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1967 Berkeley 1968 Berkeley 1969 Asilomar
1970 Tucson 1971 Asilomar 1972 Claremont 72:01–72:05
1973 Los Angeles 73:01–73:16 1974 Los Angeles 74:01–74:08
1975 Asilomar 75:01–75:23
1976 San Diego 1–65 i.e., 76:01–76:65
1977 Los Angeles 101–148 i.e., 77:01–77:48
1978 Santa Barbara 151–187 i.e., 78:01–78:37
1979 Asilomar 201–231 i.e., 79:01–79:31
1980 Tucson 251–268 i.e., 80:01–80:18
1981 Santa Barbara 301–328 i.e., 81:01–81:28
1982 San Diego 351–375 i.e., 82:01–82:25
1983 Asilomar 401–418 i.e., 83:01–83:18
1984 Asilomar 84:01–84:27 1985 Asilomar 85:01–85:23
1986 Tucson 86:01–86:31 1987 Asilomar 87:01–87:15
1988 Las Vegas 88:01–88:22 1989 Asilomar 89:01–89:32
1990 Asilomar 90:01–90:19 1991 Asilomar 91:01–91:25
1992 Corvallis 92:01–92:19 1993 Asilomar 93:01–93:32
1994 San Diego 94:01–94:27 1995 Asilomar 95:01–95:19
1996 Las Vegas 96:01–96:18 1997 Asilomar 97:01–97:22
1998 San Francisco 98:01–98:14 1999 Asilomar (current set) 99:01–99:12

[With comments on 76:60, 86:05, 88:06, 93:20, 95:18, and 97:22]
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Comments on Earlier Problems

76:60 (Peter Weinberger) Let |f | denote the number of non-zero coefficients of a poly-
nomial f . Is there a function A such that |(f, g)| ≤ A(|f |, |g|)? Can such an A be a
polynomial? The example f = (xab + 1)(xb + 1)/(x + 1), g = (xab + 1)(xb + 1)/(xa + 1)
with a > b − 1, a even, b odd shows that if such an A exists then A(n, n) � n2.

Solution: Andrzej Schinzel writes that the answer to this problem is negative, and a
simple counterexample is f = xab − 1, g = (xa − 1)(xb − 1), where |f | = 2, |g| = 4 and
|(f, g)| can be arbitrarily large. The only difficult case in characteristic 0 is |f | = |g| = 3.

86:05 (Michael Filaseta) Is fn(x) = d
dx (xn +xn−1 + · · ·+x+1) irreducible for all positive

integers n? For almost all n?
Solution: The “almost all” question is answered in the affirmative in
A. Borisov, M. Filaseta, T. Y. Lam, O. Trifonov, Classes of polynomials having only one non-cyclotomic

irreducible factor, Acta Arith. 90 (1999) 121–153,

where Theorem 1 states that “if ε > 0 then for all but O(t1/3+ε) positive integers n ≤ t
the derivative of the polynomial f(x) = 1 + x + x2 + · · · + xn is irreducible.”

88:06 (Emil Grosswald) Mike Filaseta proved that almost all Bessel polynomials [poly-
nomial solutions of x2y′′ + xy′ − n(n + 1)y = 0 with y(0) = 1] are irreducible over Q. Get
rid of “almost all”.

Solution: In work submitted for publication, Filaseta and Trifonov write the Bessel
polynomials as

yn(x) =
n∑

j=0

(n + j)!
2j(n − j)!j!

xj

and prove that if n is a positive integer and a0, a1, . . . , an are arbitrary integers with
|a0| = |an| = 1 then

n∑

j=0

aj
(n + j)!

2j(n − j)!j!
xj

is irreducible.
The techniques are similar to those used in
M. Filaseta, The irreducibility of all but finitely many Bessel polynomials, Acta Math. 174 (1995) 383–397.

93:20 (Eugene Gutkin via Jeff Lagarias) [...] consider the polynomials

pn(x) =
(n − 1)(xn+1 − 1) − (n + 1)(xn − x)

(x − 1)3

[which arise in the solution of tannθ = n tan θ] for n ≥ 1.
Conjecture. pn(x) is irreducible if n is even, and is x + 1 times an irreducible if n is

odd.

2



3

Solution: This is true for almost all n. Theorem 4 of the four-author paper cited
above states that if ε > 0 then for all but O(t4/5+ε) positive integers n ≤ t the polynomial
p(x) = (n− 1)(xn+1 − 1)− (n+1)(xn −x) is (x− 1)3 times an irreducible polynomial if n
is even and (x − 1)3(x + 1) times an irreducible polynomial if n is odd.

95:18 (Martin LaBar, via Richard Guy) Is there a 3×3 magic square with distinct square
entries?

Remark: Comments on this problem have appeared in each problem set since it was
first proposed.

Andrew Bremner, On squares of squares, Acta Arith. 88 (1999) 289–297

constructs parametrized families of 3 × 3 matrices with distinct square entries and with
all sums equal except that along the non-principal diagonal.

97:22 (John Selfridge) Let n = rs2, r square-free, r > 1. It is conjectured that for all
such n except n = 8 and n = 392 there exist integers a, b with n < a < b < r(s+1)2 such
that nab is a square.

Remark: See the paper,
Paul Erdős, Janice L. Malouf, J. L. Selfridge, Esther Szekeres, Subsets of an interval whose product is a

power, Discrete Math. 200 (1999) 137–147.

Selfridge reports that he and Aaron Meyerowitz have proved that if there is a coun-
terexample n > 392 then n is at least on the order of 1030000.

Problems Proposed 16 & 19 Dec 99

99:01 (John Wolfskill) Let d ≡ 3 (mod 4) be positive and squarefree. Let a fundamental
unit in Z[

√
d] be given by ε = a+b

√
d > 1. Characterize those d for which

√
2 is in Q(

√
ε).

Remarks:
√

2 is in Q(
√

ε) for all prime d and for some but not all composite d.
Gary Walsh shows that the following are equivalent:

a)
√

2 is in Q(
√

ε);
b) at least one of the equations x2 − dy2 = ±2 is solvable in integers x and y;

c) the prime over 2 in Q(
√

d) is principal.
Characterizing d such that x2 − dy2 = −1 has a solution is a notorious open question,

which suggests that there may be no simple solution to the current problem.
Walsh’s argument, as presented by Wolfskill, runs as follows. Let K = Q(

√
ε), let α

in K be such that α2 = ε. Note that the norm of ε is 1, whence K/Q is Galois and
non-cyclic. Since α is in K we have α = r + s

√
d + t

√
d′ + u

√
dd′ for some rational r, s,

t and u and some d′ with
√

d′ in K. Let σ be the element of the Galois group of K/Q
fixing

√
d but not fixing

√
d′. Then

(
σ(α)

)2 = σ(α2) = σ(ε) = ε = α2, so σ(α) = α or
σ(α) = −α. If σ(α) = α then α is in Q(

√
d) but then α2 = ε contradicts the hypothesis

that ε is a fundamental unit in Q(
√

d), so σ(α) = −α, so α = t
√

d′ + u
√

dd′.
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Now assume
√

2 is in K, so α = t
√

2 + u
√

2d, t and u rational. From α2 = ε we get
that 2(t2 + du2) = a and 4tu = b are both integers, from which it is easy to deduce that
2t = x (say) and 2u = y (say) are integers. Then (x2 − dy2)2 = 4(a2 − db2) = 4, so
x2 − dy2 = ±2.

Conversely, suppose x and y are positive integers such that x2 − dy2 = ±2. Note that
x and y are odd. Let a = (x2 + dy2)/2, b = xy. Then a2 − db2 = 1, so a + b

√
d is a

unit in Q(
√

d). Also,
(

x
2

√
2 + y

2

√
2d

)2 = a + b
√

d, so a + b
√

d must be an odd power of
the fundamental unit in Q(

√
d)—otherwise, x

2

√
2 + y

2

√
2d would be in Q(

√
d). So,

√
2 is

in Q(
√

ε).

99:02 (Greg Martin) Consider the following “proof” that 4680 is perfect: 4680 = 23 · 32 ·
(−5)·(−13), so σ(4680) = (1+2+22+23)(1+3+32)(1+(−5))(1+(−13)) = 9360 = 2×4680.
Allowing the use of σ(−pn) =

∑n
j=0(−p)j , is there a “spoof perfect number” with exactly

3 distinct prime factors?
Remark: If so, it must be negative.
Solution: Dennis Eichhorn found that −84 = 22(3)(−7) is spoof-perfect, and Eichhorn

and Peter Montgomery independently found that −120 = 23(3)(−5) is spoof-perfect.
Montgomery also found that −672 = (−2)5(3)(7) leads to

σ(−672) = (1 − 2 + 4 − 8 + 16 − 32)(1 + 3)(1 + 7) = −672.

Alf van der Poorten asked whether there are any odd spoof-perfects.
John Selfridge asked whether 4680 is the smallest positive spoof-perfect.
See also 99:08, below.

99:03 (Mike Filaseta) Find m0 such that if m ≥ m0 and m(m − 1) = 2a3bm′ and
(m′, 6) = 1 then m′ >

√
m.

Remark: See
M. Filaseta, A generalization of an irreducibility theorem of I. Schur, Analytic number theory, Vol. 1 (Allerton

Park, IL, 1995), 371–396, Progr. Math. 138, Birkhauser, Boston 1996

for a similar but ineffective result derived from work of Mahler.

99:04 (Mike Filaseta) Show that every n× n integer matrix, n ≥ 2, is a sum of 3 squares
of n × n integer matrices.

Remark: What is wanted is an argument more transparent than that in
Leonid N. Vaserstein, Every integral matrix is the sum of three squares, Linear and Multilinear Algebra 20

(1986) 1–4.

99:05 (Zachary Franco) Call n equidigital if each digit occurs equally often in the repeating
block in the decimal expansion of 1/n. It is easy to see that if p is prime and 10 is a
primitive root (mod p) then p is equidigital. Are there any equidigital primes p for which
10 is not a primitive root?

Remarks: The answer to the corresponding question in base 2 is yes; 2 is not a
primitive root (mod 17) but the binary expansion of 1/17 is .0̇0001111̇.

There are equidigital composites, e.g., n = 1349 = 19 × 71.
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Mike Filaseta notes that if p ≡ 11 (mod 20) is prime and 10 is of order (p − 1)/2
(mod p) then 10k runs through the quadratic residues (mod p), and since there are more
quadratic residues in [1, (p − 1)/2] than in [(p + 1)/2, p − 1] for such p (p ≡ 3 (mod 4))
p can’t be equidigital. For example, 1/31 = .0̇32258064516129̇ has 9 small digits and 6
large ones. Perhaps there are similar results for 10 of order (p − 1)/k for k = 3, 4, . . . .

99:06 (Kevin O’Bryant) Write
√

a1, a2, . . . ] for the continued square root

1√
a1 + 1√

a2+...

where a1, a2, . . . are positive integers. Every real number r, 0 < r < 1, has such an
expression, and the expression is unique in the same sense as for simple continued fractions.
Does 3/4 have a finite continued root?

Remark: 2/3 =
√

2, 16], 22/47 =
√

3, 1098, 2892, 410, 256].

99:07 (Bart Goddard) Let f : (0,∞) → (0,∞) be strictly decreasing and onto with
f(1) = 1. Let g be the functional inverse f−1 of f . For α0 real and positive, define
integers a0, a1, . . . and reals α1, α2, . . . by aj = [αj ], αj = g(αj−1−aj−1). Write (α0)f for
the sequence a0, a1, . . . . Let c0 = a0, c1 = a0 + f(a1), c2 = a0 + f

(
a1 + f(a2)

)
, etc. Note

that f(x) = 1/x gives the usual continued fraction expansion of α0, and f(x) = 1/
√

x
gives the expansion of 99:06.

Some interesting examples are
f(x) = x−5, ( 5

√
7)f = (1, 1, 1, . . . )

f(x) = 1/Ω(ex), where Ω is the Lambert Ω-function,

(π)f = (3, 3033, 23766810023426903113005, 2279, 2, 864, . . . )

1. Given f , which numbers have finite expansions? periodic expansions? Is it true that
if f(x) = x−2/3 then ( 3

√
3)f = (1̇, 1, 1, 2̇)?

2. Is there an f such that (α)f is periodic for all algebraic α of degree 3?
3. Find f such that (π)f has a recognizable pattern.
4. Find f such that (e)f is periodic.
5. Find conditions on f and α for limn→∞ cn = α.
Solution: (to question 4) Greg Martin notes that if f(x) = xlog(e−2)/ log(e−1) then

(e)f = (2, 1, 1, 1, . . . ).
Remark: Jeff Lagarias refers to
A. Rényi, Representations for real numbers and their ergodic properties, Acta Math. Acad. Sci. Hungar. 8

(1957) 477–493, MR 20 #3843.

Many later papers refer to this one, as may be seen from the listing on MathSciNet.
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99:08 (Greg Martin) Define a multiplicative function σ̃ (or �
σ if you are left-handed) by

σ̃(pr) = pr − pr−1 + pr−2 − · · ·+ (−1)r. Note that σ̃(n) ≤ n with equality only for n = 1.
Call n σ̃-perfect if 2σ̃(n) = n; examples are n = 2, 12, 40, 252, 880, 10880, and 75852. Call
n σ̃-k-perfect (or, more generally, σ̃-multiply perfect) if kσ̃(n) = n for a positive integer k.
Two examples of σ̃-3-perfects are n = 30240 and n = 210345411·132 ·31·61·157·521·683—
there are at least 40 σ̃-3-perfects.

1. Are there any σ̃-k-perfect numbers with k ≥ 4?
2. Are there infinitely many σ̃-k-perfect numbers?
3. Are there any odd σ̃-3-perfect numbers? Any such number must be a square.
Remark: Paraphrasing email from Greg: let τ(n) = n/σ̃(n), so τ(n) = k means n

is a σ̃-k-perfect number. Suppose n = p2k−1m, p prime, and σ̃(p2k) = q is prime, and
(m, pq) = 1. Then it’s not hard to prove that τ(n) = τ(npq). In particular, if n is
σ̃-k-perfect, so is npq.

Some examples of prime powers p2k−1 such that σ̃(p2k) is prime are

21, 23, 25, 29, 31, 33, 35, 53, 71, 131.

This makes it possible to find 40 σ̃-3-perfects from the four examples 2333527, 25335 · 7,
2535527313, and 29335311 · 13 · 31.

Jeff Lagarias suggested looking at the Dirichlet series generating function for σ̃, in
analogy with

∞∑

n=1

σ(n)
n

n−s = ζ(s + 1)ζ(s).

Greg finds that
∞∑

n=1

1
τ(n)

n−s = ζ(2s + 2)ζ(s)/ζ(s + 1),

but no such tidy form for
∑∞

n=1 τ(n)n−s.

99:09 (Jean-Marie De Koninck) Given an integer k, k ≥ 2, not a multiple of 3,
1. prove that there is a prime whose digits sum to k,
2. prove that if k ≥ 4 then there are infinitely many primes whose digits sum to k.
Remarks: Jean-Marie provided a table of values of ρ(k), the smallest prime whose

digits add up to k, for 2 ≤ k ≤ 83, k not a multiple of 3. Your editor notes that
ρ(56) − ρ(55) = 2999999 − 2998999 = 1000 and asks whether there are infinitely many k
with ρ(k + 1)− ρ(k) = 1000, or with ρ(k + 1)− ρ(k) = 10m for some m, or whether there
is an integer r with ρ(k + 1) − ρ(k) = r for infinitely many r.

Your editor further notes that ρ(34)/ρ(32) = 17989/6899 = 2.61 (to two decimals),
ρ(37)/ρ(35) = 29989/8999 = 3.33, ρ(70)/ρ(68) = 189997999/59999999 = 3.17, and
ρ(73)/ρ(71) = 289999999/89999999 = 3.22, and asks whether ρ(3k + 1)/ρ(3k − 1) is
unbounded. Moreover, your editor also notes that ρ(34)/ρ(35) = 17989/8999 = 2.00 and
ρ(70)/ρ(71) = 189997899/89999999 = 2.11 and asks whether ρ(k) > ρ(k + 1) infinitely
often.
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Further questions: is it true that k > 25 implies ρ(k) ≡ 9 (mod 10)? that k > 38
implies ρ(k) ≡ 99 (mod 100)? that k > 59 implies ρ(k) ≡ 999 (mod 1000)?

Jean-Marie also notes that it is trivial that ρ(k) ≥ (a + 1)10b − 1, where b = [k/9] and
a = k − 9b; and asks whether equality holds infinitely often. For instance, it is the case
when k = 5, 7, 10, 11, 14, 16, 17, 19, 22, 23, 28, 29, 31, 35, 40.

99:10 (Jeff Lagarias) Is there a field with Galois group Sn, n ≥ 5, whose ring of integers
has a power basis?

99:11 (Sinai Robins) Let q be real, |q| < 1. Is the function given by f(x) =
∑∞

n=1[nx]qn

real analytic in x?
Remark: A starting place for the analytic properties of this and related series is
Wolfgang Schwarz, Über Potenzreihen, die irrationale Funktionen darstellen, I and II, Überblicke Mathe-

matik, Band 6, 179–196 and 7, 7–32, MR 51 #8382-3.

See also
J. H. Loxton, A. J. van der Poorten, Arithmetic properties of certain functions in several variables. III, Bull.

Austral. Math. Soc. 16 (1977) 15–47, MR 81g:10046.

99:12 (Jeff Lagarias) Given n > 3, find upper and lower bounds for the number of
solutions 1 < q1 < · · · < qn of the system q−1

j

∏n
1 qj ≡ 1 (mod qj), j = 1, . . . , n.

Remark: It is known that there are only finitely many solutions for each n, in fact
there is an upper bound for qn, but it does not give a good estimate for the number of
solutions. (2, 3, 5) is the only solution for n = 3. The problem is discussed in

Lawrence Brenton, Mi-Kyung Joo, On the system of congruences
∏

j �=i nj≡1 (mod ni), Fib. Q. 33 (1995)

258–267.

The review, MR 96k:11039, is also worth reading.


