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Lecture 3.9:

The ideas behind the
finite element method

Part 1: Approximation
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Two fundamental questions

Solving partial differential equations comes down to 
this:

Let's say we are given an equation such as

The solution is a function u(x,y).
To “know” u(x,y) means to know its value

at infinitely many points x,y!

−Δu( x , y)  =  f ( x , y)       in Ω⊂ℝ
2

u(x , y)        =  0                on ∂Ω
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Two fundamental questions

The solution is a function u(x,y). To “know” u(x,y) means 
to know its value at infinitely many points x,y!

But:
– Computers can only store finitely much data
– Computations may only take finitely many operations

Consequence 1: In general, we can not solve PDEs 
exactly.

Consequence 2: The best we can do is approximate the 
solution somehow.
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Two fundamental questions

Question 1: What is a good way to 
approximate functions that requires only 

finitely much data/computation?

Question 2: How do we find an 
approximation of the solution of a PDE 

without knowing the solution itself?

Thus, “solving” PDEs comes down to the following 
two questions:
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Approximation

There are many ways to approximate functions:

1.(Finite) Fourier series

2.A global polynomial

3.Local (piecewise) polynomials defined on a
subdivision (the “mesh”) of the domain  Ω

4....

For many good reasons, the finite element method uses 
option 3.
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Why piecewise approximation?

Here is a typical solution of a PDE:

(Pressure in Stokes flow in a domain with a corner.)
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Why piecewise approximation?

Here is a typical solution of a PDE:

(Neutron flux density in the presence of an absorber.)
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Why piecewise approximation?

Commonly found features of solutions of PDEs:
● Smooth in large parts of the domain
● Vary greatly in small parts of the domain
● May have kinks
● Singularities in corners

If you’re an engineer, think about
loads, displacements, and stresses:

● Displacements are continuous but 
not necessarily differentiable

● Stresses can have singularities
Source: Wikipedia
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Why not Fourier approximation?

Non-smoothness and Fourier approximation:

Finite Fourier series of the form

are good approximations only if  u(x)  is globally smooth.

u(x )  ≈  ∑k=1

N
U k sin(k x )
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Why not Fourier approximation?

Non-smoothness and Fourier approximation:

Finite Fourier series of the form

are good approximations only if  u(x)  is globally smooth.

Example:

u(x )  ≈  ∑k=1

N
U k sin(k x )

Source: Wikipedia
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Why not Taylor approximation?

Global polynomial approximation:

Finite polynomial series of the form

are good approximations only in a neighborhood.

u(x)  ≈  ∑k=0

N
U k (x−x0)

k
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Why not Taylor approximation?

Global polynomial approximation:

Finite polynomial series of the form

are good approximations only in a neighborhood.

Example:

u(x)  ≈  ∑k=0

N
U k (x−x0)

k

Source: Wikipedia-10
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Why not Taylor approximation?

Boundedness and polynomial approximation:

Finite polynomial series of the form

are good approximations only if  u(x)  is bounded.

In fact (Weierstrass approximation theorem):

Every function u(x) that is bounded on an interval (a,b) 
can be approximated arbitrarily well by polynomials.

But: Functions with singularities are not bounded!

u(x)  ≈  ∑k=0

N
U k (x−x0)

k
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Why not Taylor approximation?

Non-smoothness and polynomial approximation:

Finite polynomial series of the form

are good approximations only if u(x) is globally smooth.

In fact:

In general, if  u(x)  or one of its derivatives have kinks, then 
polynomial approximations will be globally bad, not just 
where the kink is.

u(x)  ≈  ∑k=0

N
U k (x−x0)

k
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Why piecewise approximation?

Solution: Piecewise approximation!
● Split the domain on which you want to approximate 

u(x) into small parts
● Approximate separately on each part
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Why piecewise approximation?

Solution: Piecewise approximation!
● Split the domain on which you want to approximate 

u(x) into small parts
● Approximate separately on each part
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Why piecewise approximation?

Solution: Piecewise approximation!
● Split the domain on which you want to approximate 

u(x) into small parts
● Approximate separately on each part
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Why piecewise approximation?

Solution: Piecewise approximation!
● Split the domain on which you want to approximate 

u(x) into small parts
● Approximate separately on each part
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Why piecewise approximation?

Solution: Piecewise approximation!
● Split the domain on which you want to approximate 

u(x) into small parts
● Approximate separately on each part
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Why piecewise approximation?

Solution: Piecewise approximation!
● Split the domain on which you want to approximate 

u(x) into small parts
● Approximate separately on each part

http://www.dealii.org/


http://www.dealii.org/    Wolfgang Bangerth

 

Why piecewise approximation?

Solution: Piecewise approximation!
● Split the domain on which you want to approximate 

u(x) into small parts
● Approximate separately on each part

Advantages:

● We can use low-order approximations on each part:

Small intervals  good approximation.→ good approximation.

Insensitive to singularities.

Easy and stable to parameterize, evaluate.
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Why piecewise approximation?

Solution: Piecewise approximation!
● Split the domain on which you want to approximate 

u(x) into small parts
● Approximate separately on each part

Advantages:

● Resolving kinks and singularities can be done locally:

We can approximate the solution
on one interval independently of

the solution elsewhere.
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Why piecewise approximation?

Solution: Piecewise approximation!
● Split the domain on which you want to approximate 

u(x) into small parts
● Approximate separately on each part

Advantages:

● We can increase the “resolution” where necessary:

This is “(h-)adaptive mesh refinement” (AMR).

It is a way to make computations cheaper.

See lectures 15 and following.
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Why piecewise approximation?

Step-6: An example in “adaptive mesh refinement”:

 The “exact” solution.  Approximation on a
 “coarse mesh”.
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Why piecewise approximation?

Step-6: An example in “adaptive mesh refinement”:

 The “exact” solution.  Approximation on a
“somewhat refined” mesh.
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Why piecewise approximation?

Step-6: An example in “adaptive mesh refinement”:

 The “exact” solution.   Approximation on a
 “decent mesh”.

 The “exact” solution.   Solution on a
 “coarse mesh”.
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Why piecewise approximation?

Step-6: An example in “adaptive mesh refinement”:

 The “exact” solution.   Approximation on a
 “fine mesh”.

 The “exact” solution.   Solution on a
 “coarse mesh”.
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Why piecewise approximation?

Solution: Piecewise approximation!
● Split the domain on which you want to approximate 

u(x) into small parts
● Approximate separately on each part

Advantages:

● We can increase the polynomial degree where the 
solution is smooth:

This is “p-adaptive mesh refinement”.

It is a way to make things more accurate.
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Why piecewise approximation?

Take-away message:
● There are many ways to approximate functions
● For PDEs, the most appropriate way is:

Piecewise polynomial approximation
on a subdivision (the “mesh”)

of the domain Ω.

Reasons:
● Accurate & stable
● Flexible: Can do h- and p-adaptive mesh refinement
● Relatively easy to represent in data structures
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