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Comments on Earlier Problems

97:16 (Gerry Myerson) Do there exist integers, a1, . . . , an, not necessarily distinct, such
that each of the n+1 integers 1, 2, 4, . . . , 2n can be obtained as

∑
j∈J aj for some subset J

of { 1, . . . , n }? The answer is no for n ≤ 3.
Remarks: (1998) Building on examples of Peter Montgomery and David Moulton,

the editor suggested letting f(n) be the smallest number of integers needed to express
1, 2, 4, . . . , 2n−1 as subsums. Moulton noted f(7) ≤ 5, using −20, −15, 17, 19, 28. These
remarks were included in the 1997 problem set.

Moulton now defines the rank of a set P as the least k for which there exist a1, . . . , ak

such that every element of P is a subset sum from a1, . . . , ak. He lets

ρ(2) = lim
n→∞

Rank({ 1, 2, 4, . . . , 2n−1 })/n

(more generally; ρ(r) = limn→∞ Rank({ 1, r, r2, . . . , rn−1 })/n) and shows that ρ(2) exists
and that ρ(2) < 15/22.

Moulton proves ρ(r) ≤ (2r − 2)/(2r − 1); also, Rank({ 1, 2, 4, . . . , 2n−1 }) ≥ n/ log2 n,
and Rank({ 1, r, r2, . . . , rn−1 }) > n/(1 + logr n). Further details available from Moulton.

(2000) Moulton’s work will appear in J. Number Theory, as will a follow-up by Michael
Develin. In email of 25 October 2000, Moulton writes that he can now prove that ρ(r) = 0
for any rational number r. He also reports, via Kiran Kedlaya, that he can show that for
fixed r,

n

logr n

(
1 + o(1)

)
≤ Rank({ 1, r, r2, . . . , rn−1 }) ≤ 2n

logr n

(
1 + o(1)

)
,

and also lim infn→∞
Rank({ 1,r,r2,...,rn−1 })

n/ logr n = 1.

99:08 (Greg Martin) Define a multiplicative function σ̃ (or �
σ if you are left-handed) by

σ̃(pr) = pr − pr−1 + pr−2 − · · ·+ (−1)r. Note that σ̃(n) ≤ n with equality only for n = 1.
Call n σ̃-perfect if 2σ̃(n) = n; examples are n = 2, 12, 40, 252, 880, 10880, and 75852. Call
n σ̃-k-perfect (or, more generally, σ̃-multiply perfect) if kσ̃(n) = n for a positive integer k.
Two examples of σ̃-3-perfects are n = 30240 and n = 210345411·132 ·31·61·157·521·683—
there are at least 40 σ̃-3-perfects.

1. Are there any σ̃-k-perfect numbers with k ≥ 4?
2. Are there infinitely many σ̃-k-perfect numbers?
3. Are there any odd σ̃-3-perfect numbers? Any such number must be a square.
Remarks: Doug Iannucci reports that if there is an odd σ̃-3-perfect number it has at

least 18 prime factors, and its largest prime factor exceeds 108.

99:10 (Jeff Lagarias) Is there a field with Galois group Sn, n ≥ 5, whose ring of integers
has a power basis?

Solution: In email of 17 October 2000, Jeff notes that Dan Bernstein has found that
the splitting field of x5 − x2 − 2x − 3 has Galois group A5 and its ring of integers has a
power basis. Examples with Sn were given by Kiran Kedlaya in his talk. See also 000:09,
below.
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Problems Proposed 17 & 20 Dec 2000

000:01 (Bjorn Poonen via David Boyd) Classify tetrahedra whose dihedral angles are all
rational multiples of π.

Remarks: 1. Let αij be the angle between faces i and j, with αii = 0; then setting
det

(
cos(αij)

)
to 0 leads to an equation in roots of unity. There are at least two parametric

families of solutions and 44 sporadic examples, discovered jointly with Michael Rubinstein
in 1995, although many were known previously.

2. Your editor was directed to this problem by John Conway in 1974, but had no
success with it. The problem is connected to that of space-filling tetrahedra, for which
see

Michael Goldberg, Three infinite families of tetrahedral space-fillers, J. Combinatorial Theory Ser. A 16
(1974) 348–354, MR 49 #7900.

Marjorie Senechal, Which tetrahedra fill space? Math. Mag. 54 (1981), no. 5, 227–243, MR 83h:52020.

000:02 (M. I. Mostafa) Does the identity

(x5 + y5)(z + t)5 − (x + y)5(z5 + t5)

= 5(x + y)(z + t)(xz − yt)(xt − zy)
(
(x2 + xy + y2)(z2 + zt + t2) − xyzt

)

help to determine whether x5 + y5 = z5 + t5 has any solutions in positive integers with
{x, y } �= { z, t }?

Remarks: In UPINT, F30, Erdős asks for a polynomial P (x) such that all the sums
P (a) + P (b), 0 ≤ a < b, are distinct, and Guy notes that x5 is a likely answer.

000:03 (Kiran Kedlaya) Given a positive integer m is there a finite set Sm such that if z
is in Z[ζn] and |z|2 = m then z = αζ for some α in Sm and some root of unity ζ? If so,
how big is Sm?

Remarks: If z is in Z[ζn] and |z| =
√

m then every conjugate of z has modulus
√

m,
for if zσ is a conjugate of z then |zσ|2 = zσzσ = zσ(z)σ = (zz)σ = mσ = m. In the case
m = 1 Kronecker’s theorem states that if z is an algebraic integer with all conjugates of
modulus 1 then z is a root of unity.

On 19 April, Kiran writes, “I proved that for m fixed and p ranging over primes, the
set of m-Weil numbers [that is, the set of z in Z[ζp] with |z|2 = m] in the union of the
p-th cyclotomic fields is finite. (That’s the union, not the compositum, which would be a
stronger result.) There’s a preprint on my web page about this: Weil numbers in prime
cyclotomic fields.”

000:04 (no name supplied) Let p1, p2, . . . be the primes, in order, in base 10. Are there
infinitely many n for which the concatenation pn+1pnpn+2 is prime? Note that 312937 is
the first such prime, as the numbers 325, 537, . . . , 292331 are all composite.
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000:05 (Ron Evans and Marvin Minei) Starting with the b-by-b circulant matrix with
first row (2, 1, 0, 0, . . . , 0, 1), replace the twos on the diagonal by 2 cos(2πx), 2 cos(4πx),
2 cos(6πx),. . . , 2 cos(2bπx), in that order, beginning from the upper left. Call the resulting
matrix H(b, x). For example,

H(4, x) =






2 cos 2πx 1 0 1
1 2 cos 4πx 1 0
0 1 2 cos 6πx 1
1 0 1 2 cos 8πx






Suppose that a and b are positive integers such that a/b is close (but not equal) to 1/3.
Representing each of the b (real) eigenvalues of H(b, a/b) by a red dot and plotting these
red dots, we end up with a picture that looks very much like the union of three red
intervals: [−1 −

√
3,−2], [1 −

√
3,
√

3 − 1], [2, 1 +
√

3]. The closer a/b gets to 1/3, the
more the picture looks like these three intervals. Explain why!

Remarks: 1. Some might wonder if for large b, the spectrum of H(b, 1/3) also looks
like the three intervals above. The answer is no.

2. If one uses c/d in place of 1/3 in the problem above, where c, d are coprime integers
with 0 < c < d, then instead of 3 intervals, one gets d intervals (which depend on c).

3. For each fraction c/d in Remark 2 with d < 50, plot the corresponding d intervals
at a height y = c/d on the xy-plane. The resulting picture, which lies in the rectangular
region [−4, 4]× [0, 1], is the famous Hofstadter butterfly (see p. 2241 of Physical Review B,
vol. 14, no. 6, September 15, 1976)

000:06 (Greg Martin) Call a rational number r equidigital base b if the repeating part of
the b-ary expansion of r has all “digits” { 0, . . . , b−1 } equally often—e.g., 19/24 = .11001
is equidigital base 2. Note that this is not the same definition as given in 99:05.

1. Are there infinitely many m such that a
2rm is equidigital base 2 for all a? Such m

include 3, 5, 9, 11, 13, 17, and 19. Are there infinitely many m such that a
3rm is equidigital

base 3 for all a? Such m include 7, 14, 19, and 31.
Call r absolutely simply abnormal (ASA, for short) if there is no base b ≥ 2 to which

it is equidigital.
2. Characterize the ASA rationals.
Remarks: 1. If q is prime and g is a primitive root (mod q) dividing q − 1 then a/q is

equidigital base g (and thus not ASA).
2. If a/q is equidigital base b, then b divides the multiplicative order of b modulo q∗,

where q∗ =
∏

pr‖q
p�b

pr. This implies a/q is ASA if q = 2r, r ≥ 1, also if q = 15 or 28.

000:07 (Greg Martin) Is there a symmetric polynomial h(x, y) that gives a bijection
between { (m, n) in N × N : m ≥ n } (or { (m, n) in N × N : m > n }) and N?

Remark: It is well-known that g(x, y) = (x+y)(x+y+1)
2 + y gives a bijection between

N × N and N.
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000:08 (Jean-Marie De Koninck) Let γ(n) =
∏

p|n p. Are there any solutions to

σ(n) =
(
γ(n)

)2 other than n = 1 and n = 1782?

Remarks: 1. There is no other solution with n < 108.
2. If there are other solutions they must be even, not squarefree, and not powerful.

3. There are infinitely many n such that
(
γ(n)

)2 | σ(n), even restricting n to the form
n = 2α3β , but only three known n such that σ(n) |

(
γ(n)

)2, namely, n = 1, n = 6,
n = 1782.

4. It is easily seen that φ(n) =
(
γ(n)

)2 has exactly 6 solutions.

000:09 (David Boyd) Is nn − (n− 1)n−1 squarefree for infinitely many n? Is it squarefree
whenever n is prime?

Remarks: 1. This relates to problem 99:10. The polynomial fn(x) = xn − x − 1
has Galois group Sn for n ≥ 2 (H. Osada, J. Number Theory 25 (1987) 230–238) and its
discriminant ∆n satisfies |∆n| = nn + (−1)n(n − 1)n−1. If |∆n| is squarefree and α is a
root of fn(x) then the ring of integers in Q(α) has a power basis.

2. In email of 16 March 2001, Boyd notes that nn − (n − 1)n−1 is the absolute value
of the discriminant of xn − x + 1, which is reducible when n = 6k + 2. This explains the
factor (12k2 + 6k + 1)2 which he had earlier found to appear in this case. For n ≤ 100
and not of the form 6k + 2 Maple finds no small square factors.

3. Greg Martin points out that if p is prime and 4p−1 ≡ 1(mod p2) (e.g., if p = 1093
or 3511) and n = p2 − 3p + 2 then p2 | ∆n. Note that any such n is necessarily a multiple
of 6.

4. In email of 20 February 2001, Greg writes, “if p2 divides nn−(n−1)n−1, then p2 will
divide mm−(m−1)m−1 for every m congruent to n modulo p(p−1). I’ve computationally
found about 250 examples of such divisibilities for n not of the form 6k+2 (not counting the
repetitions generated by the previous remark); the smallest found is 592 | 257257 −256256.
In particular, these last two statements imply that there are infinitely many primes p for
which pp − (p − 1)p−1 is not squarefree, by Dirichlet’s theorem on primes in AP.”

000:10 (Jeff Lagarias via Kiran Kedlaya) What is the minimum of the absolute value of
the discriminant of a monic irreducible polynomial of degree n with integer coefficients?
It is at least cn, with c taken from Odlyzko’s discriminant bounds; is it Ω(ncn)?

Remark: David Boyd refers to
Denis Simon, Construction de polynômes de petits discriminants, C. R. Acad. Sci. Paris 239 (1999) 465–468.

000:11 (Jeff Lagarias) Let ‖x‖ be the distance from x to the nearest integer. Is it true
that S = { (α, β) in (0, 1) × (0, 1) : lim infq→∞ q‖qα‖‖qβ‖ > 0 } has Hausdorff dimension
zero?

Remarks: Littlewood’s conjecture is that S is empty. It is not known that the Haus-
dorff dimension of S is less than 2. Jeff mentions

Andrew D. Pollington, Sanju L. Velani, On a problem in simultaneous Diophantine approximation: Little-

wood’s conjecture, Acta Math. 185 (2000) 287–306

as a pointer to what is currently knnown about Littlewood’s conjecture.
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000:12 (Kevin O’Bryant) Given a sequence a1, a2, . . . of integers, with bounded gaps
(M1 < ai+1 − ai < M2), must there be distinct indices i1, i2, i3 in arithmetic progression
with ai1 , ai2 , ai3 also in arithmetic progression? Given a sequence a1,a2, . . . of elements
in Zd with ‖ai+1 − ai‖ bounded (where ‖a‖ is any reasonable norm on Zd), and given an
integer k ≥ 3, must there be indices i1, . . . , ik with ai1 , . . . ,aik

in arithmetic progression
(that is, with aij+1 − aij = ai2 − ai1 for 1 ≤ j ≤ k − 1)?

Remarks: 1. Greg Martin asks whether M1 < ai+1 − ai < M2 is enough to ensure
that there are three distinct collinear points of the form (i, ai).

2. One can inductively define sequences of integers which have no three terms in
A.P. and which furthermore satisfy various greedy conditions. For example, the se-
quence (ai) = 1, 2, 4, 5, 8, 9, 11, 12, 16, 18, 19, 21, 26, 28, 29, 32, 33, 35, 36, 39, 43, 44, 46, . . . is
obtained by insisting the sequence be increasing with each new term chosen as small as
possible. For the sequence (bi) = 1, 1, 2, 1, 1, 2, 2, 4, 4, 1, 1, 2, 1, 1, 2, 2, 4, 4, 2, 4, 4, 5, . . . we
drop the insistence that the sequence be increasing. In the sequence
(ci) = 0, 0, 1, 1, 0, 0, 1, 1, 3, 3, 4, 4, 3, 3, 4, 4, 1, 1, 2, 2, 1, 1, 2, 2, 4, 4, 5, 5, 4, 4, 5, 5, 10, . . . each
term cn+1 is the first permissible term among cn, cn +1, cn −1, cn +2, cn −2, . . . . What is
the rate of growth of an? Is an+1 − an bounded? What are the rates of growth of

∑n
bk

and
∑n

ck? Are bk, |bk+1 − bk|, ck, |ck+1 − ck| bounded? Is ck ≥ 0 for all k?
In email of 13 Feb 01, Carl Pomerance supplies some relevant references, one of which

answers Greg Martin’s query in the affirmative. The annotations are Carl’s.
T. C. Brown, Is there a sequence on four symbols in which no two adjacent segments are permutations of

one another, Amer. Math. Monthly 78 (1971) 886–888.

From Brown’s work it follows that in O’Bryant’s problem, if the gap size is bounded
by 3, then in any 9 consecutive terms, three of the points (i, ai) will be collinear. Here, 9
is best possible, as can be seen by the sequence 0, 1, 3, 4, 7, 8, 10, 11.

F. M. Dekking, Strongly nonrepetitive sequences and progression-free sets, JCT-A 27 (1979) 181–185, MR

81b:05027.

Dekking shows that there is an infinite sequence of plane lattice points where each gap
is (0, 1) or (1, 0) such that no 5 points are in AP.

J. L. Gerver and L. T. Ramsey, On certain sequences of lattice points, Pacific J. Math. 83 (1979) 357–363,

MR 80k:10053.

Gerver and Ramsey show that in an infinite sequence of plane lattice points with
bounded gaps, there are arbitrarily many that are collinear, thus answering Martin’s
question.

C. Pomerance, Collinear subsets of lattice point sequences—an analog of Szemerédi’s theorem, JCT-A (1980)

140–149 MR 81m:10104.

I generalize the Gerver-Ramsey theorem, so that now it is only assumed that the gaps
are bounded on average: that is, it is assumed there is a constant B such that the sum of
the lengths of the first n gaps in the sequence is at most Bn, and this is true for each n. In
such a sequence of plane lattice points, there must be arbitrarily many that are collinear.
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000:13 (Gerry Myerson) Is there an irredundant set of covering congruences with exactly
two odd moduli? exactly three?

Remark: A set of covering congruences (for short: a cover) is a finite set of congruences
x ≡ a1(mod m1), . . . , x ≡ ar(mod mr) with 1 < m1 < · · · < mr such that every integer
satisfies at least one of the congruences. A cover is irredundant if no proper subset is
a cover. An example is given by the (ai, mi) pairs (0, 2), (0, 3), (1, 4), (1, 6), (11, 12). A
notorious problem is to decide the existence of a cover with no even modulus. It is known
that an irredundant cover cannot have exactly one even modulus, and the example given
above has exactly four even moduli.

000:14 (Gerry Myerson) Is it true that for all integers a with |a| ≥ 2 and all non-zero
integers b there is an integer k relatively prime to b such that kan + b is composite for
all n? Variation: let un = un(a, b, k) = kan + b, let d = d(a, b, k) = gcd(u0, u1, . . . ). Given
a and b as above, must there be an integer k such that d−1un is composite for all k?

Remark: The case a = 2, b = 1 was settled (in the affirmative) by Sierpiński. His
second proof relied on a result of Erdős to the effect that there exist odd numbers k such
that 2n + k is composite for all n. Erdős’ proof relied on covering congruences. The
general case could be settled if we knew that covering congruences with certain specified
properties exist, but these existence questions are very difficult.

W. Sierpiński, Sur un problème concernant les nombres k·2n+1, Elem. Math. 15 (1960) 73–74, MR 22 #7983.

P. Erdős, On integers of the form 2k+p and some related problems, Summa Brasil. Math. 2 (1950) 113–123,

MR 13, 437i

000:15 (Alexander Schwartz via Gerry Myerson) Can Z ⊕ Z be partitioned into cosets
C1, . . . , Cn of distinct proper subgroups for some n?

Remarks: It is known that Z cannot be so partitioned, that is, Z is not the finite
disjoint union of arithmetic progressions with distinct common differences exceeding 1.
There are such partitions for Z ⊕ Z ⊕ Z (in fact, for Zn for any n ≥ 3), e.g., Z3 is the
disjoint union of { (x, y, z) : x is odd and y is even }, { (x, y, z) : y is odd and z is even },
{ (x, y, z) : z is odd and x is even }, { (x, y, z) : x, y, z all odd or all even }.

The question can also be asked at the level of finite abelian groups. No cyclic group is
a disjoint union of cosets of distinct proper subgroups. (Z/2Z)3 is the disjoint union of
(1, 0, 0) + 〈(0, 0, 1)〉, (0, 1, 0) + 〈(1, 0, 0)〉, (0, 0, 1) + 〈(0, 1, 0)〉, and 〈(1, 1, 1)〉, and similar
constructions apply to (Z/2Z)m, m > 3. Do there exist m and n such that Z/mZ⊕Z/mnZ
can be partitioned this way?

Is there such a partition for (Z/mZ)3 for all m ≥ 2?
Solution: Schwartz answers this last question in the affirmative. Let p be an odd

prime, let n be a quadratic non-residue (mod p), let Ga,b be the subgroup of (Z/pZ)3

generated by (a, b, 1), 0 ≤ a ≤ p − 1, 0 ≤ b ≤ p − 1, and let Ca,b be the coset of Ga,b

containing (nb, a, 0). It is routine to show that the cosets partition (Z/pZ)3, and then
routine to extend the result to (Z/mZ)3, or, indeed, to Z/rZ ⊕ Z/rsZ ⊕ Z/rstZ for any
positive integers r, s, t, r > 1.

Schwartz also shows that Z/mZ ⊕ Z/mnZ has no partition when m and n are both
powers of some prime p, but the general case remains unsolved.


