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Summary of earlier meetings & problem sets with old (pre 1984) & new numbering.

1967 Berkeley 1968 Berkeley 1969 Asilomar
1970 Tucson 1971 Asilomar 1972 Claremont 72:01–72:05
1973 Los Angeles 73:01–73:16 1974 Los Angeles 74:01–74:08
1975 Asilomar 75:01–75:23
1976 San Diego 1–65 i.e., 76:01–76:65
1977 Los Angeles 101–148 i.e., 77:01–77:48
1978 Santa Barbara 151–187 i.e., 78:01–78:37
1979 Asilomar 201–231 i.e., 79:01–79:31
1980 Tucson 251–268 i.e., 80:01–80:18
1981 Santa Barbara 301–328 i.e., 81:01–81:28
1982 San Diego 351–375 i.e., 82:01–82:25
1983 Asilomar 401–418 i.e., 83:01–83:18
1984 Asilomar 84:01–84:27 1985 Asilomar 85:01–85:23
1986 Tucson 86:01–86:31 1987 Asilomar 87:01–87:15
1988 Las Vegas 88:01–88:22 1989 Asilomar 89:01–89:32
1990 Asilomar 90:01–90:19 1991 Asilomar 91:01–91:25
1992 Corvallis 92:01–92:19 1993 Asilomar 93:01–93:32
1994 San Diego 94:01–94:27 1995 Asilomar 95:01–95:19
1996 Las Vegas 96:01–96:18 1997 Asilomar 97:01–97:22
1998 San Francisco 98:01–98:14 1999 Asilomar 99:01–99:12
2000 San Diego 000:01–000:15 2001 Asilomar 001:01–001:23
2002 San Francisco 002:01–002:24 2003 Asilomar 003:01–003:08
2004 Las Vegas 004:01–004:17 2005 Asilomar 005:01–005:12
2006 Ensenada (current set) 006:01–006:15

[With comments on 005:11]
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Comment on an earlier problem

005:11 (Lenny Jones) Is it true that if 1 < r < s then gcd(102r

+ 1, 32s

+ 1) = 1? It is not
true if r = s is allowed, e.g., the gcd is 17 if r = s = 3.

Solution: (Mike Filaseta) The answer is, “No.” A prime p divides 102r

+ 1 if and only if
ordp(10) = 2r+1, and similarly an odd prime p divides 32s

+ 1 if and only if ordp(3) = 2s+1.
One can check that p = 5 · 2127 + 1 satisfies ordp(10) = 2125 and ordp(3) = 2127. Hence,

gcd
(
102124

+ 1, 32126
+ 1
)
> 1.

Mike continues: the following heuristic would suggest that there are many examples like
this. The number p = k · 2t + 1 is prime with probability � 1/(t log 2 + log k) (with implied
constants absolute). Given that p is prime, the probability that ordp(10) divides 2t is � 1/k
and the probability that ordp(3) divides 2t is � 1/k. Given that these occur, the probability
that ordp(10) < ordp(3) is � 1. Hence, for fixed positive integers k and t, the probability
that the prime p divides 102r

+ 1 and 32s

+ 1 for some positive integers r < s is

� 1
k2(t log 2 + log k)

.

This suggests that if we fix k small and let t vary, we should come up with some examples,
which is what I did. Since for fixed k, the sum over t diverges, the heuristic also suggests
that there should be infinitely many similar examples.

Problems Proposed 18 & 20 Dec 2006

006:01 (Claude Anderson, via Carl Pomerance) Is it true that if n is even and m is odd then
σ(n)/n 6= σ(m)/m?

Remark: If so, then there are no odd perfect numbers.

006:02 (Carl Pomerance) Is it true that if m and n are greater than one and gcd(n,m) = 1
then σ(n)/n 6= σ(m)/m?

Remark: If so, and if there are infinitely many even perfect numbers, then there are no
odd perfect numbers.

006:03 (Mel Nathanson, via Carl Pomerance) For p prime, and for a = (a1, . . . , ad) with
non-zero entries modulo p, let

h(a) = min
1≤k≤p−1

d∑
i=1

(kai mod p)

where “u mod p” means the integer in [0, p − 1] congruent to u modulo p. Suppose none of
the quantities ai ± aj , ai + aj + ak vanish modulo p for distinct i, j, and k. Must it be true
that h(a) ≤ p(p− 1− 2d)/4?

Remark: If so, a conjecture of Chudnovsky, Seymour, and Sullivan in graph theory
holds.
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006:04 (Bart Goddard) A positive integer n is abundant if σ(n) > 2n, deficient if σ(n) < 2n.
It is abundantly deficient if

#{ 1 ≤ x ≤ n : x is deficient }

is abundant. For example, 14 is a.d. because there are 12 deficient numbers not exceed-
ing 14, and 12 is abundant. For which k are there infinitely many strings of k consecutive
a.d. numbers?

With the obvious definition, for which k are there infinitely many strings of k consecutive
deficiently abundant numbers?

Solution: Florian Luca calls n a Goddard number if it is deficient and abundantly
deficient. He proves that there are infinitely many strings of 5 consecutive Goddard numbers,
but the proof is too long to include here. He also points out that there cannot be 6 consecutive
Goddard numbers, since multiples of 6 cannot be deficient.

006:05 (Andrew Shallue) Given a positive integer m, and integers a1, . . . , an, define X by
X =

∑n
i=1 aixi, where xi are chosen from { 0, 1 } uniformly at random, and let

∆(X) =
1
2

m−1∑
a=0

∣∣∣∣Pr{x ≡ a (mod m)} − 1
m

∣∣∣∣
(i) Assume ai are not all in some proper subgroup of Z/mZ, and assume m < 2n. Find

a non-trivial upper bound on ∆(X).
(ii) Find conditions on ai, m, and n that make ∆(X) exponentially small.

006:06 (Florian Luca) Are there infinitely many n such that all the numbers obtained by
deleting a single digit of n are prime? An example is n = 131.

Remark: Yes, if, as is expected to be the case, there are infinitely many primes of the
form (10p − 1)/9. There may be easier ways to prove it.

006:07 (Artūras Dubickas) Is there a nonzero number which is a root of some nonzero poly-
nomial with coefficients 0 and 1 (“Newman polynomial”) but is not a root of any polynomial
with coefficients −1 and 1 (“Littlewood polynomial”)?

006:08 (Florian Luca) A Niven number is a number that is divisible by the sum of its digits.
Are there infinitely many Fibonacci numbers that are Niven numbers?

Remark: Heuristics, based on the counting function for the Niven numbers being asymp-
totic to cx/ log x, suggest the answer is yes.

006:09 (Roger Oyono) Give a small q0 such that for every q > q0 and every smooth plane
quartic C defined over Fq there is a line ` defined over Fq such that the intersection points
of C and ` are all defined over Fq .

Can we also give q1 (resp., q2) such that there is a tangent line (resp., tangent line at a
flex) such that all the intersection points are defined over Fq?

Remark: It is known that q0 can be taken to be 106; what is wanted is something
considerably smaller. Best of all would be the minimal value of q0.
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006:10 (John Brillhart) How can one tell whether a function given by a power series has any
multiple roots?

Remark: A polynomial has a multiple root if and only if the resultant of the polynomial
and its derivative is zero, and this resultant can be computed as the determinant of a matrix,
without knowing (or learning) the roots of the polynomial. The question is whether there is
such an algorithm for analytic functions. Since a perturbation in any coefficient of the series
could make the difference between existence of multiple roots and nonexistence, it would seem
that a finite procedure is impossible.

006:11 (John Brillhart) What is the probability that a polynomial chosen uniformly at
random from the polynomials of a given degree n over a given field of p elements has a
multiple root in some extension field?

006:12 (Gary Walsh) Find all solutions of (ak − 1)(bk − 1) = y2 with 1 < a < b ≤ 100,
(a− 1)(b− 1) a square, and k > 1.

Remark: Walsh and Luca have found all the solutions in the given range such that
(a− 1)(b− 1) not a square.

006:13 (Gerry Myerson and Jamie Simpson) An incongruent restricted disjoint covering
system (IRDCS) for [1, n] is a collection of congruences x ≡ ai (mod mi), i = 1, . . . , t, with
1 < m1 < . . . < mt, such that every x in [1, n] satisfies exactly one of the congruences, and
every congruence is satisfied by at least two numbers in [1, n]. Such things exist; (ai,mi) =
(0, 3), (0, 4), (0, 5), (1, 6), (2, 9) for i = 1, . . . , 5 is an IRDCS for [1, 11].

If x ≡ ai (mod mi), i = 1, . . . , t is an IRDCS for [1, n], then x ≡ 2ai (mod 2mi),
i = 1, . . . , t together with x ≡ 1 (mod 2) is an IRDCS for [1, 2n+ 1]. We call this doubling.

(i) Are there infinitely many IRDCS, not counting those obtained from smaller systems
by doubling?

(ii) Is there an IRDCS for [1, n] for all n ≥ 17?
(iii) Are there IRDCS with arbitrarily large values of m1?
(iv) Is there an IRDCS with all mi odd?
(v) Find sharp upper and lower bounds for h =

∑t
i=1(1/mi).

(vi) Given k > 2, is there an IRDCS such that every congruence is satisfied by at least
k numbers in [1, n]?

(vii) Generalize to covering systems for [1, n1]× . . .× [1, nr], r > 1.
Remarks: Myerson, Jacky Poon, and Simpson have another construction producing

infinitely many IRDCS. Given an IRDCS in which n is an odd multiple of 3, the modulus m
covering 1 satisfies m > 2n/3, 3m− n− 1 is not a power of 2, and no modulus mi is a power
of 2, we construct an IRDCS for [1, 3n] with the same properties. As we know of an IRDCS
for [1, 27] satisfying the properties, the construction yields an affirmative answer to (i).

We have examples of IRDCS for [1, n] for all n with 17 ≤ n ≤ 32, and together with a
modification of the doubling procedure this yields an affirmative answer to (ii). There is no
IRDCS with n = 16, so this is a best possible result.

Concerning (v), we can prove 1/2 ≤ h ≤ 3/2, but in all the examples we have found,
.98834 . . . ≤ h ≤ 1.06768 . . ..
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006:14 (Iekata Shiokawa) Let Fn, n = 1, 2, . . ., be the Fibonacci numbers, starting with
F1 = 2. Let ξF (s) =

∏∞
n=1(1− F−s

n )−1. Is ξF (1) rational?

006:15 (Florian Luca and Carl Pomerance) Let U(N) = (Z/NZ)∗ be the multiplicative group
of units modulo N . Show that the number of solutions A, B, C of U(A) ⊕ U(B) ' U(C)
with max(A,B,C) ≤ X is X2+o(1) (the UABC conjecture).
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