
http://www.dealii.org/ Wolfgang Bangerth

MATH 676

–

Finite element methods in
scientific computing

Wolfgang Bangerth, Texas A&M University

http://www.dealii.org/

http://www.dealii.org/ Wolfgang Bangerth

Lecture 2.91:

A (very brief) introduction to Linux
Part 2: Compiling programs

http://www.dealii.org/

http://www.dealii.org/ Wolfgang Bangerth

Compiling, linking, etc.

Building an application is a 2-step process:

● “Compile” every .cc file into a .o file:
c++ -c a.cc -o a.o
c++ -c b.cc -o b.o

● “Link” all .o files into one executable:
c++ a.o b.o -o myprog

The details are easier to explain using an example...

http://www.dealii.org/

http://www.dealii.org/ Wolfgang Bangerth

What could go wrong?

Both compiling and linking can produce errors:

● Compiler errors:

– Your code does not follow the C++ “syntax”

– You reference a variable that has not been “declared”

– You call a function that has not been “declared”

● Linker errors:
– You call a function that has been “declared” but not
“implemented”

● Important: When figuring out what's wrong, need to
know which “phase” you're in!

http://www.dealii.org/

http://www.dealii.org/ Wolfgang Bangerth

What could go wrong?

Notes on compiler/linker errors:

● Errors often “cascade”

→ start at the top (i.e., the first error message)

● If there are many error messages, use the command
c++ -c a.cc -o a.o 2>&1 | less

Here, '2>&1' “redirects” stderr to stdout, so that it can
serve as input to 'less'.

● Linker errors can only happen once everything has been
compiled.

http://www.dealii.org/

http://www.dealii.org/ Wolfgang Bangerth

Automating compilation/linking

Building an application is a 2-step process:

● “Compile” every .cc file into a .o file:
c++ -c a.cc -o a.o
c++ -c b.cc -o b.o

● “Link” all .o files into one executable:
c++ a.o b.o -o myprog

Problem: This is (i) cumbersome to do every time, and (ii)
difficult to get right with “dependencies”.

Solution: Write rules for a program called “make”, then
say

make myprog

http://www.dealii.org/

http://www.dealii.org/ Wolfgang Bangerth

Automating compilation/linking

Makefiles contain:

● “targets” – what should be done

● “dependencies” – what does a target depend on

● “rules” – how should a target be created

● Variables and generic rules to make writing rules easier

Again: Simpler to to see using a concrete example!

http://www.dealii.org/

http://www.dealii.org/ Wolfgang Bangerth

Automating compilation/linking

Makefiles contain:

● “targets” – what should be done

● “dependencies” – what does a target depend on

● “rules” – how should a target be created

Problems:

● Simple Makefiles are easy to write

● But quickly become complex and unreadable. Archaic
syntax does not help (“make” was invented in 1976).

● Not platform independent

● Not meant as input for tools other than “make”

http://www.dealii.org/

http://www.dealii.org/ Wolfgang Bangerth

Automating compilation/linking

Makefiles contain:

● “targets” – what should be done

● “dependencies” – what does a target depend on

● “rules” – how should a target be created

Problems:

● …

Solutions: There are now tools/programming languages
that describe targets, dependencies, and rules at a higher
level. They then create Makefiles or other output.

Example: autoconf/automake, cmake

http://www.dealii.org/

http://www.dealii.org/ Wolfgang Bangerth

MATH 676

–

Finite element methods in
scientific computing

Wolfgang Bangerth, Texas A&M University

http://www.dealii.org/

	Slide 61
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68

