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Lecture 30.25:

Time discretizations for advection-
diffusion and other problems:

IMEX, operator splitting,
and other ideas
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Explicit vs implicit time stepping

Recall (lectures 26-28):
● Parabolic problems, e.g. heat equation:

● 2nd order hyperbolic problems,
e.g. wave equation:

● 1st order hyperbolic problems,
e.g. transport equation:

∂u
∂ t

−Δu  = f

∂
2u

∂ t 2 −Δu  =  f

∂u
∂ t

+β⃗⋅∇ u  = f

Implicit
time stepping!

Explicit
time stepping!

Explicit
time stepping!
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Questions

Questions for this lecture:

● What do we do for problems that do not fall into these 
neat categories?

● What are common approaches?
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Explicit vs implicit time stepping

Example: What to do with advection-diffusion problems?

Suggests explicit Suggests implicit
   time stepping    time stepping

Note: Advection-diffusion equations describe processes 
where material/energy is transported and diffuses (water, 
atmosphere, etc). Diffusion is often small.

∂u
∂ t

 +  β⃗⋅∇ u  − Δu  = f
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IMEX schemes

Example: What to do with advection-diffusion problems?

Answer 1: Implicit/explicit (IMEX) schemes
● treat transport explicitly
● treat diffusion implicitly

∂u
∂ t

 +  β⃗⋅∇ u  − Δu  = f

un
−un−1

kn  +  β⃗⋅∇ un−1  −  Δun  =  f                       (kn
=t n

−tn−1
)

un  −  kn  Δun  =  un−1  − k n  β⃗⋅∇ un−1  +  kn  f
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IMEX schemes

Reformulation: Such schemes are often approximated in 
a way that separate the physical effects:

un
−un−1

kn  +  β⃗⋅∇ un−1  −  Δun  =  f

uadv
n

−un−1

kn
 +  β⃗⋅∇ un−1  = 0

udiff
n

−un−1

kn
 − Δudiff

n  =  0

usource
n

−un−1

kn
 =  f

un
−un−1

kn
 = 

uadv
n

−un−1

k n
+

udiff
n

−un−1

kn
+
usource

n
−un−1

kn
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IMEX schemes

Reformulation: Such schemes are often approximated in 
a way that separate the physical effects:

un
−un−1

kn  +  β⃗⋅∇ un−1  −  Δun  =  f

δuadv
n  = −k n  β⃗⋅∇ un−1

δudiff
n  = kn  Δ(un−1

+δudiff
n

)

δusource
n  = kn  f

un  =  un−1
+ δuadv

n
+ δudiff

n
+ δusource

n
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IMEX schemes

Reformulation: Such schemes are often approximated in 
a way that separate the physical effects:

● Computing increments can be done independently:
– concurrently (in parallel)
– by separate codes

● Source contribution may be included into the other 
solves

● Scheme can be generalized to higher order

un  =  un−1
+ δuadv

n
+ δudiff

n
+ δusource

n
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Operator splitting schemes

Example: What to do with advection-diffusion problems?

Answer 2: Operator splitting schemes solve for one 
physical effect after the other.

With operator splitting, we can also
● treat transport explicitly
● treat diffusion implicitly

Note: IMEX treats terms concurrently, operator splitting 
sequentially.
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Operator splitting schemes

Formulation: Operator splitting schemes separate the 
physical effects:

un
−un−1

kn  +  β⃗⋅∇ un−1  −  Δun  =  f

uadv
n

−un−1

kn
 +  β⃗⋅∇ un−1  = 0

udiff
n

−uadv
n

kn
 − Δudiff

n  = 0

usource
n

−udiff
n−1

kn
 =  f

un  =  usource
n

This method is
called “Lie” splitting
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Operator splitting schemes

Formulation: Operator splitting schemes separate the 
physical effects.

● Computing 3 increments can be done
– independently
– by separate codes

● Source contribution may be included into the other 
solves

● The Lie scheme is only first order in  kn

● Scheme can be generalized to second order (“Strang 
splitting”)
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Operator splitting schemes

Example: Consider the reaction of 3 species

            A + B  → C

in a reactor. A simple model would be

● Solution variable:   

● Equation:

● Reaction terms:

∂ u⃗
∂ t

 − Δ u⃗  = f⃗ (u⃗)

f⃗ (u⃗)  = (
−ku AuB

−ku AuB

+k uA uB
)

u(x ,t )={uA (x ,t ),uB( x , t) ,uC (x ,t )}
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Operator splitting schemes

Example: Consider the equation

Here:

● One term is a spatial process (diffusion, a PDE)
● One term is a local process (reaction, an ODE)

● We may have different codes that are specialized in 
each process

∂ u⃗
∂ t

 − Δ u⃗  = f⃗ (u⃗)
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Operator splitting schemes

Example: Consider the equation

First order operator splitting (“Lie splitting”):
● First account for the effect of one time step's worth of 

diffusion (implicit):

● Then account for one time step's worth of reactions 
(local ODE):

● The order could of course be reversed.

∂ u⃗
∂ t

 − Δ u⃗  = f⃗ (u⃗)

u⃗*
−u⃗n−1

kn  − Δ u⃗*  = 0

∂ u⃗**

∂ t
 = f⃗ (u⃗**

),      u⃗**
(tn−1)=u⃗*      →      u⃗n

=u⃗**
(t n)
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Operator splitting schemes

Example: Consider the equation

Second order operator splitting (“Strang splitting”):
● Half diffusion step:

● Full reaction step:

● Half diffusion step:

● The order of sub-steps can be reversed.

∂ u⃗
∂ t

 − Δ u⃗  = f⃗ (u⃗)

u⃗*
−u⃗n−1

kn
/2

 − Δ u⃗*  = 0

∂ u⃗**

∂ t
 = f⃗ (u⃗**

),      u⃗**
(tn−1)=u⃗*      → solve for u⃗**

(t n)

u⃗n
−u⃗**

(tn)

kn /2
 −  Δ u⃗n  = 0
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More accuracy

Background, part 1: Both IMEX and Operator Splitting 
schemes need to discretize the time derivative

This can be done in many ways, for example:

● Simplest approximation (Euler, BDF-1, ...)

● BDF-2

∂ u⃗
∂ t

∂u
∂ t

 ≈  
un

−un−1

k

∂u
∂ t

 ≈  

3
2
un

−2un−1
+

1
2
un−2

k
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More accuracy

Background, part 2: We need to approximate explicit 
terms in equations such as

This can be done in many ways, for example:

● Explicit Euler

● Two-step (explicit) extrapolation

∂u
∂ t

 +  β⃗⋅∇ u  − Δu  = f

un
−un−1

kn  +  β⃗⋅∇ un−1  −  Δun  =  f

un
−un−1

kn
 +  β⃗⋅∇ (un−1+kn un−1

−un−2

kn−1 )  − Δun  =  f
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Summary

Many important, time-dependent equations are not purely
● parabolic
● Hyperbolic.

For these equations, one often wants to treat
● some terms explicitly
● some terms implicitly
● treat different physical effects separately.

There are many ways of doing this (e.g., IMEX, 
Operator Splitting) and many variations

to achieve higher order accuracy.
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