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Summary of earlier meetings & problem sets with old (pre 1984) & new numbering.

1967 Berkeley

1970 Tucson

1973 Los Angeles
1975 Asilomar
1976 San Diego
1977 Los Angeles
1978 Santa Barbara
1979 Asilomar
1980 Tucson

1981 Santa Barbara
1982 San Diego
1983 Asilomar
1984 Asilomar
1986 Tucson

1988 Las Vegas
1990 Asilomar
1992 Corvallis
1994 San Diego
1996 Las Vegas
1998 San Francisco
2000 San Diego
2002 San Francisco
2004 Las Vegas

2006 Ensenada (current set) 006:01-006:15

1968 Berkeley
1971 Asilomar
73:01-73:16
75:01-75:23

1969 Asilomar

1972 Claremont
1974 Los Angeles

1-65

101-148
151-187
201-231
251-268
301-328
351-375
401-418

ie., 76:01-76:65
i.e., 77:01-77:48
ie., 78:01-78:37
i.e., 79:01-79:31
i.e., 80:01-80:18
i.e., 81:01-81:28
ie., 82:01-82:25
i.e., 83:01-83:18

84:01-84:27
86:01-86:31
88:01-88:22
90:01-90:19
92:01-92:19
94:01-94:27
96:01-96:18
98:01-98:14
000:01-000:15
002:01-002:24
004:01-004:17

[With comments on 005:11]

1985 Asilomar
1987 Asilomar
1989 Asilomar
1991 Asilomar
1993 Asilomar
1995 Asilomar
1997 Asilomar
1999 Asilomar
2001 Asilomar
2003 Asilomar
2005 Asilomar

72:01-72:05
74:01-74:08

85:01-85:23
87:01-87:15
89:01-89:32
91:01-91:25
93:01-93:32
95:01-95:19
97:01-97:22
99:01-99:12
001:01-001:23
003:01-003:08
005:01-005:12
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Comment on an earlier problem

005:11 (Lenny Jones) Is it true that if 1 < r < s then ged(10%" +1,3%" 4+ 1) = 1?7 Tt is not
true if r = s is allowed, e.g., the ged is 17 if r = s = 3.

Solution: (Mike Filaseta) The answer is, “No.” A prime p divides 102" 4 1 if and only if
ord,(10) = 2"*!, and similarly an odd prime p divides 32" + 1 if and only if ord,(3) = 25+
One can check that p =5 - 2127 + 1 satisfies ord,(10) = 2?5 and ord,(3) = 2'?". Hence,

ged (1027 + 1,37 +1) > 1.

Mike continues: the following heuristic would suggest that there are many examples like
this. The number p = k- 2! + 1 is prime with probability > 1/(tlog2 + log k) (with implied
constants absolute). Given that p is prime, the probability that ord,(10) divides 2¢ is > 1/k
and the probability that ord,(3) divides 2¢ is > 1/k. Given that these occur, the probability
that ord,(10) < ord,(3) is > 1. Hence, for fixed positive integers k and t, the probability
that the prime p divides 10?" 4+ 1 and 32" + 1 for some positive integers r < s is

1
> 52 (tlog2+logk)

This suggests that if we fix k£ small and let ¢ vary, we should come up with some examples,
which is what I did. Since for fixed k, the sum over ¢ diverges, the heuristic also suggests
that there should be infinitely many similar examples.

Problems Proposed 18 & 20 Dec 2006

006:01 (Claude Anderson, via Carl Pomerance) Is it true that if n is even and m is odd then
o(n)/n # o(m)/m?

Remark: If so, then there are no odd perfect numbers.

006:02 (Carl Pomerance) Is it true that if m and n are greater than one and ged(n,m) =1
then o(n)/n # o(m)/m?

Remark: If so, and if there are infinitely many even perfect numbers, then there are no
odd perfect numbers.

006:03 (Mel Nathanson, via Carl Pomerance) For p prime, and for a = (aq,...,aq) with
non-zero entries modulo p, let

d
h(a) = i ka; d
(a) = _min .1( a; mod p)

where “u mod p” means the integer in [0,p — 1] congruent to u modulo p. Suppose none of
the quantities a; £ aj, a; + a; + aj vanish modulo p for distinct 4, j, and k. Must it be true
that h(a) < p(p — 1 —2d)/47

Remark: If so, a conjecture of Chudnovsky, Seymour, and Sullivan in graph theory
holds.



006:04 (Bart Goddard) A positive integer n is abundant if o(n) > 2n, deficient if o(n) < 2n.
It is abundantly deficient if

#{1 < x <n:zis deficient }

is abundant. For example, 14 is a.d. because there are 12 deficient numbers not exceed-
ing 14, and 12 is abundant. For which k are there infinitely many strings of k consecutive
a.d. numbers?

With the obvious definition, for which k are there infinitely many strings of k£ consecutive
deficiently abundant numbers?

Solution: Florian Luca calls n a Goddard number if it is deficient and abundantly
deficient. He proves that there are infinitely many strings of 5 consecutive Goddard numbers,
but the proof is too long to include here. He also points out that there cannot be 6 consecutive
Goddard numbers, since multiples of 6 cannot be deficient.

006:05 (Andrew Shallue) Given a positive integer m, and integers ay,...,a,, define X by
X =3%"" | a;z;, where z; are chosen from { 0,1} uniformly at random, and let
a=0

Pr{zx=a (mod m)} — —

A(X) = —

N | =

(i) Assume a; are not all in some proper subgroup of Z/mZ, and assume m < 2". Find
a non-trivial upper bound on A(X).

(ii) Find conditions on a;, m, and n that make A(X) exponentially small.

006:06 (Florian Luca) Are there infinitely many n such that all the numbers obtained by
deleting a single digit of n are prime? An example is n = 131.

Remark: Yes, if, as is expected to be the case, there are infinitely many primes of the
form (107 — 1)/9. There may be easier ways to prove it.

006:07 (Arturas Dubickas) Is there a nonzero number which is a root of some nonzero poly-
nomial with coefficients 0 and 1 (“Newman polynomial”) but is not a root of any polynomial
with coefficients —1 and 1 (“Littlewood polynomial”)?

006:08 (Florian Luca) A Niven number is a number that is divisible by the sum of its digits.
Are there infinitely many Fibonacci numbers that are Niven numbers?

Remark: Heuristics, based on the counting function for the Niven numbers being asymp-
totic to cx/log x, suggest the answer is yes.

006:09 (Roger Oyono) Give a small gg such that for every ¢ > go and every smooth plane
quartic C defined over F, there is a line ¢ defined over F, such that the intersection points
of C' and ¢ are all defined over F, .

Can we also give g1 (resp., ¢2) such that there is a tangent line (resp., tangent line at a
flex) such that all the intersection points are defined over F,?

Remark: It is known that gy can be taken to be 10%; what is wanted is something
considerably smaller. Best of all would be the minimal value of qq.



006:10 (John Brillhart) How can one tell whether a function given by a power series has any
multiple roots?

Remark: A polynomial has a multiple root if and only if the resultant of the polynomial
and its derivative is zero, and this resultant can be computed as the determinant of a matrix,
without knowing (or learning) the roots of the polynomial. The question is whether there is
such an algorithm for analytic functions. Since a perturbation in any coefficient of the series
could make the difference between existence of multiple roots and nonexistence, it would seem
that a finite procedure is impossible.

006:11 (John Brillhart) What is the probability that a polynomial chosen uniformly at
random from the polynomials of a given degree n over a given field of p elements has a
multiple root in some extension field?

006:12 (Gary Walsh) Find all solutions of (a* — 1)(b¥ — 1) = y? with 1 < a < b < 100,
(a —1)(b—1) a square, and k > 1.

Remark: Walsh and Luca have found all the solutions in the given range such that
(a —1)(b—1) not a square.

006:13 (Gerry Myerson and Jamie Simpson) An incongruent restricted disjoint covering
system (IRDCS) for [1,n] is a collection of congruences x = a; (mod m;), ¢ = 1,...,t, with
1 <mp <...< my, such that every x in [1,n] satisfies exactly one of the congruences, and
every congruence is satisfied by at least two numbers in [1,n]. Such things exist; (a;, m;) =
(0,3), (0,4), (0,5), (1,6), (2,9) for i = 1,...,5 is an IRDCS for [1, 11].

If + = a; (modm;), i = 1,...,t is an IRDCS for [1,n], then x = 2a; (mod 2m;),
i=1,...,t together with z =1 (mod 2) is an IRDCS for [1,2n + 1]. We call this doubling.

(i) Are there infinitely many IRDCS, not counting those obtained from smaller systems
by doubling?

(ii) Is there an IRDCS for [1,n] for all n > 177

(iii) Are there IRDCS with arbitrarily large values of m;?

(iv) Is there an IRDCS with all m; odd?

(v) Find sharp upper and lower bounds for h = Zzzl(l /m;).

(vi) Given k > 2, is there an IRDCS such that every congruence is satisfied by at least
k numbers in [1,n]?

(vii) Generalize to covering systems for [1,n;] x ... X [1,n,], r > 1.

Remarks: Myerson, Jacky Poon, and Simpson have another construction producing
infinitely many IRDCS. Given an IRDCS in which n is an odd multiple of 3, the modulus m
covering 1 satisfies m > 2n/3, 3m —n — 1 is not a power of 2, and no modulus m; is a power
of 2, we construct an IRDCS for [1,3n] with the same properties. As we know of an IRDCS
for [1,27] satisfying the properties, the construction yields an affirmative answer to (i).

We have examples of IRDCS for [1,n] for all n with 17 < n < 32, and together with a
modification of the doubling procedure this yields an affirmative answer to (ii). There is no
IRDCS with n = 16, so this is a best possible result.

Concerning (v), we can prove 1/2 < h < 3/2, but in all the examples we have found,
98834... < h <1.06768....



006:14 (Iekata Shiokawa) Let F,, n = 1,2,..., be the Fibonacci numbers, starting with
Fy =2. Let {p(s) = [[o—,(1 — F,,; %)~ 1. Is £p(1) rational?

006:15 (Florian Luca and Carl Pomerance) Let U(N) = (Z/NZ)* be the multiplicative group
of units modulo N. Show that the number of solutions A, B, C' of U(A) & U(B) ~ U(C)
with max(4, B,C) < X is X2t°(1) (the UABC conjecture).



