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Comments on earlier problems

94:23 (Zachary Franco) For which t does ta + tb + 1 = n2 have a solution in positive
integers a, b, n ? It’s clear that if (3|(t − 1)) = −1, then no solutions exist.

Remarks: It was conjectured that for t = 2 the only solutions were (a, b, n) = (5, 4, 7)
and (2k, k + 1, 2k + 1) for k = 1, 2, 3, . . ., but Robert Styer, in a 94-12-30 email, gave
(9, 4, 23), and said that there were no other sporadic solutions with n ≤ 220.

The problem was emailed to Reese Scott and Benne de Weger. Reese Scott shows
that if a is even, only the infinite family of solutions exists. If a is odd and a ≤ 3b − 3,
then there are only the two sporadic solutions. If a is odd and a > 3b−3, he hadn’t solved
it at the time of writing, but if a solution exists, a > 40.

de Weger notes that the following are relevant:
Frits Beukers, On the generalized Ramanujan-Nagell equation I, II, Acta Arith., 38(1980/81) 389–410,

39(1981) 113–123; MR 83a:10028a,b.

namely, for the R-N equation 2a + D = n2, Beukers proves a ≤ 435 + 10 ln |D|/ ln 2, so for
the present equation a ≤ 435 + 10b.

Reese Scott said that the methods he used for t = 2 apply for t prime and, for prime p,
pa + pb + 1 = n2 has no solutions unless p ≡ 7 mod 8, and there are no solutions unless a
is odd and b is even, and no solutions if a ≤ 3b. Hence he shows that n > 2 · 108.

Remark: (new) Gary Walsh notes that Florian Luca has a fairly general result on
this problem. A preliminary version, “The diophantine equation x2 = pa ± pb + 1,” is
available. Gary writes, “The main point is that the hypergeometric method (used by
Beukers, Bennett-Bauer, and others) is not always necessary, and in the case that t is
prime, a fairly simple argument using only basic algebraic number theory suffices.” See
also 002:21.

001:13 (Chris Smyth) What is the greatest degree of an algebraic number whose conjugates
span a 4-dimensional vector space over the rationals? It is known that the degree cannot
exceed 1152, and an example of degree 384 is known.

Solution: Noam Elkies writes, “The upper bound of 1152 is attained. Let G be the
1152-element subgroup of GL4(Q) generated by the signed coordinate permutations and
the scaled Hadamard matrix [1, 1, 1, 1; 1, 1,−1,−1; 1,−1, 1,−1; 1,−1,−1, 1]/2. This group
is also known as the Weyl group of F4. Let G act by linear transformations on x1, x2, x3,
x4 and thus on the polynomial ring Q[x1, x2, x3, x4]. Then it is known that the G-invariant
subring of Q[x1, x2, x3, x4] is a polynomial ring with generators of degrees 2, 6, 8, 12, call
them A2, A6, A8, A12. Then Q(x1, x2, x3, x4) is a normal extension of Q(A2, A6, A8, A12)
with Galois group G. For (c1, c2, c3, c4) outside the union of finitely many hyperplanes
in Q4, this extension is generated by X := c1x1 + c2x2 + c3x3 + c4x4, and X has 1152
conjugates all in a four-dimensional space over Q. By the Hilbert irreducibility theorem
there exist rational a2, a6, a8, a12 such that when we substitute ai for the corresponding Ai

we obtain an extension of Q with the same Galois group G. The resulting algebraic
number X satisfies the criterion of the problem.
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“Indeed it is known that of the N smallest choices for (a2, a6, a8, a12) all but o(N)
work as N → ∞; see for instance Chapter 3 of Serre’s Topics in Galois Theory for Hilbert
irreducibility and its applications to this kind of inverse Galois problem.”

Remark: Much can be said about the analogous question for dimensions other than 4.
The interested reader is referred to Chris Smyth for details.

Remark: (new) Chris Smyth reports that a paper arising from this problem has been
mounted on arXiv, at http://arXiv.org/abs/math.NT/0308069.

001:16 (Hugh Edgar) Does 1 + q + . . . + qx−1 = py have any solutions with p and q odd
primes, x > 3 and y > 1 other than (p, q, x, y) = (11, 3, 5, 2)?

Remarks: 1. Hugh offers $50 (U.S.) for the solution to this problem.
2. This problem appears, without the monetary offer, as D10 in UPINT.
3. Florian Luca notes that there are several recent papers on the equation

1 + q + . . . + qx−1 = py by Bugeaud, Mignotte and others, e.g.,
Y. Bugeaud, G. Hanrot, M. Mignotte, Sur l’équation diophantienne (xn−1)/(x − 1) = yq

, III, Proc.

London Math. Soc. (3) 84 (2002) 59–78.

Remark: (new) Florian Luca also points out the paper,
T. N. Shorey, Some conjectures in the theory of exponential Diophantine equations, Publ. Math. Debrecen

56 (2000) 631–641, MR 2001i:11038.

001:22 (Gary Walsh) Is there a heuristic that suggests that (x3 − 1)(y3 − 1) = z2 has
infinitely many solutions with integers x, y, and 1 distinct?

Remark: Noam Elkies writes, “The usual heuristics suggest that there should be only
finitely many solutions . . . .”

Remark: (new) Walsh notes that for fixed d the equation (x3 − 1)(y3 − 1) = −dz2

may have infinitely many solutions, citing the following construction due to Frits Beukers.
Fix d > 1 such that u2 − dv2 = −1 has a solution (hence, infinitely many solutions); then
let x = 1 + 3u2, y = 1− 3dv2 (note that x + y = −1, whence x2 + x + 1 = y2 + y + 1), and
z = 3uv(x2 + x + 1).
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Problems Proposed 16 & 19 Dec 2002

002:01 (Carl Pomerance) Let S be an open subset of the positive reals, closed under
addition, and not containing 1. Let m be the dx/x measure, that is, m(A) =

∫
1A(x) dx

x
where 1A is the characteristic function of A. Is it true that m

(
S ∩ (0, t)

)
≤ t for all t,

0 < t ≤ 1? What is the right conjecture for Lebesgue measure?
Remarks (about the dx/x version): Seva Lev proves m

(
S ∩ (0, t)

)
≤ 2 log(1 + t)

using work of Dixmier on an extremal version, due to Erdős and Graham, of the Frobenius
postage stamp problem. Hendrik Lenstra and Peter Stevenhagen construct, for given
ε and t, a set S(ε,t) with m

(
S(ε,t) ∩ (0, t)

)
> t − ε.

Solution: Carl Pomerance reports that Daniel Bleichenbacher at Bell Labs has solved
the problem, obtaining strict inequality. Also, that Lev and Bleichenbacher have the upper
bound t2 for the Lebesgue measure version of the problem (email from Seva Lev claims only
a solution for t ≤ t0, where t0 is about 0.1), with the example S = (1/(n+1), 1/n), t = 1/n
showing that this is essentially best possible. Pomerance continues, “Bleichenbacher’s proof
uses duality in linear programming. It is hoped now that Bleichenbacher’s solution to the
problem will lead to a version of the new primality test which can get by with less esoteric
analytic tools than the theorems of Bombieri, Friedlander, and Iwaniec.”

002:02 (John Jaroma) The difference equation xn+1 = x2
n − 2 has the general solution

xn = c2n

+ c−2n

where c is given by x0 = c + c−1. For what integer values of b other than
b = 0 and b = −2 can one solve xn+1 = x2

n + b explicitly?
Remarks: Peter Montgomery and David Terr point to the literature on the Pollard

rho method of factorization, which relies on this recurrence. Montgomery also points to
its relevance to the definition of the Mandelbrot set.

002:03 (Neville Robbins) Estimate
∑

#{ g : gp−1 ≡ 1 (mod p2) } where the sum is over
all primes p ≤ X and over primitive roots g (mod p) with 0 < g < p.

Note that if p is an odd prime and g is a primitive root (mod p) then it is also
a primitive root (mod pn) for all n unless gp−1 ≡ 1 (mod p2), so we are counting the
number of primitive roots (mod p) in (0, p) that fail to be primitive roots modulo higher
powers of p.

Remark: All solutions to gp−1 ≡ 1 (mod p2), 2 ≤ g ≤ 99, 3 ≤ p < 232, are given in
P. L. Montgomery, New solutions of ap−1 ≡ 1 (mod p2), Math. Comp. 61 (1993) 361–363, MR

94d:11003.
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002:04 (David Bailey) Is there a Bailey-Borwein-Plouffe formula for arctan 2/7, that is, a
formula arctan 2/7 =

∑∞
k=0

p(k)
2kq(k)

where p and q are polynomials with integer coefficients,
p of lower degree than q, and q has no positive integer zeros? Such formulas are known for
arctan a/b for all fractions a/b “simpler” than 2/7.

Solution: David Bailey writes that the problem has now been solved in the negative.
He gives the reference,

Jonathan M. Borwein, David Borwein, William F. Galway, Finding and excluding b-ary Machin-type BBP

formulae, http://www.cecm.sfu.ca/Preprints03/preprints03.html

002:05 (Hugh Edgar) Are there examples, other than 1+5+52 = 1+2+22 +23 +24 = 31,
of 1 + p + p2 + . . . + px = 1 + q + q2 + . . . + qy = r with p, q, and r distinct primes?

Remark: Peter Montgomery notes 1 + 2 + 22 + . . . + 212 = 1 + 90 + 902 = 8191, but
of course 90 is not prime.

002:06 (Hugh Edgar) Do there exist distinct primes p and q such that 2p ≡ 3 (mod q)
and 2q ≡ 3 (mod p)?

Remark: If so, then n = pq is a solution of 2n ≡ 3 (mod n). Only three solutions to
this congruence are known. A reference is Joe Crump’s post of 18 September 2000 to the
Number Theory list, archived at http://listserv.nodak.edu/archives/nmbrthry.html

002:07 (Kevin O’Bryant) Let Bα(k) = #{ 1 ≤ q < k : {qα} < {kα} } for α real and
irrational. Let Aα be the range of Bα.

1. Is it true that Aα is never the full set of non-negative integers? It seems that
B√

2(k) is never 7, B−φ(k) is never 3 (where φ is the golden ratio), and B1/e(k) is never 22.
2. Is it true that for each α there is a positive m such that Bα(k) = m infinitely often?
3. Is it true that if the continued fraction for α has bounded partial quotients then

the density of Aα exists and is strictly between 0 and 1?
Solution (to question 1, by O’Bryant, Dennis Eichhorn, and Josh Cooper): For a

given α, suppose that {qα} < {q′α} are the two smallest values among {α}, {2α}, . . . , {nα}.
Then B(q) = 0, B(2q) = 1, . . . , B(aq) = a − 1, where a = [{q′α}/{qα}]. Thus if
the odd-numbered partial quotients of α are unbounded then Bα takes on every non-
negative integer value infinitely often. This answers question 1 in the negative, while
shedding no light on whether (for example) it is true that B√

2(k) is never 7. However,
B1/e(1061455212978359) = 22.

With Simon Byrne, an undergraduate at Macquarie, your editor has proved that
B−φ(k) is never 3 (where φ is the golden ratio).

Remark: Josh Cooper, using the theory of quasirandom permutations, shows that for
every α and every n every subinterval of [0, n] of length O(

√
n log n) contains an element

of Aα. See math.ucsd.edu/˜jcooper.
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002:08 (Doug Iannucci) Are there infinitely many pairs of consecutive integers, each a
product of two primes?

Remarks: 1. Yes, if any of a number of special cases of Schinzel’s Hypothesis H is
true. For example, if 2x − 1 and 3x − 1 are both prime then 6x − 2 = 2(3x − 1) and
6x − 3 = 3(2x − 1) are such a pair of consecutive positive integers.

2. Carl Pomerance suggests seeing whether Chen’s Theorem is applicable.
3. David Terr refers to Carlos Rivera’s website, www.primepuzzles.net, but I didn’t

see anything relevant there.

002:09 (David Terr) A floor exponential prime sequence (FEPS) is a sequence of primes
p1, p2, . . . , pr for which there is a real number θ > 2 such that pj = [θj ] for j = 1, 2, . . . , r.
Are these conjectures true:

1. There is a FEPS of length r for every r.
2. There is no FEPS of infinite length.
3. Let Πr(x) be the number of FEPS of length r with θ ≤ x. Then Πr(x) is asymptotic

to (x/ log x)r/r! as x goes to infinity.
4. Let Π(x) =

∑
r Πr(x) be the number of FEPS of all lengths with θ ≤ x. Then

log Π(x) is asymptotic to x/ log x.
5. For a fixed x ≥ 2, the distribution of lengths of FEPS with θ < x is asymptotically

Poisson with mean and variance x/ log x.

002:10 (Kiran Kedlaya) Fix a positive integer k, and fix integers a1, b1, . . . , ak, bk. Let
fi(x) = aix + bi, i = 1, 2, . . . , k. Then

#{x : −N ≤ x ≤ N, fi(x) squarefree for all i } = cN + ε(N)

where c =
∏

p
1
p2 #{x : 0 ≤ x ≤ p2 − 1, fi(x) �≡ 0 (mod p2) for all i } (the product is over

all primes) and ε(N) = o(N). See
George Greaves, Power-free values of binary forms, Quart. J. Math. 43 (1992) 45–65, MR 92m:11098,

C. Hooley, On the power free values of polynomials, Mathematika 14 (1967) 21–26, MR 35 #5405.

Is there an explicit bound, using the methods of these papers or otherwise, for |ε(N)|
in terms of N, a1, b1, . . . , ak, bk, and c?

002:11 (Leanne Robertson) Are these conjectures true:
1. Any tree with n vertices can be labeled with the integers 1, 2, . . . , n in such a way

that adjacent vertices have coprime labels.
2. Any tree with n vertices, n < 17, can be labeled with any n consecutive integers

in such a way that adjacent vertices have coprime labels.
Remarks: 1. It is known that the first conjecture is true for n ≤ 94.
2. If true, then the second conjecture is best possible. None of the 17 consecutive

numbers 2184, 2185, . . . , 2200 is relatively prime to all 16 of the others, so the “star”
consisting of one vertex joined to each of 16 others can’t have a coprime labelling with
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these numbers. Deciding the second conjecture is a finite problem, as there are only finitely
many trees on 16 or fewer vertices, and only finitely many “coprimeness patterns” among
sets of 16 or fewer consecutive integers.

002:12 (Doug Iannucci) Let D be the multiplicative function on the positive integers
satisfying D(pa) = apa−1 for all primes p.

1. Is the sequence n, D(n), D(D(n)), . . . bounded for all n?
2. Does any such sequence of iterates lead to a cycle of length 7?
Remarks: The sequence beginning with n = 31124 has been pursued to 48 million

iterations without the appearance of a cycle. Also, no cycle has been found for n = 2392.
Cycles of length k are known only for k = 8 and 1 ≤ k ≤ 6.

002:13 (Lenny Jones) A finite group G is a perfect order subsets (POS) group if for every d
such that G contains an element of order d the number of elements of order d in G divides
the order of G.

1. Let G be an abelian POS whose order is not a power of 2. Must 3 divide the order
of G?

2. Are there any simple non-abelian POS groups?
3. An abelian POS group (Z2)t × M with M of odd order is said to be minimal if

there is no proper subgroup M ′ of M such that (Z2)t × M ′ is a POS group. Are there
any minimal POS groups other than (Z2)11 × Z3 × Z5 × (Z11)2 × Z23 × Z89 that have a
non-cyclic Sylow p-subgroup for an odd prime p?

Remark: POS groups are discussed in
Carrie E. Finch, Lenny Jones, A curious connection between Fermat numbers and finite groups, Amer.

Math. Monthly 109 (2002) 517–524.

002:14 (Lenny Jones) Does σ
(∏k

i=1 pai
i

)
=

∏k
i=1 pi, ai ≥ 0 have infinitely many solutions

in primes p1, . . . , pk? One solution is σ(32 × 132 × 610) = 3 × 13 × 61.

002:15 (Lenny Jones) Given primes p1 < p2 < . . . < pk−1 such that pi + 1 divides
p2
1p

2
2 × . . .× p2

i−1 for i = 2, . . . , k − 1, does there always exist a prime pk > pk−1 such that
pk + 1 divides p2

1p
2
2 × . . . × p2

k−1?

002:16 (Hugh Edgar) Minimize K such that σ(n) ≤ Hn + KeHn log Hn for all integer
n ≥ 1. Here Hn = 1 + 1

2 + 1
3 + . . . + 1

n .
Remark: Greg Martin has achieved K = 1.0254. See also
Jeffrey C. Lagarias, An elementary problem equivalent to the Riemann Hypothesis, Amer. Math. Monthly

109 (2002) 534–543.

002:17 (Hugh Edgar) Find all integral solutions of x3 + y3 + z3 = 3.
Remark. The solutions (1, 1, 1) and (4, 4,−5) are known.
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002:18 (Neville Robbins) For p prime, let f(p) = p−1
2 − φ(p − 1), so f(p) is the number

of quadratic non-residues that aren’t primitive roots. Are there infinitely many positive
integers r such that f(p) = r has no solution?

002:19 (Peter Montgomery) As Bruce Reznick pointed out, if x1, . . . , x4 are complex
numbers and

∑
xi =

∑
x2

i = 0 then
∑

x5
i = 0. What can be said about non-commutative

rings in which the same conclusion holds?
Remark: Montgomery shows that there are counterexamples in the quaternions, e.g.,∑

xi =
∑

x2
i = 0 �=

∑
x5

i if x1 = 3, x2 = 1+
√

2(i−j), x3 = 1+
√

2(j−k), x4 = 1+
√

2(k−i).
He also shows that in any ring that contains the field of 8 elements there is a counterexample
based on the four roots of x4 + x2 + x = 0 in the field.

002:20 (David Moulton) We consider sequences b0, b1, . . . of positive integers such that
every positive integer can be written as

∑r
ajbj for some r and some non-negative integers

a0, . . . , ar. We consider the effect that conditions on the coefficients a0, a1, . . . have on
the allowable sequences b0, b1, . . .. The conditions on coefficients we consider are given
as n-tuples of non-negative integers; the condition (c1, . . . , cs) means that for all i it is
forbidden to have ai ≥ c1 and . . . and ai+s−1 ≥ cs. A sequence may be subject to one or
more such conditions.

1. For which sequences and conditions will every positive integer have a unique rep-
resentation?

The greedy sequence corresponding to a given set of conditions is the sequence in
which, having chosen b0, b1, . . . , bi−1, we choose bi as large as possible.

2. For which sets of conditions does the greedy sequence satisfy a (constant-coefficient,
linear) recurrence? How can we determine the recurrence, if any, from the conditions? Does
the greedy sequence for { (4), (1, 1) } satisfy a recurrence?

3. Is there a sequence such that every positive integer has a unique representation but
the sequence satisfies no recurrence?

4. What is the fastest growth rate possible for a sequence subject to given conditions?
5. Under what circumstances can a non-greedy sequence for a given set of conditions

grow faster than the greedy sequence for those conditions?
6. Given two sets of conditions, one a proper subset of the other, is it possible that

the greedy sequence for the larger set grows faster than that for the smaller set?
Remarks: 1. Here are some illustrations. The greedy sequence for { (3), (1, 1) } is the

Lucas sequence 1, 3, 4, 7, 11, 18, . . .. The representations are not unique. For example,
6 = 2b0 + b2 = 2b1. The greedy sequence for { (3), (1, 1), (0, 2) } is also the Lucas se-
quence, but now the representations are unique (e.g., 6 = 2b1 is no longer permitted). The
conditions { (3), (1, 1) } also permit the non-greedy sequence 1, b1, 3, b3, 9, b5, 27, . . ., where
b1, b3, b5, . . . are arbitrary, and this sequence grows faster than the Lucas sequence.

The greedy sequence for { (4), (1, 1) } begins 1, 4, 5, 9, 14, 23, 37, which satisfies the
recurrence an = an−1 + an−2, but then b7 = 148.

8



2. Kevin O’Bryant writes that
Aviezri S. Fraenkel, Systems of numeration, Amer. Math. Monthly 92 (1985) 105–114, MR 86d:11016

deals with some of these questions.

002:21 (Gary Walsh) Are there any solutions to x2−2 = pn with p prime, x and n integers,
n > 1?

Remarks: This is the one case of x2 = pa±pb+1 not solved in Florian Luca’s preprint
about these equations. Luca notes that there are only finitely many solutions and that
using linear forms in logs one can compute a bound for x. He refers to

T. N. Shorey, R. Tijdeman, Exponential Diophantine Equations, Camb. U. Pr. 1986, MR 88h:11002.

The equation is also a special case of xn − ym = 2, the equation “one up” from
Catalan’s. It is related to Ramanujan-Nagell type equations, and to the Bennett-Skinner
equation xn + 2αyn = z2, α > 1.

002:22 (John Selfridge) The number 82818079 . . . 1110987654321 (obtained by concate-
nating the numbers 82, 81, . . . , 1) is prime. Is there any other n for which the number
obtained by concatenating n, n− 1, . . . , 1 is prime? Is there any n for which concatenating
the numbers 1, 2, . . . , n gives a prime?

Remark: In
Ralf Stephan, Factors and primes in two Smarandache sequences, Smarandache Notions J. 9 (1998) 4–10,

available at http://me.in-berlin.de/˜rws, it is claimed that the given prime is the only one
for n up to 750, and that there are no primes in the other sequence for n up to 840.

002:23 (Josh Cooper) Given a vector a = (a1, . . . , an) of distinct positive integers with
no common factor, let F = Fa be the set of positive integers that can be expressed as
a non-negative integer linear combination of a1, . . . , an, and let N = Na be the largest
integer not in F . For 0 < β < 1 does lima1,...,an→∞

1
N #{F ∩ [0, βN ] } exist and, if so,

what is it?
Remarks: 1. For n = 2 it is well-known that N = a1a2 − a1 − a2, and Cooper proves

that the limit in question exists and is β2/2.
2. Seva Lev has worked out several cases where the computations can be carried out

explicitly. For example, a = (m + 1, . . . , m + n), n fixed, m → ∞; also a = (a1, . . . , an)
with a3, . . . , an > N(a1,a2). In all these cases,

1
N

#{Fa ∩ [1, βN ] } =
1
2
β2 + o(1).

Thus if the limit exists it is β2/2.

002:24 (John Brillhart) Can the primitive part of bn − 1, or any factor of the primitive
part of bn − 1, be a Carmichael number?
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