Finite element methods in scientific computing

Wolfgang Bangerth, Colorado State University

http://www.dealii.org/

Lecture 3.91:

The ideas behind the finite element method

Part 2: Theory of (piecewise) polynomial approximation

http://www.dealii.org/

Assume you have a function f(x) on an interval [a,b].

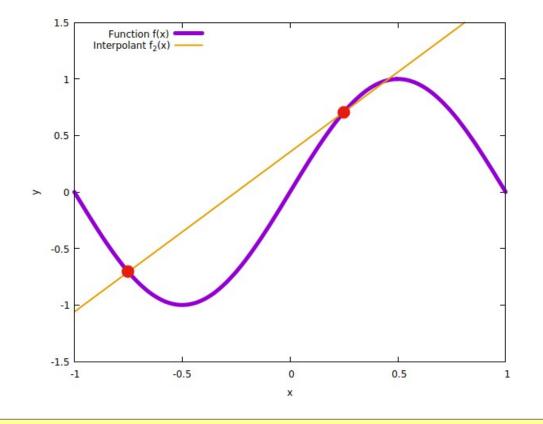
Let us call its "interpolant" $f_p(x)$:

- Also a function on [a,b]
- Has polynomial degree p
- Is equal to f(x) at (p+1) points x_i :

$$f_{p}(x_{i}) = f(x_{i})$$
 $i = 1...p+1$

Example for $f(x) = sin(\pi x)$ on [-1,1]:

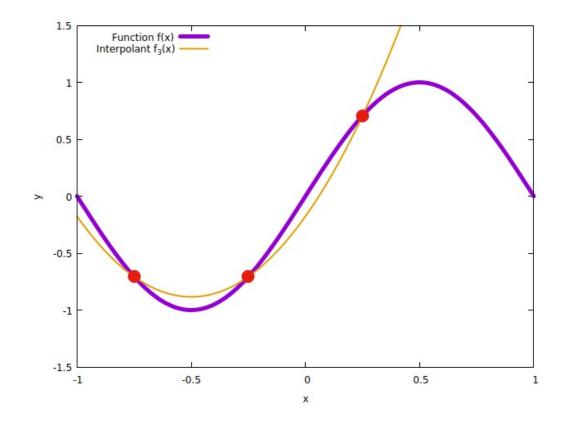
Choose $p=1, x_i = \{-0.75, +0.25\}$:



Wolfgang Bangerth

Example for $f(x) = sin(\pi x)$ on [-1,1]:

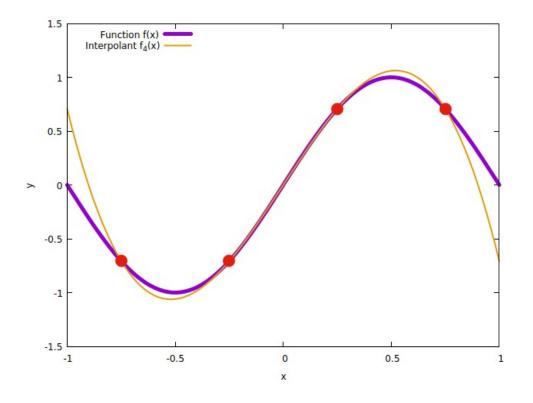
Choose $p=2, x_i = \{-0.75, -0.25, +0.25\}$:



Wolfgang Bangerth

Example for $f(x) = sin(\pi x)$ on [-1,1]:

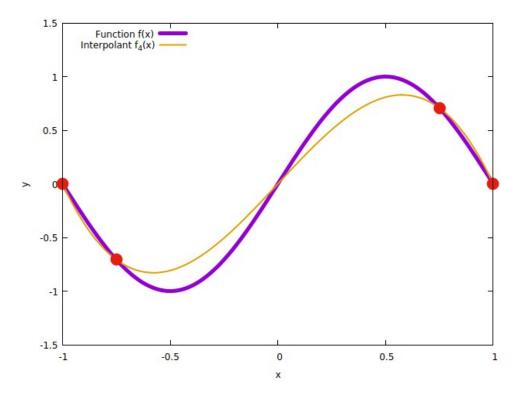
Choose p=3, $x_i = \{-0.75, -0.25, +0.25, +0.75\}$:



Wolfgang Bangerth

Example for $f(x) = sin(\pi x)$ on [-1,1]:

Choose p=3, but different $x_i = \{-1, -0.75, +0.75, +1\}$:



Wolfgang Bangerth

Theorem (not optimal, but good enough):

Assume that f is p+1 times continuously differentiable. Then independent of the choice of the points x_i :

$$max_{x\in[a,b]}|f(x)-f_{p}(x)| \leq \frac{max_{x\in[a,b]}|f^{(p+1)}(x)|}{p!}(b-a)^{p}$$

Theorem (not optimal, but good enough):

Assume that f is p+1 times continuously differentiable. Then independent of the choice of the points x_i

$$max_{x\in[a,b]}|f(x)-f_{p}(x)| \leq \frac{max_{x\in[a,b]}|f^{(p+1)}(x)|}{p!}(b-a)^{p}$$

Read this as follows:

$$\max_{x \in [a,b]} |f(x) - f_p(x)| \le C(f,p) \frac{(b-a)^p}{p!}$$

http://www.dealii.org/

Theorem (not optimal, but good enough):

$$\max_{x \in [a,b]} |f(x) - f_p(x)| \le C(f,p) \frac{(b-a)^p}{p!}$$

Consequence:

• If C(f,p) does not grow too quickly, then

$$max_{x \in [a,b]} |f(x) - f_p(x)| \rightarrow 0$$
 as p grows

Problem: There are functions for which C(f,p) does grow rapidly.

http://www.dealii.org/

Problem: There are functions for which *C*(*f*,*p*) does grow rapidly.

Example: f(x) = 1/x on [0.5, 1.5]: $C(f, p) = \max_{x \in [a,b]} |f^{(p+1)}(x)|$ $= \max_{x \in [\frac{1}{2}, \frac{3}{2}]} |(-1)^{p+1} p! x^{-(p+2)}|$ $= 2^{p+2} p!$ $\max_{x \in [a,b]} |f(x) - f_p(x)| \le \frac{C(f,p)}{p!} (b-a)^p$ $= 2^{p+2} (b-a)^p = 2^{p+2}$

→ Polynomial approximant is not guaranteed to converge!

http://www.dealii.org/

Theorem (not optimal, but good enough):

$$\max_{x \in [a,b]} |f(x) - f_p(x)| \le C(f,p) \frac{(b-a)^p}{p!}$$

Consequence:

• If *C*(*f*,*p*) does not grow too quickly, then

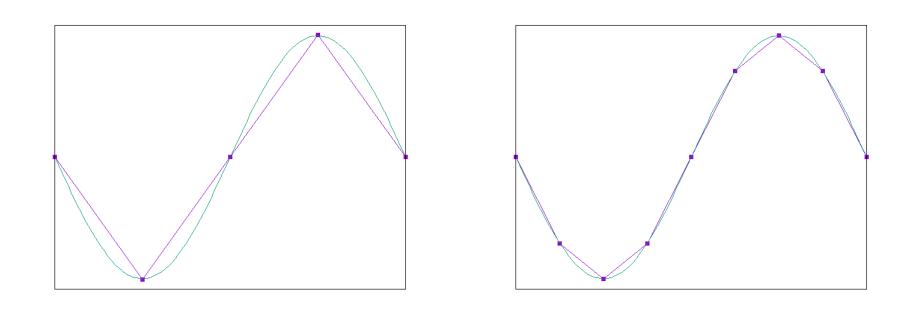
$$max_{x \in [a,b]} |f(x) - f_p(x)| \rightarrow 0$$
 as p grows

 But: Whether the "global interpolant" f_p converges to f depends on the function we try to approximate. This is undesirable.

Piecewise polynomial approximation

A better approach:

- Instead of increasing *p* on one interval
- ...keep p constant and instead split the interval into n pieces.



http://www.dealii.org/

Piecewise polynomial approximation

A better approach:

- Instead of increasing *p* on one interval
- ...keep p constant and instead split the interval into n pieces.

Theorem:
$$\max_{x \in [a,b]} |f(x) - f_{h,p}(x)| \leq \frac{C(f,p)}{p!} \left(\frac{b-a}{n}\right)^p$$

$$= \frac{C(f,p)(b-a)^p}{\underbrace{p!}_{\text{constant}}} \frac{1}{\underbrace{p!}_{\text{constant}}}$$

Consequence: Pick a *p*, choose enough intervals *n*, and you can make the difference as small as you want!

http://www.dealii.org/

Piecewise polynomial approximation

Notation and more theory:

- We typically denote the diameter of intervals/cells by h
- Estimate will then look like this:

$$\max_{x \in [a,b]} |f(x) - f_{h,p}(x)| \leq \frac{C(f,p)}{p!} \left(\frac{b-a}{n}\right)^{p}$$
$$= \frac{C(f,p)}{\underbrace{p!}_{\text{constant}}} h^{p}$$

• For later purposes:

$$\|f - f_{h,p}\| := \left(\int_{a}^{b} |f(x) - f_{h,p}(x)|^{2}\right)^{1/2} \leq \frac{C_{1}(f, p, a, b)}{p!} h^{p+1} \\ \|\nabla f - \nabla f_{h,p}\| := \left(\int_{a}^{b} |\nabla f(x) - \nabla f_{h,p}(x)|^{2}\right)^{1/2} \leq \frac{C_{2}(f, p, a, b)}{p!} h^{p}$$

constant

http://www.dealii.org/

Finite element methods in scientific computing

Wolfgang Bangerth, Colorado State University

http://www.dealii.org/