
The Role of Scientific
Communities in Creating
Reusable Software:
Lessons From
Geophysics

Louise H. Kellogg
University of California, Davis

Lorraine J. Hwang
University of California, Davis

Rene Gassm€oller
University of California, Davis

Wolfgang Bangerth
Colorado State University

Timo Heister
University of Utah

Abstract—The domain of geophysics has historically been a driver of scientific software

development due to the size, complexity, and societal importance of the research

questions. Geophysical computation complements field observation, laboratory

analysis, experiment, and theory. Specialized scientific software is regularly

developed by geophysicists in collaboration with computational scientists and applied

mathematicians; in this cross-disciplinary environment, reusability is critically important

both to preserve the intellectual investment and to ensure the quality of the research and

its replicability. The Computational Infrastructure for Geodynamics (CIG) is a “community

of practice” that advances Earth science by developing and disseminating software for

geophysics and related fields. We discuss CIG’s best practices, lessons learned, and

community practices, and highlight how development of high-quality, reusable scientific

software has accelerated scientific discovery by enabling simulations of the dynamics of

Digital Object Identifier 10.1109/MCSE.2018.2883326

Date of publication 3 December 2018; date of current version

8 March 2019.

March/April 2019 Published by the IEEE Computer Society 1521-9615 � 2018 IEEE 25



Earth’s surface and interior across a wide spectrum of problems using resources from

laptops to leadership-class supercomputers.

& ESTABLISHED IN 2005 with funding from

the National Science Foundation, the Compu-

tational Infrastructure for Geodynamics (CIG,

geodynamics.org) is a partnership between the

scientific domains of solid-earth science (the

study of the crust, mantle, and core of the Earth

and other terrestrial planets) and computa-

tional science. CIG’s goal is to advance

geophysics and related fields of research

by developing and disseminating scientific soft-

ware, using best practices from computational

science. CIG grew out of the realization, com-

mon to many scientific communities, that a lot

of science depends on software that was writ-

ten for specific research projects by scientists

with little formal background in software engi-

neering. This software was handed from scien-

tist to scientist who then continued to modify

their own copies before handing them off once

again to someone else. Although some scien-

tists shared software and several successful

benchmark projects investigated the accuracy

and performance of different numerical meth-

ods (for example in dynamical modeling of man-

tle convection),1–3 the scientific community did

not fully benefit from the investments being

made in scientific software development and

did not have the capability to take full advan-

tage of developments in numerical methods,

applied mathematics, and software and hard-

ware advances.

Over the last 13 years, CIG has grown into a

“community of practice,” identifying and encour-

aging use of those best practices that are most

effective for this community, while also support-

ing development and dissemination of high qual-

ity, free, open-source scientific software for

geophysics. CIG has worked with and supported

authors of some of the popular and complex

packages in the community in an effort to

improve its development practices. CIG has also

run many workshops and training sessions,

teaching early career scientists in particular to

work with and extend these software packages

using the best practices we have learned. These

training efforts prepare our scientific workforce

to be expert users and how to contribute to sci-

entific software.

As a result of these activities, software is

developed very differently today in the geody-

namics community. Software packages dissem-

inated by CIG follow a set of best practices:

they are available under an open-source

license; are extensively documented; use ver-

sion control; and have automated test suites.

These practices have become the accepted

standard in the community, with CIG maintain-

ing a leadership role in the continuous devel-

opment of software best practices in the

geosciences.

BUILDING A COMMUNITY OF
SOFTWARE DEVELOPERS

While a large percentage of Ph.D. students in

the geosciences takes courses on quantitative

and computational methods,4 these courses gen-

erally do not focus on software development,

software design, and software management. The

geosciences are of course not alone in this chal-

lenge: The lack of formal software training is typ-

ical across the sciences and engineering.5–8 The

software development education self-reported

by members of the CIG community reflects these

experiences.9

Geophysicists typically come to computa-

tional geophysics with strong quantitative back-

grounds in geology or physics; their education

prepares them in the foundations of their sci-

ence, but not the practical aspects of developing

scientific software. This lack of formal training in

softwaremeans that students and postdocs often

learn software development practices from their

advisors, collaborators, and mentors. Mentor-

ship (“apprenticeship relationships”), peer learn-

ing, and in-person interactions at conferences

and workshops are key to professional develop-

ment in this community. Recognizing the impor-

tant role of professional and peer networks, CIG’s

activities include providing interaction with

computational and mathematical scientists, who

bring background and skills in scientific software

Accelerating Scientific Discovery With Reusable Software

26 Computing in Science & Engineering



development to the geophysics community that

would otherwise have been missing. The connec-

tion to computational scientists allows geophysi-

cists to learn from and hear about how other

scientific communities develop and use scientific

software. In turn, the real-world scientific ques-

tions posed by geodynamics research drive and

provide a test-bed for the work of computational

scientists and inform their interactions with com-

munities in other scientific domains.

BEST PRACTICES IN USE
The software development community has

long developed best practices that are widely

known and used among professional software

developers. However, until recently, these prac-

tices have rarely been used in domain-based

scientific software due to a lack of education

and differences between production and

research software. In addition, the research

environment did not recognize or reward the

effort involved in developing sustainable soft-

ware. This is a beginning to change, and CIG has

consequently identified a simplified set of best

practices in software and training (github.com/

geodynamics/best_practices) that is readily

accessible to user-developers and takes into

account the community’s software ecosystem.

CIG provides a range from minimum to target

goals for practices, which underpin sustainable

and usable software, promote development in

an open-source environment, and emphasize

inclusive and welcoming developer communi-

ties. We next discuss the implementation of

some of these practices.

Building on Existing Software

The scientific domain of geodynamics has

been defined as the “application of continuum

mechanics to geological problems”10 and draws

heavily from the general governing equations in

continuum mechanics: mass, momentum, heat

flow, and electromagnetics. Similarity of the

physics between the disciplines allows us to

take advantage of algorithmic and computa-

tional advances in other communities. In doing

so, our community has learned that building on

externally and professionally developed open-

source libraries leads to sustainable high-quality

software. For example, utilizing the many per-

sonal years of development that have gone into

PETSc or Trilinos for parallel linear algebra or

into deal.II for finite element methods has greatly

accelerated the geodynamic software develop-

ment, extending its abilities to tackle new clas-

ses of research questions. External libraries

were not widely used in geodynamics before CIG

was started, in part due to a reluctance to rely

on external projects. This changed when early in

its history, CIG participants made personal con-

nections with many key developers of large soft-

ware packages through workshops and advisory

committees, leading, in some cases, to direct

involvement by computational scientists in the

development of geodynamics software.

Benchmarking

How will domain scientists know that using

a particular code is not only useful for their

research but will produce reliable results?

Often a code gains a reputation within a close

scientific community because its effectiveness

and correctness are supported by scientific

publications, and because it has been shown

to reproduce community-established bench-

marks.11 Both peer-reviewed publications and

benchmarks are consequently also the require-

ments for codes donated to and developed by

CIG.

As an example, CIG conducted a community

benchmark challenge as one step in the devel-

opment of a next-generation code for modeling

planetary dynamos. The scientific problem

involves the study of solutions to the equations

governing magnetohydrodynamics in a rotating

spherical shell, in order to understand the ori-

gin and evolution of the magnetic field of the

Earth and other planets.12 This has long been

recognized as both a scientific and computa-

tional challenge, due to the high resolution

required to model real planetary systems.13 In

preparation for developing the next-generation

dynamo code, CIG first held a workshop bring-

ing together geodynamo and solar dynamo

researchers. Their goal was to identify state-of-

the-art methods and grand challenge problems,

and to define a common benchmark for geody-

namo model codes. In response to the bench-

mark invitation, 14 research groups worldwide

March/April 2019 27



submitted their codes for testing. Performance

benchmarks were run by CIG staff using CIG’s

extreme science and engineering discovery

environment allocation on the Texas Advanced

Computing Center’s Stampede supercom-

puter.14 The workshop also outlined a long-

term strategy leading to CIG support for devel-

oping a new community code, Rayleigh,15 using

the anelastic spherical harmonic method that

had previously been developed for and is

widely used in solar physics.16

The Rayleigh code was designed with

insights from community discussions and

benchmarks specifically targeting scalability and

performance for leadership class computing. A

start-up award at Argonne Leadership Comput-

ing Facility (ALCF)’s Mira machine, currently the

world’s seventh fastest computer, led to the defi-

nition of a small number of very large high-

resolution models needed to make substantial

progress on outstanding questions in Earth and

planetary sciences. Assisted by the catalyst

assigned to the team through the ALCF Innova-

tive and Novel Computational Impact on Theory

and Experiment program, the team was success-

ful in their application for up to 493 million core

hours over three years that have been used to

simulate the creation of magnetic fields of Earth,

Jupiter, and the Sun (see Figure 1).

Supporting Reuse and Quality ¼ Supporting

Developers

Because scientific software is developed in

response to a specific scientific question, it is

often developed by individuals who did not

anticipate that their software would be used by

others or reused in other projects. However,

reuse of software avoids duplication of effort,

saving time and money. Equally importantly,

reusing existing well-tested code also improves

software quality and, consequently, trust in the

scientific results. The challenge lies in creating a

community in which developers feel it is worth

the effort needed to create well-designed, well-

tested, documented, and reusable software, and

users feel it is worth their effort to use.

Supporting an ecosystem of good scientific

software for a community not only includes set-

ting up a curated repository, but also establishing

a mechanism to make the software findable. Fur-

thermore, those that contributes to software

need to receive credit for their efforts. For CIG’s

research-based core community, software is

treated as a scholarly product. CIG hosts software

landing pages for its software packages on geody-

namics.org, maintains GitHub repositories, and a

Zenodo community to increase the visibility of

geodynamics software. Through integration with

Zenodo, each software release is assigned a per-

sistent identifier—a DOI. This is added to the

attribution information for each software pack-

age. To assist researchers who are trying to deter-

mine what to cite when they use software in their

own publications, CIG developed the attribution

builder for citation (“abc,” see geodynamics.org/

cig/abc). The attribution builder provides the

software citation, citations to appropriate pri-

mary and secondary publications about the soft-

ware, and suggested language for both the body

of the publication and the acknowledgment sec-

tions of a paper; we used it to construct the cita-

tions for the examples used in this paper.

Through these efforts, CIG has been improving

the challenging task of computational reproduc-

ibility in scientific publications. The attribution

builder simplifies the task for the user to cite the

specific version of the code that was used. The

Figure 1. Simulation using the code Rayleigh showing

temperature perturbations as realized in rotating convection in an

earth-core geometry. Regions of warm flow are depicted in yellow,

and regions of cool flow in violet. Run on NASA’s Pleiades on

about 4096 Sandy Bridge cores. This model uses Rayleigh

0.9.015,16 published under the GPL3 license. (Courtesy of Nick

Featherstone, University of Colorado, Boulder).

Accelerating Scientific Discovery With Reusable Software

28 Computing in Science & Engineering



Zenodo releases point to an exact version of the

software that can be used by a third party to

reproduce the exact computations assuming the

input files used have been made available by the

researcher. The CIG best practices require

“Citation of code version” and encourage develop-

ers to provide a way to archive a “workflow” for

reproducibility. For instance, in the mantle con-

vection software ASPECT,17 a git repository

includes input files, source code, and plotting

scripts necessary to reproduce examples.

Supporting Users

Supporting users requires providing good

documentation and training. CIG has been sup-

porting and running software tutorials regularly,

often colocated with conferences and other

meetings. Key elements to successful software

tutorials include discussions of the scientific

background (the theory), its numerical imple-

mentation, software dependencies, and worked

end-to-end examples. We have found that longer

tutorials (one week) should incorporate “tinker

time”: scheduled blocks of several hours, during

which participants are free to play with software,

work on and modify existing cookbooks, try soft-

ware for their own research problems, and ask

questions of the instructors. This self-directed

time allows researchers to delve further into

their interests, while interacting with trainers

and expert users. Training sessions typically

begin with a round of brief introductions so that

everyone knows which participants are inter-

ested in related problems. The immersive char-

acter of these tutorials has led to numerous new

collaborations between participants that often

began during tinker time.

A significant hurdle for participants is often

just to get the software installed on the diverse

hardware they bring to these tutorials. If the

number of participants is small, this can be

addressed by scheduling time early in or prior

to the tutorial (via online help sessions) to trou-

bleshoot software installation problems. How-

ever, this does not scale up to larger numbers of

participants, and we have found that the usage

of virtual machines and Docker images has

vastly decreased installation issues, allowing

tutorials to start using the software right away,

on a system that looks identical on all partic-

ipants’ machines.

When HPC resources are required, we have

installed software at a host facility or an alloca-

tion on a national computing resource. Although

this sounds straightforward, in practice provid-

ing access to computing resources during a tuto-

rial comes with difficulties, including batch

systems that do not prioritize access for many

jobs submitted at the same time, bandwidth limi-

tations when moving large files in and out of lim-

ited access systems, and other real-world

problems that are difficult to anticipate ahead of

and resolve during a workshop.

An example of a successful HPC software

tutorial is one CIG recently organized in collabo-

ration with and at Lawrence Livermore National

Laboratory’s (LLNL) Livermore Valley Open

Campus.18 LLNL provided a meeting space with

robust high-speed Internet access and dedicated

resources. LLNL staff provided user account

support, monitored queues and jobs in real

time. Most importantly, LLNL provided access to

7200 dedicated cores of the Quartz HPC cluster

for the last three days of the week-long work-

shop, enabling the 55 participants to simulta-

neously run simulations on 100s of processors.

Participants successfully ran a simulation of the

September 19, 2017 M7.1 Mexico earthquake

that occurred during this workshop and were

presenting the resulting research at conferences

within six months of the tutorial.

The SW4 development team recently

enhanced the code for efficient simulation of

earthquake ground motions for hazard and risk

analysis19 under DOE’s Exascale Computing

Program. Figure 2 shows results from a recent

study in which direct access to support staff

operating the HPC systems being used was a key

to success.20

Building Communities Through Hackathons

Most developers do not begin a software proj-

ect with the intent of launching an open-source

community. Rather, they develop the software

for themselves or their research group. Thinking

about expanding a project to be community soft-

ware is a significant step in the life of the project

and its developers. It involves a willingness by

the original authors to be responsible for their

March/April 2019 29



software, to give up some degree of control over

it, and to move from a few personal interactions

to larger Internet-based groups. Most impor-

tantly, it involves seeing the software’s users as

potential future developers that can be mentored

to grow into roles supporting the project itself.

CIG makes use of and supports “hackathons”

to build and bring these user, developer, and

software manager communities together. In

our practice, we think of hackathons as longer

events associated with a single software project,

in which participants focus on learning and

extending the software. We have found that

these hackathons provide an excellent structure

for a community to discuss software and com-

munity development directions and practices,

as well as to build personal connections that

reduce the barrier to entry for new community

members to contribute to the project.

As one example, CIG has run an annual hacka-

thon since 2014 for current and would-be

developers of one of its flagship projects, the

ASPECT software for modeling global and

regional scale deformation in the solid earth

through geologic time (see aspect.geodynamics.

org). These hackathons are typically 10 day long

immersive events, in which 20 or more scientists

convene at a remote location, living and working

together. The focus is on improving ASPECT,

and in the process, on building a community of

expert user-developers who are able to use the

code effectively and contribute to the develop-

ment in the future. These hackathons have sig-

nificantly contributed to both the code base as

well the number and skill level of user-develop-

ers. Novice participants have risen to become

code maintainers helping to reduce its “bus

factor” (a measure of how dependent a project is

on a small number of key developers.)

Successive hackathons have steadily increased

the level of active contributors to the repository.

Figure 3 shows both the history of code

Figure 2. Access to HPC is essential to successfully compute many geophysics models. Here, the wave propagation

code SW4 2.0120 on LLNL’s Quartz is used to simulate ground motions from a hypothetical large earthquake on the

Hayward fault in the San Francisco Bay region.21 Sufficient computing power is required to incorporate realistic frequencies

and earth properties. The figures show peak ground velocity for (a) a simple plane-layered model with flat free surface and

(b) a 3-D model with the effects of topography. The differences between these models can influence policy and business

decisions for Northern California.

Figure 3. (Left) Number of commits per month to the GitHub repository of the ASPECT code. (Right) Number of people

making contributions each month. Peaks reflect activity and new developers at CIG’s annual 10-day hackathons, which

started in 2014.

Accelerating Scientific Discovery With Reusable Software

30 Computing in Science & Engineering



development and the number of individuals who

contribute code or documentation permonth over

time; Figure 4 shows the cumulative number of

developers of ASPECT over time. The annual hack-

athons are clearly visible as contributing signifi-

cantly to the growth of the code as well as to the

growth of the developer community. All partici-

pants at the hackathonsmust generate at least one

“pull request” to the GitHub repository, however

small or inconsequential, to get them used to the

process of contributing. In practice, most partici-

pants develop substantial contributions over the

course of the hackathon, or in case of bigger proj-

ects, over the following weeks and months. Senior

developers’ role is thus to provide feedback, peer

review of code contributions, and guidance during

and after the hackathon to integrate the new user-

developers into the community.

While we have found that hackathons are

great tools to build communities of contributors,

there are also challenges. For example, as seen

from the right graph in Figure 3, at least half of

the hackathon participants do not continue to

contribute regularly (at least once a month) to

the code base after the end of the hackathon,

although many do continue to contribute more

sporadically. On the other hand, the drop-off

in the number of commits after the hackathon

(left graph) must be expected given the intense,

10-day around-the-clock development sprint.

Hackathons are challenged by the time limita-

tions of senior developers, who often spend the

entirety of the workshop on providing feedback

in person or through code review; these individ-

uals’ time does not scale well to larger groups.

We have found that for optimal efficiency, at

least 20% of hackathon participants need to be

experienced developers with a global overview

of the code base to serve in these roles. Finally,

hackathons lend themselves to extending the

periphery of a code in many different directions

(in the case of a modular code such as ASPECT

through plugins) by participants. However, they

are not well suited to addressing large-scale

rewrites or software infrastructure needs since

the developers with sufficient knowledge for

these tasks do not have available time during

the hackathon; such work therefore needs to

take place between hackathons.

LESSONS LEARNED FROM A DECADE
AND A HALF OF CIG

In the first stages of CIG, software was largely

donated to the repository by their developers

from the larger geodynamics community, often

individuals or small teams of scientists who

wrote software to address a compelling research

problem. While such projects continue, we have

seen a marked shift toward more collaborative

and open development. As the community found

its footing, its members have pursued the devel-

opment of a new generation of codes whose

roots range from established research codes to

numerical libraries. Some of these were directly

supported by CIG, with each of these codes forg-

ing different paths to wider adoption; in addi-

tion, codes continue to be donated by research

groups who want help disseminating their work

and bringing it up to CIG’s standard best practi-

ces. As scientific software development is more

recognized as scientific contribution on par with

theoretical advances, experimental data, and

Figure 4. Cumulative number of people who have contributed to the ASPECT code.

March/April 2019 31



field observations, CIG’s best practices have

been invoked by geoscientists to develop data

management plans for their research and teach-

ing programs.

Based on our observation of the paths of the

dozens of projects that CIG hosts (of which it

currently directly supports the development

of seven), we summarize some of the lessons

learned from the CIG experience.

Successful Scientific Software Requires

Scientific Champions

Although it may sound obvious, to succeed,

scientific software must have an engaged group

of scientists who have a compelling need for the

capabilities it provides. It cannot be built in

expectation that a user community will emerge.

Codes under active development require atten-

tion to develop that community. This is one pur-

pose of the hackathons, which both improve the

code and create users who deeply understand it

and are confident in their skills to contribute

back. Building community is a major objective of

workshops, tutorials, and webinars. An impor-

tant CIG goal for all software under active devel-

opment is that a software project be sustainable

even when founding developers are no longer

active project members.

Software can be Sunsetted

Software has a life history and lifetime for dif-

ferent reasons. Software that ceases development

can suffer code rot as developers move on in their

careers or interests, while other software will nat-

urally be superseded as new methods or models

are adopted, new physical capabilities are imple-

mented, or the scientific questions evolve. The

decision to retire a code can be simple when it can

no longer be built on current platforms; more

often, software simply endures a slow decline into

disuse as usersmove on to other packages.

For codes whose development is actively

supported, the decision to sunset a code is as

complex as the codes themselves. Early in CIG’s

history, a project was initiated to develop a new

code to model fundamental processes involved

in the dynamics of Earth’s tectonic plates. The

computational requirements varied widely

depending on the specific scientific question;

hence, the resulting code was quite complex.

Although it was used to solve important scientific

problems, it proved overly challenging to use,

and never found the dedicated user-developer

champions needed for long-term sustainability.

As a result, after several years, the decision was

made to cease further active development. This

decision relied on CIG’s governance practices,

and involved careful discussions among CIG’s

elected governing committees, staff, leadership,

and the user community. To ensure the prove-

nance of scientific work done with this code, sta-

ble versions remain available and CIG continues

to run automated testing. Since then, several

other codes both within and outside CIG have

expanded capabilities to cover this area.

Focus on Building Diverse User and Developer

Communities

In practice,most of the codes CIGhosts are nei-

ther entirely CIG-supported nor entirely donated;

CIG-developed codes involve significant commu-

nity contributions, while donated code generally

requires some CIG contribution, including support

of automated testing, assistance with documenta-

tion, and the like. Successful community-based

software requires technical and scientific exper-

tise, but equally requires significant attention and

investment in the culture of the community

involved. CIG’s role inbuilding self-sustaining com-

munities is to provide examples of success and to

build structures that enable such communities to

form and thrive, for example, by running work-

shops, hackathons, and tutorials, hosting mailing

lists, establishing wiki-based knowledge reposito-

ries, and promoting user-developer groups.

Provide Support and Credit for Code

Development

Because producing high quality, reusable sci-

entific software takes significant effort, providing

mechanisms to credit that effort is essential to

sustain software growth and usage. Very few sci-

entists are fortunate enough to develop code full

time; code development is more often pursued

as a means to address a research problem.

Researchers who develop code worry that by

sharing code, their research may be “scooped”

or worse, their code misused; they will not

receive credit, lose control of their project, and/

or be overwhelmed with requests for user

Accelerating Scientific Discovery With Reusable Software

32 Computing in Science & Engineering



support and feature development. Tools like abc

can help developers get credit, while CIG’s com-

munity-building efforts and support can alleviate

some of this burden.

CHALLENGES FOR THE FUTURE
Over nearly a decade and a half of existence,

CIG has both witnessed and incubated signifi-

cant changes in how the geodynamics commu-

nity develops software. As the community

moves toward diverse collaborative teams, more

adoption of software best practices; and increas-

ingly writes software that can be used for larger,

more complex problems, what challenges and

opportunities might the future hold?

Preparing the Next Generation of Scientist

Developers

Software development strategies are still not

part of typical graduate curricula in the sciences.

CIG’s workshops and training for scientists in the

geoscience domain create an educational infra-

structure that is not otherwise generally avail-

able and meets a real need. Software tutorials,

available online, have become a steadily used

resource by the community. The hackathons

and best practices serve both an operational

role—improving and advancing code—and an

educational role—scientists learn from experts

at the hackathons and from the best practices.

By acting as a laboratory and clearinghouse, CIG

is able to extend the reach of these projects; for

example, CIG has begun holding hackathons for

other projects in a style similar to ASPECT

involving experienced hackathon leaders from

the ASPECT team to share practical insights and

assist with the training components of the hack-

athons. The result will be a workforce with

expertise in their primary scientific domains and

proficiency in code development.

Balancing Large and Small Projects

Organizational structures that work for a

project of a few developers and a dozen users do

not necessarily work for tens of developers and

hundreds of users, a scale that is now reached

by some of the CIG-supported projects. CIG

therefore gathers feedback from its community

and is experimenting with new methods to scale

projects, including developing online tutorials

and holding regular online user meetings that

engage larger geographically dispersed commu-

nities. Our expectation is that these activities

will also increase access to CIG activities by sci-

entists who may find it difficult to travel to

events. At the same time, it is critically impor-

tant to be open to new, small, imaginative proj-

ects on the horizon.

International Collaborations

The scientific community of computational

geophysicists is vast and global. Fostering

international collaboration brings diverse

approaches and practices to scientific problems,

resulting in better research. Establishing and

sustaining collaborations is challenging, due to

the different ways that science is funded in dif-

ferent countries and differences in scientific cul-

ture. However, scientific collaboration across

international boundaries has a long and success-

ful history in the geosciences and will continue

to benefit computational geophysics.

Computational Capacity

A great deal—perhaps the majority—of scien-

tific research in geophysics is carried out using

the small to mesoscale computer clusters avail-

able to most practicing scientists. Yet as our

knowledge of the physical systems increases,

scientific software increases in capability, new

observations become available, and several sci-

entific problems in geodynamics have grown to

require leadership-class computation. The fron-

tiers of computational geodynamics require

identifying sufficient computational capacity to

match the computational capabilities provided

by the high-quality scientific software. Some of

the requirements are specific to geophysics,

while others are not: geodynamics models often

need very high resolutions, and in some cases

require very long duration computations to

allow the model to progress through geologic

time. This need is likely to prove to be a sus-

tained challenge, even as hardware capabilities

and software developments evolve.

Concluding Remarks

Each project and each user community are

made up of individuals. What is usually cast as a

March/April 2019 33



technical challenge—the development of sus-

tainable, reusable, high-quality scientific soft-

ware—is as much a social challenge as it is a

technological one. What works for one project

may not work for another because of the person-

alities of the principal developers and the com-

munities they engage. We also need to consider

the importance of retaining talent in our commu-

nities, and that involves ensuring that those who

spend significant parts of their work life develop-

ing software for whole communities have career

paths in research and academia.

ACKNOWLEDGMENTS
The Computational Infrastructure for Geody-

namics is supported by the National Science

Foundation under Award EAR-0949446 and

Award EAR-1550901. The Attribution Builder for

Citation Tool was developed under National Sci-

ence Foundation under Award SMA-1448633.

& REFERENCES

1. S. D. King, A. Raefsky, and B. H. Hager, “ConMan:

Vectorizing a finite element code for incompressible

two-dimensional convection in the Earth’s mantle,”

Phys. Earth Planetary Interiors, vol. 59, pp. 195–207,

1990.

2. B. Blankenbach et al., “A benchmark comparison for

mantle convection codes,” Geophys. J. Int., vol. 98,

pp. 23–38, 1989,

3. P. Van Keken, S. D. King, H. Schmeling,

U. R. Christensen, D. Neumeister, and M. P. Doin,

“A comparison of methods for the modeling of

thermochemical convection,” J. Geophys. Res.,

Solid Earth, vol. 102, no. B10, pp. 22477–22495,

1997.

4. C. Wilson, Status of Recent Geoscience Graduates.

Alexandria, VA, USA: Amer. Geosciences Inst., 2014.

5. V. Basili et al., “Understanding the high-performance-

computing community: A software engineer’s

perspective,” IEEE Softw., vol. 25, no. 4, pp. 29–36,

Jul./Aug. 2008, doi:10.1109/ms.2008.103.

6. J. Hannay, C. MacLeod, J. Singer, H. Langtangen,

D. Pfahl, and G. Wilson, “How do scientists develop

and use scientific software?” in Proc. ICSE Workshop

Softw. Eng. Comput. Sci. Eng., 2009, pp. 1–8,

doi:10.1109/secse.2009.5069155.

7. Z. Merali, “Computational science: . . .Error. . . why

scientific programming does not compute,” Nature,

vol. 467, no. 7317, pp. 775–777, 2010,

doi:10.1038/467775a.

8. P. Prabhu et al., “A survey of the practice of

computational science,” in Proc. State of the Practice

Rep., 2011, Paper 19, doi:10.1145/2063348.2063374.

9. L. J. Hwang, A. Fish, L. Soito, M. Smith, and

L. H. Kellogg, “Software and the scientist: Coding

and citation practices in geodynamics,” Earth

Space Sci., vol. 4, pp. 670–680, 2017. [Online].

Available: https://doi.org/10.1002/2016EA000225

10. D. L. Turcotte and G. Schubert, Geodynamics, 1st ed.

Hoboken, NJ, USA: Wiley, 1982, p. 464.

11. W. L. Oberkampf and C. J. Roy, Verification and

Validation in Scientific Computing. Cambridge, U.K.:

Cambridge Univ. Press, 2010.

12. G. A. Glatzmaier and P. H. Roberts, “A three-

dimensional convective dynamo solution with rotating

and finitely conducting inner core and mantle,” Phys.

Earth Planetary Interiors, vol. 91, no. 1–3, pp. 63–75,

1995, doi: 10.1016/0031-9201(95)03049-3.

13. National Research Council, Getting Up to Speed: The

Future of Supercomputing. Washington, DC, USA:

National Academies, 2005. [Online]. Available: https://

doi.org/10.17226/11148

14. H. Matsui et al., “Performance benchmarks for a next

generation numerical dynamo model,” Geochem.

Geophys. Geosyst., vol. 17, pp. 1586–1607, 2016,

doi: 10.1002/2015GC006159.

15. N. Featherstone, “Rayleigh version 0.9.0 [software],”

Computational Infrastructure inGeodynamics, 2018, doi:

10.5281/zenodo.1158290

16. N. A. Featherstone and B. W. Hindman, “The

spectral amplitude of stellar convection and its

scaling in the high-Rayleigh-number regime,”

Astrophys. J., vol. 818, no. 1, p. 32, 2016, doi:

10.3847/0004-637X/818/1/32.

17. T. Heister, J. Dannberg, R.Gassm€oller, andW.Bangerth,

“High accuracymantle convection simulation through

modern numerical methods—II: Realisticmodels and

problems,”Geophys. J. Int., vol. 210, no. 2, pp. 833–851,

2017, doi:10.1093/gji/ggx195.

18. A. J. Rodgers, L. J. Hwang, and L. H. Kellogg,

“Computational seismology workshop trains early-

career scientists,” EoS, vol. 99, 2018, doi: 10.1029/

2018EO090991.

19. H. Johansen, A. Rodgers, N. A. Petersson,

D. McCallen, B. Sjogreen, and M. Miah, “Toward

exascale earthquake ground motion simulations for

Accelerating Scientific Discovery With Reusable Software

34 Computing in Science & Engineering



near-fault engineering analysis,” Comput. Sci. Eng.,

vol. 19, no. 5, pp. 27–37, 2017.

20. N. A. Petersson and B. Sjogreen, “SW4, version

2.01 [software],” Computational Infrastructure in

Geodynamics, 2017, doi: 10.5281/zenodo.1063644.

21. A. J. Rodgers, A. Pitarka, N. A. Petersson, B. Sj€ogreen,

and D. B. McCallen, “Broadband (0–4 Hz) ground

motions for a magnitude 7.0 Hayward fault earthquake

with three-dimensional structure and topography,”

Geophys. Res. Lett., vol. 45, pp. 739–747, 2018.

[Online]. Available: https://doi.org/10.1002/

2017GL076505

Louise H. Kellogg received the Ph.D. degree in

geological sciences from Cornell University, Ithaca,

NY, USA, in 1988. She is a distinguished Professor

of Earth and Planetary Sciences and the Director of

the Computational Infrastructure for Geodynamics

at the University of California, Davis. Her research

interests include mantle convection, crustal defor-

mation, and scientific visualization. Contact her at

kellogg@ucdavis.edu.

Lorraine J. Hwang received the Ph.D. degree in

seismology from the California Institute of Technol-

ogy in 1990. She is the Associate Director with the

Computational Infrastructure for Geodynamics,

University of California, Davis. Her research inter-

ests include sustainable software and preservation

of historical seismogram data. Contact her at

ljhwang@ucdavis.edu.

Rene Gassm€oller received the Ph.D. degree in

geophysics from the University of Potsdam, Germany

in 2015, in cooperation with the German Research

Centre for Geosciences. He is a project scientist with

the Computational Infrastructure for Geodynamics,

University of California, Davis. His research focuses

on the interaction between mantle convection and

plate tectonic processes, numerical methods of

geodynamic modeling, and sustainable software

development in the earth sciences. Contact him at

rgassmoeller@ucdavis.edu.

Wolfgang Bangerth is a Professor of Mathematics

with Colorado State University, Fort Collins, CO, USA.

He received the Ph.D. degree in mathematics from

Heidelberg University, Germany, in 2002. He is one of

the founders and a principal developer of both the

deal.II (www.dealii.org) and ASPECT (aspect.geody-

namics.org) projects, and is a computational scientist

with interests in finite element methods, scientific soft-

ware, and parallel computing. He has collaborated

with geoscientists, biomedical imaging experts,

nuclear engineers, physicists, and scientists from

other areas. Contact him at bangerth@colostate.edu.

Timo Heister is an Assistant Professor of Mathe-

matics with the University of Utah and the Scientific

Computing and Imaging Institute and his research

interests include numerical methods for PDEs, paral-

lel finite element methods, efficient discretizations for

fluid flow, and computational science in general. He

received the Ph.D. degree in mathematics from the

University of Goettingen, Germany, in 2011. Contact

him at heister@sci.utah.edu.

March/April 2019 35


