=\vec{u}^{* *}\left(t_{n}\right)
$$

- The order could of course be reversed.

Operator splitting schemes

Example: Consider the equation

$$
\frac{\partial \vec{u}}{\partial t}-\Delta \vec{u}=\vec{f}(\vec{u})
$$

Second order operator splitting ("Strang splitting"):

- Half diffusion step:

$$
\frac{\vec{u}^{*}-\vec{u}^{n-1}}{k^{n} / 2}-\Delta \vec{u}^{*}=0
$$

- Full reaction step:

$$
\frac{\partial \vec{u}^{* *}}{\partial t}=\vec{f}\left(\vec{u}^{* *}\right), \quad \vec{u}^{* *}\left(t_{n-1}\right)=\vec{u}^{*} \quad \rightarrow \text { solve for } \vec{u}^{* *}\left(t_{n}\right)
$$

- Half diffusion step:

$$
\frac{\vec{u}^{n}-\vec{u}^{* *}\left(t_{n}\right)}{k^{n} / 2}-\Delta \vec{u}^{n}=0
$$

- The order of sub-steps can be reversed.

More accuracy

Background, part 1: Both IMEX and Operator Splitting schemes need to discretize the time derivative

$$
\frac{\partial \vec{u}}{\partial t}
$$

This can be done in many ways, for example:

- Simplest approximation (Euler, BDF-1, ...)

$$
\frac{\partial u}{\partial t} \approx \frac{u^{n}-u^{n-1}}{k}
$$

- BDF-2

$$
\frac{\partial u}{\partial t} \approx \frac{\frac{3}{2} u^{n}-2 u^{n-1}+\frac{1}{2} u^{n-2}}{k}
$$

More accuracy

Background, part 2: We need to approximate explicit terms in equations such as

$$
\frac{\partial u}{\partial t}+\vec{\beta} \cdot \nabla u-\Delta u=f
$$

This can be done in many ways, for example:

- Explicit Euler

$$
\frac{u^{n}-u^{n-1}}{k^{n}}+\vec{\beta} \cdot \nabla u^{n-1}-\Delta u^{n}=f
$$

- Two-step (explicit) extrapolation

$$
\frac{u^{n}-u^{n-1}}{k^{n}}+\vec{\beta} \cdot \nabla\left(u^{n-1}+k^{n} \frac{u^{n-1}-u^{n-2}}{k^{n-1}}\right)-\Delta u^{n}=f
$$

Summary

Many important, time-dependent equations are not purely

- parabolic
- Hyperbolic.

For these equations, one often wants to treat

- some terms explicitly
- some terms implicitly
- treat different physical effects separately.

There are many ways of doing this (e.g., IMEX, Operator Splitting) and many variations to achieve higher order accuracy.

MATH 676

Finite element methods in scientific computing

Wolfgang Bangerth, Texas A\&M University

