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Summary of earlier meetings & problem sets with old (pre 1984) & new numbering.

1967 Berkeley 1968 Berkeley 1969 Asilomar
1970 Tucson 1971 Asilomar 1972 Claremont 72:01–72:05
1973 Los Angeles 73:01–73:16 1974 Los Angeles 74:01–74:08
1975 Asilomar 75:01–75:23
1976 San Diego 1–65 i.e., 76:01–76:65
1977 Los Angeles 101–148 i.e., 77:01–77:48
1978 Santa Barbara 151–187 i.e., 78:01–78:37
1979 Asilomar 201–231 i.e., 79:01–79:31
1980 Tucson 251–268 i.e., 80:01–80:18
1981 Santa Barbara 301–328 i.e., 81:01–81:28
1982 San Diego 351–375 i.e., 82:01–82:25
1983 Asilomar 401–418 i.e., 83:01–83:18
1984 Asilomar 84:01–84:27 1985 Asilomar 85:01–85:23
1986 Tucson 86:01–86:31 1987 Asilomar 87:01–87:15
1988 Las Vegas 88:01–88:22 1989 Asilomar 89:01–89:32
1990 Asilomar 90:01–90:19 1991 Asilomar 91:01–91:25
1992 Corvallis 92:01–92:19 1993 Asilomar 93:01–93:32
1994 San Diego 94:01–94:27 1995 Asilomar 95:01–95:19
1996 Las Vegas 96:01–96:18 1997 Asilomar 97:01–97:22
1998 San Francisco 98:01–98:14 1999 Asilomar 99:01–99:12
2000 San Diego 000:01–000:15 2001 Asilomar 001:01–001:23
2002 San Francisco 002:01–002:24 2003 Asilomar 003:01–003:08
2004 Las Vegas (current set) 004:01–004:17

[With comments on 001:23, 002:12, 002:18, and 002:22]

COMMENTS ON ANY PROBLEM WELCOME AT ANY TIME
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Comments on earlier problems

001:23 (Aaron Meyerowitz) Consider sets of integers n1 < n2 < n3 . . . < nk with square
product. Let t(n, k) be minimal so that there is a solution with n1 = n and nk = n + t(n, k).
Let T (n, k) be the smallest value of t(n, j) with j ≥ k. Is there a C with t(n, 3) < Cn1/5

infinitely often? Is there a C ′ with T (n, 4) < C ′n1/4 infitely often?
Remarks: 1. If n = rs2 with r square-free then t(n, 2) = r(2s + 1) > n1/2.
2. There is a parametric family with t(n, 3) < 5n1/4.
Remark: (new) Sam Wagstaff spoke on joint work with Chaogui Zhang in which they

established lim inf T (n, 3)/nα ≤ 1 for all positive α, and the stronger result

lim inf
T (n, 3)

exp
(
(log 2n)1/6 + (log 2n)5/6+ε

) ≤ 1

for any positive ε.

002:12 (Doug Iannucci) Let D be the multiplicative function on the positive integers satis-
fying D(pa) = apa−1 for all primes p.

1. Is the sequence n, D(n), D(D(n)), . . . bounded for all n?
2. Does any such sequence of iterates lead to a cycle of length 7?
Remarks: The sequence beginning with n = 31124 has been pursued to 48 million

iterations without the appearance of a cycle. Also, no cycle has been found for n = 2392.
Cycles of length k are known only for k = 8 and 1 ≤ k ≤ 6.

Solution: (Kevin G. Hare and Soroosh Yazdani) The second question is settled in
Kevin G. Hare, Soroosh Yazdani, Further results on derived sequences, J. Integer Seq. 6 (2003) #2, article

03.2.7, 7pp. (electronic), MR 1988646 (2004g:11015).

The authors describe explicitly how to construct cycles of arbitrary length.

002:18 (Neville Robbins) For p prime, let f(p) = p−1
2 − φ(p − 1), so f(p) is the number

of quadratic non-residues that aren’t primitive roots. Are there infinitely many positive
integers r such that f(p) = r has no solution?

Solution: (Florian Luca and Gary Walsh) The solution, reported in last year’s problem
set, has now appeared as

Florian Luca, P. G. Walsh, On the number of nonquadratic residues which are not primitive roots, Colloq.

Math. 100 (2004), #1, 91–93, MR2079349.

002:22 (John Selfridge) The number 82818079 . . . 1110987654321 (obtained by concatenating
the numbers 82, 81, . . . , 1) is prime. Is there any other n for which the number obtained by
concatenating n, n − 1, . . . , 1 is prime? Is there any n for which concatenating the numbers
1, 2, . . . , n gives a prime?

Remark: In
Ralf Stephan, Factors and primes in two Smarandache sequences, Smarandache Notions J. 9 (1998) 4–10,

available at http://me.in-berlin.de/˜rws, it is claimed that the given prime is the only one
for n up to 750, and that there are no primes in the other sequence for n up to 840.

Remarks: (new) At http://www.primepuzzles.net/puzzles/puzz 008.htm it says that as
of 20 June 1998 Yves Gallot had found that in the forward sequence there is no prime up to
n = 8000.
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At MathWorld (http://mathworld.wolfram.com/ConsecutiveNumberSequences.html) it
is reported that Fleuren (1999) verified that the absence of primes in the forward sequence up
to n = 200, a result extended to the first 19700 terms by Weisstein on 8 June 2004. “This is
roughly consistent with simple arguments based on the distribution of primes which suggest
that only a single prime is expected in the first 15000 or so terms.”

It also reports that as of the same date Weisstein has found that the 82nd term is the
only prime in the first 19100 terms of the backward concatenation. The problem is also
mentioned in UPINT, A3.

Problems Proposed 17 & 19 Dec 2004

004:01 (James Buddenhagen, via Gerry Myerson) Can a square be expressed as a sum of
cubes of two primes in two different ways? That is, does n2 = a3 + b3 = c3 + d3 have any
solutions in positive integers, a, b, c and d all prime, { a, b } 6= { c, d }?

Remarks: It’s easy to see that if there is a solution then the primes are all odd and
distinct. If the conditions are weakened at all then moderate-sized solutions exist, e.g.,

2282 = 113 + 373

shows that a square can be the sum of cubes of two primes,

313 + 18673 = 3973 + 18613

shows that a number can be the sum of cubes of two primes in two different ways, and

779762 = 10263 + 17103 = 2283 + 18243

shows that a square can be the sum of two cubes in two different ways.
Peter Montgomery notes that if p and q are odd primes with p + q ≡ 0 (mod 3) and

p3 + q3 is a square then p and q are 6A2B2 ± (A4 − 3B4) for some integers A, B, and
p3 + q3 = 36A2B2(A4 + 3B4)2.

004:02 (David Terr) A superior highly composite number is a positive integer N that max-
imizes N−ed(N) for some e > 0; here, d(N) is the number of divisors of N . Let Nn be
the nth such number. Then Nn = πnNn−1 for some prime πn. Let Dn = d(Nn) =∏n

m=1(1 + k−1
m ) where km is the πm-adic valuation of Nm. πn and kn are chosen so that

en = log(1 + k−1
n )/ log πn is monotonically decreasing. Let un = Dn−1/N

en
n−1 = Dn/Nen

n .
Find asymptotic formulas for Nn, Dn, en and un.

Remarks: A reference is
S. Ramanujan, Highly composite numbers, Proc. London Math. Soc. (2) 14 (1915), 347–409.

Further work of Ramanujan on this problem was first published many years later;
S. Ramanujan, Highly composite numbers, Ramanujan J. 1 (1997), no. 2, 119–153, MR1606180 (99b:11112).

Jeff Lagarias also suggests his paper,
J. Lagarias, An elementary problem equivalent to the Riemann hypothesis, Amer. Math. Monthly 109 (2002),

no. 6, 534–543, MR1908008 (2003d:11129),

which is also available on the preprint server at math.NT/0008177.
The superior highly composite numbers form sequence A002201 in the On-Line Encyclo-

pedia of Integer Sequences. The first few terms are given there as 2, 6, 12, 60, 120, 360, 2520,
5040, 55440, 720720, 1441440, 4324320, 21621600, 367567200, 6983776800, 13967553600,
321253732800, 2248776129600, 65214507758400, 195643523275200.
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004:03 (Carl Pomerance and Greg Martin) Carmichael’s function λ(n) is the maximal order
of an element of (Z/nZ)∗. Let `(n) be the number of iterations of λ required to take n to 1
(e.g., λ(100) = 20, λ(20) = 4, λ(4) = 2, λ(2) = 1, so `(100) = 4). Is it true that `(n) is of
order of magnitude log log n for almost all n?

Do powers of 3 maximize `(n)? It’s easy to see that `(3n) = n, so the question is whether
`(m) > n implies m > 3n.

Remark: This isn’t true for small n, e.g., 47 < 35 but `(47) = 6. Note that 47 is at the
end of the Cunningham chain 2, 5, 11, 23, 47 of primes, each of which is one greater than
twice its predecessor. Similarly, `(2879) = 10 and 2879 < 39.

004:04 (Ron Graham and Kevin O’Bryant) Suppose 1 ≤ u1 < u2 < . . . < un < q are
integers with gcd(uj , q) = 1 for all j. Let v1, v2, . . . , vn be arbitrary integers, and let f(x) =∑n

j=1 xvj /(1− xuj ). Prove that if f(e2πi/q) = 0 then
∑n

k=1 uk ≥ q.

A stronger conjecture is that if no subset of the uj sums to a multiple of q then f(e2πi/q) =
0 implies f(e2πij/q) = 0 for 1 ≤ j ≤ q − 1.

Remarks: The cases n = 1 and n = 2 have been settled, but n ≥ 3 remains open. Also,
if q is prime then vanishing at e2πi/q implies vanishing at e2πij/q for 1 ≤ j ≤ q − 1, so only
composite values of q are of interest. Joe Buhler has found that

1
1− x

+
x5

1− x2
+

x10

1− x4
+

x10

1− x11
+

x5

1− x13
+

1
1− x14

vanishes at e2πi/15 but not at e2πi·3/15, but there is no contradiction here since there are
subsets of the uj that sum to 15.

References on vanishing sums of roots of unity include
J. H. Conway, A. J. Jones, Trigonometric Diophantine equations (On vanishing sums of roots of unity), Acta

Arith. 30 (1976), no. 3, 229–240, MR0422149 (54 #10141),

T. Y. Lam, K. H. Leung, On vanishing sums of roots of unity, J. Algebra 224 (2000), no. 1, 91–109, MR1736695

(2001f:11135),

Bjorn Poonen, Michael Rubinstein, The number of intersection points made by the diagonals of a regular

polygon, SIAM J. Discrete Math. 11 (1998), no. 1, 135–156 MR1612877 (98k:52027).

004:05 (Syrous Marivani) Let f(n) be the nth Fibonacci number (with f(0) = 0, f(1) = 1).
For p prime, let p0 be the least positive n such that f(n) ≡ 0 (mod p). Characterize the
primes for which p0 = p + 1; p0 = p− 1; p0 divides (p + 1)/3; p0 divides (p− 1)/4; p0 divides
(p− 1)/3.

Remarks: Neville Robbins points out that p0 is often written ω(p) and is called an
entry point. Moreover, there is considerable literature on ω(p). Asking for primes p with
ω(p) = p ± 1 is much like asking for primes p with a given number (say, 2) as a primitive
root, and most likely it is very difficult to say anything about it.
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004:06 (Ben Kane and Lawrence Sze) Let s and t be relatively prime positive integers. Let
P be a set of positive integers with the property that if n is in P and n ≥ s then n − s is
in P , also if n is in P and n ≥ t then n− t is in P . Prove that∑

n in P

n−#(P )(#(P )− 1)/2 ≤ (s2 − 1)(t2 − 1)/24

with equality if P = {n > 0 : n = as + bt → ab < 0 }.
Remarks: Note that P is not allowed to contain zero, so it cannot contain any integer

as + bt with a and b both non-negative, so it is in any event a subset of the set that yields
equality. There is an equivalent statement of the conjecture in the language of partitions; the
maximal partition that is both an s-core and a t-core is of size (s2 − 1)(t2 − 1)/24.

If P is closed under subtraction of three relatively prime integers s, t, u, no conjecture
concerning

∑
n in P n is offered.

004:07 (Bart Goddard) Let ν = (−1 +
√
−d)/2 with d positive, squarefree, and d ≡ 3

(mod 4), so that Od = { a + bν : a, b in Z } is the ring of integers of Q(
√
−d). Let N be the

usual norm on Q(
√
−d). Find a, b such that N(a + bν) = 10a + b.

Remarks: If d = 3 then N(3 + 7ν) = 37 and N(4 + 8ν) = 48; it was these digital
coincidences that suggested the problem. If, as in these examples, it is assumed that a and b
are digits, then it is not difficult to find all solutions; presenting the solutions in the form
(d, N(a+bν)), they are (3, 37), (3, 48), (19, 63), (19, 73), (43, 11), (115, 41), (115, 71), (123, 51),
and (123, 61).

It is also not hard to find the solutions of N(a + b
√
−d) = 10a + b in digits a, b with

d positive, squarefree, and d 6≡ 3 (mod 4). In the form (d, N) they are (10, 11), (10, 91),
(17, 21), (17, 81), (22, 31), (22, 71), and (26, 51). Allowing d ≡ 3 (mod 4) permits N(4 +
3
√
−3) = 43 and N(6 + 3

√
−3) = 63. The real quadratic fields yield no solutions in digits.

One suggested extension to the problem is to ask for solutions of N(a + bν) = 10ka + b
with 0 < b < 10k and a > 0. For example, with d = 3, this permits N(14 + 7ν) = 147.
Another suggestion is to look for solutions of N(

∑n
i=1 aiνi) =

∑n
i=1 ai10n−i with ν1, . . . , νn

an integral basis for a number field of degree n, and a1, . . . , an digits.

004:08 (Carrie Finch and Carl Pomerance) Let Sk be the collection of sets of k distinct
positive integers. For S in Sk let n(S) be the number of subsets U of S such that the
polynomial 1 +

∑
e in U xe is reducible. Find f(k), the maximum of n(S) over all S in Sk.

Remarks: f(2) = 3, since 1 + x3, 1 + x15 and 1 + x3 + x15 are all reducible. For k ≥ 3,
f(k) < 2k − 1 since at least one of 1 + xa + xb, 1 + xa + xc and 1 + xb + xc is irreducible.

004:09 (Lenny Fukshansky) A piece of paper with N creases in it corresponds to a binary
word of length N by writing 0 for each valley and 1 for each hill. Can we define a set of
folding protocols in such a way that the resulting collection of binary words forms a code,
that is, a subspace of the F2-vector space of all binary words of length N? Can we define a
set of folding protocols in such a way that the resulting collection of binary words forms a
code of large minimal distance, that is, one in which each non-zero word has many 1s?
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004:10 (Gennady Bachman) Let fn(z), n = 1, 2, . . ., be defined by

f1(z) = z(e−z − 1), fn+1(z) = z(efn(z) − 1).

Define ak(n), k = 1, 2, . . ., n = 1, 2, . . ., by fn(z) = zn
∑∞

k=1 ak(n)zk. Define ak for k =
1, 2, . . ., by ak = limn→∞ ak(n). Let A(q, b) =

∑
k≡b (mod q) ak. Is it true that A(q, b) = 0 for

all b and q?
Remark: There are non-trivial sequences b1, b2, . . . such that

∑
k≡b (mod q) bk = 0 for

all b and q.

004:11 (Matthias Beck and Eric Mortenson) Let P be the convex polytope defined by

P := {x ∈ Rd
≥0 : Ax = b}

where
A := (c1 . . . cd) ∈ Zm×d, b ∈ Zm.

Define the following generating functions for the number of integer points in dilates of the
closed and open polytope, respectively, as

H(q) :=
∑
t≥0

#
(
tP ∩ Zd

)
qt = Ω

1

(1− qλb)
∏d

k=1(1−
1

λck
)

and

H∗(q) :=
∑
t>0

#
(
t int(P ) ∩ Zd

)
qt = Ω

qλb−1

(1− qλb)
∏d

k=1(1−
1

λck
)λck

.

Here Ω denotes MacMahon’s Ω-operator (see MacMahon’s Combinatory Analysis and the
MacMahon’s Partition Analysis series of papers by Andrews & co-authors), which computes
the constant term of a multivariate Laurent series in the components of λ, λ = (λ1, . . . , λm).
We use the vector notation λv = λv1

1 · · ·λvm
m . (The Omega identities follow quickly from

setting up an Euler-style generating function.)
The fundamental Ehrhart-Macdonald Reciprocity Theorem says that

H

(
1
q

)
= (−1)d−rank(A)+1H∗(q)

In terms of the Omega operator...

Ω
(−1)d−rank(A)+1

(1− λb

q )
∏d

k=1(1−
1

λck
)

= Ω
qλb−1

(1− qλb)
∏d

k=1(1−
1

λck
)λck

Can this identity be proved from scratch, i.e., through Omega calculus?
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004:12 (Martin Juráš) For n ≥ 3 and 3 ≤ t ≤ 6n− 6 let

Bt = { (i, j, k) : 0 ≤ i < j < k ≤ 2n− 1 and i + j + k = t }.

Let Vt be the real vector space with basis Bt. Define the linear map D(t) : Vt → Vt+1 by
D(t)

(
(i, j, k)

)
= (i+1, j, k)+(i, j +1, k)+(i, j, k +1), taking (i, i, k) = (i, j, j) = (i, j, 2n) = 0

in Vt+1. Prove that D(t) is injective for 3 ≤ t ≤ 3n− 1.
Remarks: This is simple to prove for 3 ≤ t ≤ 2n−1, and has been verified by computer

for n ≤ 100.

004:13 (Gary Walsh) (The diophantine n-tuples problem) There are many known examples
of sets of 6 (distinct, positive) rational numbers for which the product of any two, increased
by 1, is a square (of a rational). Is there such a set with more than 6 elements? What is the
upper bound for the size of such a set?

Andrej Dujella’s website, http://www.math.hr/˜duje/dtuples.html, is an important re-
source for this problem, which is Problem D29 in UPINT.

004:14 (Pante Stanica) Let f be a rotation-symmetric function from Fn
2 to F2, that is,

f(x1, . . . , xn) = f(x2, . . . , xn, x1). There are functions g such that fg = 0. Given f , how
do you find such a non-zero g of minimal degree? Of course for any given f this is a finite
problem; the goal is to find an efficient algorithm.

004:15 (John Baldwin, Abe Kunin, Lawrence Sze) Show that

12 + 22 + 32 + 42 + 9n = a2
1 + a2

2 + a2
3 + a2

4

is solvable in integers a1, a2, a3, a4 with a2
i ≡ i2 (mod 9), i = 1, 2, 3, 4, only for n not of the

form (4k − 10)/3, k ≥ 2—equivalently, only when 30 + 9n is not of the form 3 · 4k, k ≥ 2.
Solution: (Peter Montgomery) If the left side, N , is a multiple of 8 then each ai must

be even. Division by 4 yields an expression for N/4 as a sum of four squares, still satisfying
the congruences modulo 9. But there is no solution for N = 48, hence, none for N = 3 · 4k,
k ≥ 2.

Peter also supplies a proof that there is a solution when 30+9n is not of the form 3 · 4k.
The proof is elementary but a bit too long for inclusion here.

004:16 (Kevin O”Bryant, Dennis Eichhorn, Josh Cooper) Let A and B be sets of nonnegative
integers, both containing 0, and satisfying the formal power series identity,( ∑

a in A

qa
)( ∑

b in B

qb
)
≡ 1 (mod 2).

Is it true that if A is uniformly distributed modulo every power of 2 and its indicator function
is not eventually periodic, then B has positive density?

Remark: If so, then the open question of whether the set of n for which the partition
function p(n) is odd has positive density would be settled in the affirmative, since the sets

A = {n(3n + 1)/2 : n in Z }, B = {n : p(n) is odd }

satisfy the hypotheses by Euler’s Pentagonal Number Theorem.
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004:17 (Helen Grundman and E. A. Teeple) For b ≥ 2, and 0 ≤ ai < b, define
S3,b : Z+ → Z+ by

S3,b

(
n∑

i=0

aib
i

)
=

n∑
i=0

a3
i .

If Sm
3,b(a) = 1 for some m ≥ 0, then a is a cubic b-happy number.
A d-consecutive sequence is an arithmetic sequence with constant difference d.
We conjecture that, in general, if d = gcd(6, b − 1), there exist arbitrarily long finite

sequences of d-consecutive cubic b-happy numbers.
The conjecture is known to be true for small d (certainly up to d = 12), but the question

is how to prove it in general, for all b (if, indeed, it is true).
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