
Western Number Theory Problems, 17 & 19 Dec 2007

Edited by Gerry Myerson

for distribution prior to 2008 (Colorado) meeting

Summary of earlier meetings & problem sets with old (pre 1984) & new numbering.

1967 Berkeley 1968 Berkeley 1969 Asilomar
1970 Tucson 1971 Asilomar 1972 Claremont 72:01–72:05
1973 Los Angeles 73:01–73:16 1974 Los Angeles 74:01–74:08
1975 Asilomar 75:01–75:23
1976 San Diego 1–65 i.e., 76:01–76:65
1977 Los Angeles 101–148 i.e., 77:01–77:48
1978 Santa Barbara 151–187 i.e., 78:01–78:37
1979 Asilomar 201–231 i.e., 79:01–79:31
1980 Tucson 251–268 i.e., 80:01–80:18
1981 Santa Barbara 301–328 i.e., 81:01–81:28
1982 San Diego 351–375 i.e., 82:01–82:25
1983 Asilomar 401–418 i.e., 83:01–83:18
1984 Asilomar 84:01–84:27 1985 Asilomar 85:01–85:23
1986 Tucson 86:01–86:31 1987 Asilomar 87:01–87:15
1988 Las Vegas 88:01–88:22 1989 Asilomar 89:01–89:32
1990 Asilomar 90:01–90:19 1991 Asilomar 91:01–91:25
1992 Corvallis 92:01–92:19 1993 Asilomar 93:01–93:32
1994 San Diego 94:01–94:27 1995 Asilomar 95:01–95:19
1996 Las Vegas 96:01–96:18 1997 Asilomar 97:01–97:22
1998 San Francisco 98:01–98:14 1999 Asilomar 99:01–99:12
2000 San Diego 000:01–000:15 2001 Asilomar 001:01–001:23
2002 San Francisco 002:01–002:24 2003 Asilomar 003:01–003:08
2004 Las Vegas 004:01–004:17 2005 Asilomar 005:01–005:12
2006 Ensenada 006:01–006:15 2007 Asilomar (current set) 007:01–007:15

[With comments on 001:22, 004:06, 006:03 and 006:11]

COMMENTS ON ANY PROBLEM WELCOME AT ANY TIME
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Comments on earlier problems

001:22 (Gary Walsh) Is there a heuristic that suggests that (x3−1)(y3−1) = z2 has infinitely
many solutions with integers x, y, and 1 distinct?

Remark: (2002) Noam Elkies writes, “The usual heuristics suggest that there should
be only finitely many solutions, but this seems quite hard to prove. There are a few solu-
tions that are perhaps surprisingly large, such as (x, y, z) = (3, 313, 28236) and (x, y, z) =
(−20,−362, 616077). It seems likely that the complete list of solutions consists of these two,
the three positive solutions (2, 4, 21), (2, 22, 273), (4, 22, 819) and the three negative solutions
(0,−2, 3), (−1,−23, 156), (−6,−26, 1953), and the images of those 2 + 3 + 3 = 8 solutions
under the obvious involutions that switch x with y or z with −z, for a total of 4 × 8 = 32
solutions. At any rate an exhaustive search shows that these are the only solutions with both
|x| and |y| in [0, 106]. (Naturally this search was not over all 1012 or so (x, y) pairs: I had gp
list, for each m in this range, the smallest integer d such that m3− 1 is d times a square, and
then sort the list of d-values and look for duplicates.)”

Remark: (2008) Peter Montgomery writes, “I searched |x|, |y| < 4294 ∗ 106 and found
another solution, (x, y) = (1173, 110187925).

“The program chose 100 primes pj around 2000. Define a quadratic character χj on the
non-zero integers by χj(npej) = jacobi(n, pj) if gcd(n, pj) = 1. The candidate values of x were
put in an array. Those x with χ1(x3 − 1) = +1 were moved to one end of the array and
those with χ1(x3 − 1) = −1 to the other end. Each subarray was further split according to
χj(x3 − 1) for j = 2, 3, . . .. If, at some point in the recursion, a subarray had only one x,
that x was discarded.”

004:06 (Ben Kane and Lawrence Sze) Let s and t be relatively prime positive integers. Let P
be a set of positive integers with the property that if n is in P and n ≥ s then n− s is in P ,
also if n is in P and n ≥ t then n− t is in P . Prove that∑

n in P

n−#(P )(#(P )− 1)/2 ≤ (s2 − 1)(t2 − 1)/24

with equality if P = {n > 0 : n = as+ bt→ ab < 0 }.
Remarks: (2005) Note that P is not allowed to contain zero, so it cannot contain any

integer as+bt with a and b both non-negative, so it is in any event a subset of the set that yields
equality. There is an equivalent statement of the conjecture in the language of partitions; the
maximal partition that is both an s-core and a t-core is of size (s2 − 1)(t2 − 1)/24.

If P is closed under subtraction of three relatively prime integers s, t, u, no conjecture
concerning

∑
n in P n is offered.

Remark: (2008) The statement about partitions is proved in B. Olsson and D. Stanton,
Block inclusions and cores of partitions, Aequat. Math. 74 (2007) 90-110. No mention is
made of the Kane-Sze formulation of the problem. In a preprint, Amitabha Tripathi proves
the Kane-Sze inequality, and deduces the Olsson-Stanton result from it.
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006:03 (Mel Nathanson, via Carl Pomerance) For p prime, and for a = (a1, . . . , ad) with
non-zero entries modulo p, let

h(a) = min
1≤k≤p−1

d∑
i=1

(kai mod p)

where “u mod p” means the integer in [0, p − 1] congruent to u modulo p. Suppose none of
the quantities ai ± aj , ai + aj + ak vanish modulo p for distinct i, j, and k. Must it be true
that h(a) ≤ p(p− 1− 2d)/4?

Remark: For more information, see Mel Nathanson, Heights on the finite projective line,
available at http://arxiv.org/abs/math.NT/0703646, and Joshua Batson, Nathanson heights
in finite vector spaces, http://arxiv.org/abs/0710.4605.

006:11 (John Brillhart) What is the probability that a polynomial chosen uniformly at
random from the polynomials of a given degree n over a given field of p elements has a
multiple root in some extension field?

Solution: Let Pq,n be the probability that a random univariate polynomial over Fq of
degree n has a multiple root in some extension field. Jeff Achter noted that results of Bjorn
Poonen, Bertini theorems over finite fields, Ann. Math. 160 (2004) 1099–1127, imply that
limn→∞ Pq,n = 1/q. Poonen writes,

In fact, Pq,n = 1/q exactly for all n ≥ 2. Equivalently, for n ≥ 2, the number of monic
squarefree polynomials in Fq[x] of degree n is qn − qn−1. This is a very old result: see the
formula for Q(nu) on the first page of Leonard Carlitz, The arithmetic of polynomials in a
galois field, Amer. J. Math. 54 (1932), no. 1, 39–50.

Problems Proposed 17 & 19 Dec 2007

007:01 (Sam Wagstaff) Let rs(n) be the number of ways to write n as a sum of s squares.
Various congruences for rs(n) are known, e.g., if s = 2k then for all n, rs(n) ≡ 0 (mod 2s).
Either find h, not a divisor of 2s, with a proof of a congruence for rs(n) (mod h) for infinitely
many s and n, or prove that there is no such h.

Remark: Known results can be found in S. Wagstaff, Congruences for rs(n) modulo 2s,
Journal of Number Theory 127 (2007) 326–329.

007:02 (Doug Iannucci) Call n a year number if ϕ(n)/ϕ(σ(n)) = 2 (note that 365 is a year
number, whence the terminology). Are there any even year numbers? Are there any odd
year numbers that are not squarefree?

Remark: If n = q1q2 . . . qk is a product of odd primes such that (qj + 1)/2 is prime for
all j, then n is a year number.

Solution: n = 5491 = 172 ·19 is the smallest non-squarefree year number. The next few
non-squarefree year numbers are 8075 = 52 · 17 · 19, 25317 = 32 · 29 · 97, 27455 = 5 · 172 · 19,
71383 = 13 · 172 · 19, 72283 = 412 · 43, 76131 = 32 · 11 · 769, 104975 = 52 · 13 · 17 · 19,
138575 = 52 · 23 · 241, and 193041 = 32 · 89 · 241.

The smallest non-cubefree (and non-4th-powerfree) year number is 295569 = 34 · 41 · 89.
The smallest year number divisible by 53 is 1964375 = 54 · 7 · 449. The smallest year number
divisible by 31 (which is the smallest prime not appearing in the previous paragraph) is
595975 = 52 · 31 · 769.
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Eric Landquist found year numbers divisible by 72, 73, and 74, as well as 120781449 =
38 ·41 ·449. The existence of even year numbers is still open, but Eric checked all 200-smooth
even integers with a single large prime up to 100,000,000 and found no year numbers among
them. Perhaps for every odd n there is a year number divisible by n.

007:03 (Bob Styer and Reese Scott, via Gerry Myerson) Find all solutions to ax±ay = br±bs,
the signs being chosen independently.

Remarks: We assume a, b > 1, a 6= b, a and b not perfect powers, x > y > 0, r > s > 0,
and x/y 6= r/s, to eliminate infinite families. Below is a list of 23 solutions from which all
other known solutions can be derived, either by combining two solutions to create a third
(e.g., 25 − 2 = 33 + 3 = 52 + 5, 28 − 22 = 35 + 32 = 63 + 62), or by noting that from any
solution with x = 2y we can derive another solution from a2y ± ay = (ay ± 1)2 ∓ (ay ± 1).

The 23 solutions are:
23 − 2 = 32 − 3 25 − 23 = 33 − 3 28 − 24 = 35 − 3
27 − 23 = 53 − 5 24 + 23 = 33 − 3 24 + 2 = 33 − 32

25 − 2 = 33 + 3 28 − 22 = 35 + 32 23 + 22 = 32 + 3
25 + 22 = 33 + 32 27 + 2 = 53 + 5 27 + 22 = 112 + 11
33 + 3 = 52 + 5 37 − 3 = 133 − 13 213 − 2 = 912 − 91
57 − 5 = 2792 + 279 35 + 32 = 63 + 62 38 − 34 = 65 − 64

63 − 6 = 152 − 15 55 + 52 = 153 − 152 216 + 26 = 403 + 402

213 + 212 = 982 + 98 305 − 30 = 49292 + 4929
Are there other solutions? There are no others with terms less than 1020 when

a, b < 53000.
Some references are Michael Bennett, On some exponential equations of S. S. Pillai,

Canad. J. Math. 53 (2001) 897–922; Yann Bugeuad and Florian Luca, On Pillai’s Diophantine
equation, New York J. Math. 12 (2006) 193–217; Reese Scott and Robert Styer, On the
generalized Pillai equation ±ax ± by = c, J. Number Theory 118 (2006) 236–265.

007:04 (Andrew Shallue) Given a finite group G, and an element g of G, let ng(G) be
the length of the longest sequence of (not necessarily distinct) elements of G for which no
nonempty subsequence has product g, if such a maximum exists. Find conditions under which
ng(G) exists, and find upper bounds for it in terms of invariants of G.

Remark: P. van Emde Boas and D. Kruyswijk, A combinatorial problem on finite
abelian groups, III, Rep. No. ZW 1969-008, Math. Centrum, Amsterdam, 1969 proved that
if G is a finite abelian group of order n and exponent m, then in any product of at least
m log(en/m) group elements, there is a non-empty subproduct whose value is the identity.
The result also appears in R. Meshulam, An uncertainty inequality and zero subsums, Dis-
crete Math. 84 (1990) 197–200, and it was applied in W. R. Alford, Andrew Granville, Carl
Pomerance, There are infinitely many Carmichael numbers, Ann. Math. 139 (1994) 703–722.

Note that picking appropriate conditions so that ng(G) even exists is already a challeng-
ing problem. If we allow subsequences for which all elements fall in a subgroup that g does
not belong to, then ng(G) does not exist.

Motivation: Let a “double Carmichael” number be a composite square-free positive
integer n such that for all prime p | n, (p− 1) | (n− 1) and (p+ 1) | (n+ 1). None have been
found, but the following heuristic argument of Erdős gives a construction.

Choose smooth L and M such that gcd(L,M) = 2. Find the set P of primes p such
that (p− 1) | L and (p+ 1) |M . Find a subset of P whose elements multiply to the element
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(1,−1) in Z/LZ × Z/MZ. It should be possible to choose L and M large enough so that
2|P | > LM , so then there should be an appropriate subset. Solving the problem would be
one step towards proving that double Carmichael numbers exist.

007:05 (Geoffrey Apel) Let F (k1, k2, `1, `2, α) =
∑
s,t in Z q

k1s
2+k2t

2+`1s+`2t+α with k1, k2

positive integers, `1, `2, and α integers. Let I(k1, k2, `1, `2, α) = `21k2 + `22k1 − 4k1k2α. Con-
jecture: If

∑n
i=1±F (k1, k2, `1i, `2i, αi) is identically zero, and no proper subsum is identically

zero, then I(k1, k2, `1, `2, α) takes on the same value for i = 1, . . . , n.

007:06 (David Moulton) Is there any n other than 1, 2, 5, 14, and 714 such that n(n+ 1) is
the product of the first k primes for some k?

Remark: This is equivalent to problem 93:08; If pi is the ith prime, for which n is

4
n∏
i=1

pi + 1

a square? David Bailey showed that if P (x) is the product of the primes not exceeding x (so,
e.g., P (10) = 210), then 4P (x) + 1 is not a square for any x between 19 and 23000. Later,
Peter Montgomery extended the search to pn < 50000, finding no more examples.

The problem was also stated much earlier, in the original paper on Ruth-Aaron pairs;
C. Nelson, D. E. Penney, C. Pomerance, 714 and 715, J. Recreational Math. 7 (1974) 87–89.

007:07 (Adrian Tang) Let n > 1 be an integer, let S ⊆ { 1, 2, . . . , n − 1 } be such that n
doesn’t divide

∑
x in S x. Prove that you can order the elements of S in such a way that n

doesn’t divide the sum of any consecutive block.
Remark: Equivalently, prove that you can order the elements of S in such a way that

no two initial segments have the same sum, modulo n (where we include the empty initial
segment, with sum zero).

The question can be asked in a wider context. Let G be any group, let S be any finite
or countably infinite subset of G, not containing the identity element of G; if S is finite,
we require in addition that there be at least one ordering of S such that the product of the
elements of S, in this order, is not the identity of G. Then prove that you can order the
elements of S in such a way that no two initial segments have the same product.

A related question which has an extensive literature is that of sequencing a group. Se-
quencing a finite group is ordering it in such a way that no two initial segments have the
same product (this time, we don’t include the empty initial segment). The abelian case was
settled by Basil Gordon, Sequences in groups with distinct partial products, Pac. J. Math. 11
(1961) 1309–1313. A paper that deals with subsets of groups, and may thus be closer to the
problem at hand, is David Bedford, A partial solution to a question raised by R. L. Graham,
Ars Combin. 36 (1993) 289–295.

007:08 (Florian Luca and V. Janitzio Huguet Mejia) Let A be the set of even integers not
expressible as ±2m ± ϕ(k) for integers m ≥ 0, k ≥ 1 (where ϕ is the Euler phi-function).
Show that A is infinite. Show that #(A ∩ [1, x])� x.

Remark: It is known that there are infinitely many even integers not expressible as
2m + ϕ(k); similarly for 2m − ϕ(k), and for ϕ(k)− 2m.
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007:09 (Florian Luca and V. Janitzio Huguet Mejia) An odd number k is a Sierpinski number
if 2nk + 1 is composite for all n ≥ 0. Are there infinitely many primes p for which 2p − 1 is
Sierpinski? Are there infinitely many n for which 22n

+ 1 is Sierpinski?

007:10 (Qingquan Wu) Let D = pqr with p, q, and r distinct primes, p ≡ q ≡ 3 (mod 4),
r ≡ 1 (mod 4). Let x + y

√
D be the fundamental unit of Q(

√
D) with x > 0. Are there

infinitely many D such that x ≡ 5 (mod 8)?
Solution: Gary Walsh shows that there aren’t any such D. Rewrite x2 − Dy2 = 1 as

Dy2 = (x+ 1)(x− 1). The power of 2 dividing the left side is even, but if x ≡ 5 (mod 8) (or
if x ≡ 3 (mod 8)) then the power of 2 dividing the right side is 3. Note that the only fact
used about D is that it is odd.

Qingquan Wu now asks whether there are infinitely many D = pqr as above such that
each of the congruences x ≡ 1 (mod 8) and x ≡ 7 (mod 8) holds; similarly, and indepen-
dently, each of the congruences y ≡ 0 (mod 8) and y ≡ 4 (mod 8).

007:11 (Gerry Myerson) Find useful conditions on a function f which guarantee∑
n≤x,n squarefree

f(n) =
(
6π−2 +O(1)

)∑
n≤x

f(n)

Remark: We assume
∑
n≤x f(n) goes to infinity with x. The equation holds for power

functions f(n) = nr for any r ≥ −1. The set of all f for which the equation holds forms a
vector space, and it is closed under small perturbations, that is, if the equation holds for f ,
and g is small compared to f , then it holds for f + g.

David Moulton points out that it can’t hold if f grows too fast (say, exponentially), for
then the sums are dominated by their biggest summand.

007:12 (John Brillhart) Find interesting functions f such that f(f(x)) = −x.
Remarks: 1. A long list of references to this sort of problem is Lars Kindermann’s

webpage on Iterative Roots and Fractional Iteration, http://reglos.de/lars/ffx.html
2. John amends his problem to ask for interesting solutions to f

(
af(x/a)

)
= x. He notes

that the Gudermanian, gd(x) = arctan sinhx, satisfies this functional equation when a = −i.

007:13 (Gary Walsh) Prove that Fn and Ln are both prime for n = 148091.
Remark: Fn are the Fibonacci numbers with F0 = 0, F1 = 1, and Ln are the Lucas

numbers with L0 = 2, L1 = 1. They are both prime for n = 4, 5, 7, 11, 13, 17, and 47. No
other value of N is known for which both have been proved prime, but both are probable
primes for n = 148091.

007:14 (Gary Walsh) A polynomial f(x) with integer coefficients is “primitive reducible” if
it is reducible but f(x1/e) is not reducible for any e > 1. For example, x4 + 4 is primitive
reducible. Is there a primitive reducible polynomial of the form xi + xj + xk + 4 with
0 < k < j < i and i > 17? Aside from

x7 + x5 + x3 + 8 = (x3 − x2 − x+ 2)(x4 + x3 + 3x2 + 2x+ 4)

is there a primitive reducible polynomial of the form xi +xj +xk +n with 0 < k < j < i and
n > 4, and not divisible by a linear or quadratic polynomial?
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007:15 (Leon McCulloh) Let G be a finite abelian group. Let Ĝ = Hom(G,C×). Define a
Q-bilinear map: QĜ ×QG → Q, (χ, s) 7→ 〈χ, s〉 where χ(s) = e2πi〈χ,s〉 and 0 ≤ 〈χ, s〉 < 1.
Define a Q-linear map θ : QĜ→ QG by θ(χ) =

∑
s in G〈χ, s〉s. Let SG = θ(ZĜ) ∩ ZG.

(i) Conjecture: If ` is an odd prime, and G an abelian `-group, then #
(
Cl(ZG)−

)
=

[ZG− : S−G ], where Cl(ZG) is the (locally free) class group of ZG and ()− refers to the
skew-symmetric part with respect to the canonical involution s 7→ s−1 of G.

(ii) Find appropriate generalizations if G is abelian but not an `-group; if G is not
abelian.

Remark: For reference, see the two papers by McCulloh, A class number formula for
elementary abelian group rings, J. Alg. 68 (1981) 443–452, and Galois module structure of
abelian extensions, Crelle 375/376 (1987) 259–306.

Supplement to the problem set — John Brillhart tells a Paul Erdős story

During the first 30 years of the Western Number Theory conference the problem sessions
were run by John Selfridge. Paul Erdős always attended if he didn’t have more pressing plans
to be elsewhere.

At the problem session, as at the meeting itself, Paul always sat in the first row, often
apparently nodding off during the proceedings.

There always came a point in the problem session when John asked for another problem,
and no one replied. He then turned to Paul, who always had a problem to contribute.

This happened at one meeting and John turned to Paul, who was apparently deep in
sleep. He asked, “Paul, do you have a problem?” Paul roused himself, gesturing weakly with
his hand, and said, “I’ll be all right in a minute.” Everyone laughed.
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