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Lecture 3.91:

The ideas behind the
finite element method

Part 2: Theory of (piecewise)
polynomial approximation
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Global polynomial approximation

Assume you have a function f(x) on an interval [a,b].

Let us call its “interpolant” f
p
(x):

● Also a function on [a,b]

● Has polynomial degree p

● Is equal to f(x) at (p+1) points x
i
:

f p(x i)=f (xi)           i=1… p+1
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Global polynomial approximation

Example for f(x)=sin(πx) on [-1,1]:

Choose p=1, x
i
={-0.75,+0.25}:
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Global polynomial approximation

Example for f(x)=sin(πx) on [-1,1]:

Choose p=2, x
i
={-0.75,-0.25,+0.25}:
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Global polynomial approximation

Example for f(x)=sin(πx) on [-1,1]:

Choose p=3, x
i
={-0.75,-0.25,+0.25,+0.75}:
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Global polynomial approximation

Example for f(x)=sin(πx) on [-1,1]:

Choose p=3, but different x
i
={-1,-0.75,+0.75,+1}:
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Global polynomial approximation

Theorem (not optimal, but good enough):

Assume that f is p+1 times continuously differentiable. 
Then independent of the choice of the points x

i
:

max x∈[a , b]|f (x)−f p(x )|  ≤  
max x∈[a , b]|f

( p+1)
(x )|

p!
(b−a)p
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Global polynomial approximation

Theorem (not optimal, but good enough):

Assume that f is p+1 times continuously differentiable. 
Then independent of the choice of the points x

i

Read this as follows:

max x∈[a , b]|f (x)−f p(x )|  ≤  
max x∈[a , b]|f

( p+1)
(x )|

p!
(b−a)p

max x∈[a , b]|f (x)−f p(x )|  ≤  C (f , p)
(b−a)p

p!
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Global polynomial approximation

Theorem (not optimal, but good enough):

Consequence:
● If C(f,p) does not grow too quickly, then

Problem: There are functions for which C(f,p) does grow 
rapidly.

max x∈[a , b]|f (x)−f p(x)|  ≤  C (f , p)
(b−a)p

p!

max x∈[a , b]|f (x)−f p(x )|  →   0                 as p  grows
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Global polynomial approximation

Problem: There are functions for which C(f,p) does grow 
rapidly.

Example: f(x)=1/x  on  [0.5, 1.5]:

 → Polynomial approximant is not guaranteed to converge!

max x∈[a ,b]|f (x )−f p(x)|  ≤  
C ( f , p)
p!

(b−a)p

                                        =   2p+2
(b−a)p  = 2p+2

C ( f , p)  = max x∈[a ,b ]|f
(p+1)

(x)|

              =  max
x∈[

1
2
,
3
2
]
|(−1)

p+1  p!  x−( p+2)
|

              =  2p+2 p!
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Global polynomial approximation

Theorem (not optimal, but good enough):

Consequence:
● If C(f,p) does not grow too quickly, then

● But: Whether the “global interpolant” f
p
 converges to f  

depends on the function we try to approximate. This is 
undesirable.

max x∈[a , b]|f (x)−f p(x)|  ≤  C (f , p)
(b−a)p

p!

max x∈[a , b]|f (x)−f p(x )|  →   0                 as p  grows
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Piecewise polynomial approximation

A better approach:
● Instead of increasing p on one interval
● ...keep p constant and instead split the interval into n 

pieces.
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Piecewise polynomial approximation

A better approach:
● Instead of increasing p on one interval
● ...keep p constant and instead split the interval into n 

pieces.

Theorem:

Consequence: Pick a p, choose enough intervals n,
and you can make the difference as small as you want!

maxx∈[a ,b]|f (x )−f h , p(x )|  ≤  
C (f , p)
p! ( b−an )

p

                                          =  
C ( f , p)(b−a)p

p!⏟
constant

1

np⏟
→0
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Piecewise polynomial approximation

Notation and more theory:
● We typically denote the diameter of intervals/cells by h
● Estimate will then look like this:

● For later purposes: 

max x∈[a ,b]|f (x )−f h , p(x )|  ≤  
C (f , p)
p! ( b−an )

p

                                          =  
C ( f , p)
p!⏟

constant

hp

        ‖f−f h , p‖ := (∫a

b
|f (x )− f h , p(x )|

2)
1/2

           ≤  
C1(f , p , a , b)

p !
hp+1

‖∇ f−∇ f h , p‖ := (∫a

b
|∇ f ( x)−∇ f h , p(x )|

2)
1/2

  ≤  
C2(f , p , a , b)

p!⏟
constant

hp
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